
Kybernetika

Jiankui Wang; Guoshan Zhang; Hongyi Li
Adaptive control of uncertain nonholonomic systems in finite time

Kybernetika, Vol. 45 (2009), No. 5, 809--824

Persistent URL: http://dml.cz/dmlcz/140039

Terms of use:
© Institute of Information Theory and Automation AS CR, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/140039
http://project.dml.cz


KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 5 , P AG E S 8 0 9 – 8 2 4

ADAPTIVE CONTROL OF UNCERTAIN
NONHOLONOMIC SYSTEMS IN FINITE TIME

Jiankui Wang, Guoshan Zhang and Hongyi Li

In this paper, the finite-time stabilization problem of chained form systems with para-
metric uncertainties is investigated. A novel switching control strategy is proposed for
adaptive finite-time control design with the help of Lyapunov-based method and time-
rescaling technique. With the proposed control law, the uncertain closed-loop system under
consideration is finite-time stable within a given settling time. An illustrative example is
also given to show the effectiveness of the proposed controller.

Keywords: finite-time convergence, parameter uncertainty, adaptive control,
nonholonomic systems
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1. INTRODUCTION

The stabilization and adaptive control of nonholonomic systems have drawn much
research attention in the nonlinear control community over the last few decades and
many results have been obtained ([4, 10, 11, 16]). For example, in [4], adaptive
state feedback and output feedback control strategies were proposed for a class of
uncertain nonholonomic systems in chained form using backstepping techniques.
In [11], a constructive adaptive control scheme was reported for a new class of
linearly parametrized nonlinear systems by virtue of backstepping and time-varying
control techniques. On the other hand, non-smooth finite-time control, which makes
the controlled system reach the target in a finite time, provides fast response and
high tracking precision, and moreover, shows disturbance-rejection properties. In
recent years, some explicitly-constructed continuous (but non-smooth) finite-time
controllers for nonlinear systems have been proposed [2, 7, 6, 8, 13, 14, 15].

In [6], Y. Hong gave a class of non-smooth finite time controllers for a class of
high order nonlinear systems by homogeneous method. Based on the design method
of [6], Y. Hong et al. [9] proposed a novel switching finite time control strategy to
nonholonomic systems in chained form with help of time-rescaling, and Lyapunov-
based method. The controllers of [9] can only make the chained form systems with
uncertain parameters and perturbed terms finite time stable locally because the
design methods of controllers rely on the homogeneous method. The purpose of
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this paper is to obtain adaptive finite-time stabilization for a class of chained form
systems with uncertain parameters and perturbed terms. Inspired by the design
method of adaptive control of [8], in this paper we extend the finite-time stabilizing
control for nonholonomic systems in [9] to adaptive finite-time stabilization for the
chained form systems with uncertain parameters and perturbed terms.

The remainder of this paper is organized as follows. In Section 2, the problem
formation and preliminary knowledge are given. In Section 3 adaptive control laws
are constructed, using backstepping-like method and time-rescaling technique, to
make the closed-loop system finite-time convergent within any given settling time.
Moreover, Lyapunov stability of the considered closed-loop system is also discussed.
In Section 4, concluding remarks are given.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider a class of uncertain chained form system in the following
form: 




ẋ0 = u0 + x0φ0(t, x0, θ0),
ẋ1 = x2u0 + φ1(t, x0, x1, θ),
...
ẋn−1 = xnu0 + φn−1(t, x0, x1, . . . , xn−1, θ),
ẋn = u + φn(t, x0, x, θ)

(1)

where x = (x1, · · · , xn)T ∈ Rn denotes the state vector for the n state variables;
φi(t, 0, 0, . . . , 0) = 0 for i = 0, 1, . . . , n; θ0 ∈ Rp and θ ∈ Rm are bounded uncertain
parameter vector as assumed by [4]; u0, u are control inputs. Here we assume n ≥ 2.

Define
ν =

p0

q0
− 1 < 0, ri = 1 + (i − 1)ν > 0, i = 1, . . . , n (2)

where p0 < q0 are two positive odd integers, and define

β0 = r2, (βi + 1)ri+1 = (βi−1 + 1)ri > 0, i = 1, . . . , n − 1. (3)

These notations will be used in the construction of adaptive controllers.
Two assumptions are given for φi, (i = 0, . . . , n):

Assumption 2.1. There is a known nonnegative function b0(x0) such that

|φ0(t, x0, θ0)| ≤ b0(x0).

Assumption 2.2. For 1 ≤ l ≤ i, 1 ≤ i ≤ n,

|φi(t, x0, x1, . . . , xi, θ)| ≤
i∑

l=1

|xl|φ̄i(θ) ≤
i∑

l=1

|xl|σ

with σ
4
= max{φ̄i(θ)

4(1+ν)
−ν(1+nν) , 1}, where φ̄i(θ) is nonnegative smooth function.
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At first, the concepts about finite-time stability are introduced.

Definition 2.3. Consider a system

ẋ = f(x, t), f(0, t) = 0, x ∈ U0 ⊂ Rn, (4)

where f : U0 × R+ → Rn is continuous with respect to x on an open neighborhood
U0 of the origin x = 0. The equilibrium x = 0 of the system is finite-time stable
if it is Lyapunov stable and finite-time convergent in a neighborhood U ⊆ U0 of
the origin. By ‘finite-time convergence’, we mean that, if, for any initial condition
x(t0) = x0 ∈ U at any given initial time t0, there is a settling time T > 0, such
that every solution x(t; t0, x0) of system (4) is defined with x(t; t0, x0) ∈ U/{0} for
t ∈ [t0, T ) and

lim
t→T

x(t; t0, x0) = 0, x(t; t0, x0) = 0, ∀ t > T.

Next lemma is quite straightforward [2].

Lemma 2.4. Suppose that, for system (4), there is a C1 function V (x, t) (V (x, t) =
0 if and only if x = 0), defined on Û × R, where Û ⊂ U0 ⊂ Rn is a neighborhood of
the origin, real numbers c > 0 and 0 < α < 1, such that V (x, t) is positive definite
on Û for any t and −c2V

α(x, t) ≤ V̇ (x, t) ≤ −c1V
α(x, t) (along the trajectory) on

Û . Then V (x, t) is locally finite-time convergent, or equivalently, becomes 0 locally

in finite time, with its settling time V (x0,t0)
1−α

c2(1−α) ≤ T ≤ V (x0,t0)
1−α

c1(1−α) for a given initial

condition x0 in a neighborhood of the origin in Û at initial time t0.

The following inequalities are well-known [1].

Lemma 2.5. (Jensen’s inequality) For xi ≥ 0, i = 1, . . . , n and 0 < c1 < c2,

(
n∑

i=1

xc2
i

)1/c2

≤
(

n∑

i=1

xc1
i

)1/c1

.

Lemma 2.6. (Young’s inequality)

ab ≤ a1+c

1 + c
+

c b1+ 1
c

1 + c
,

for any a ≥ 0, b ≥ 0, c > 0.

The objective of this paper is that for any given initial condition (x0(0), x(0), σ̂(0)),
we find two controllers {

u0 = u0 (x0)
u = u(x0, x, σ̂)

(5)

along with update laws
˙̂σ = µ2(x0, x, σ̂) (6)
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such that the equilibrium (0, 0, σ) of the closed-loop system




ẋ0 = u0 + x0φ0(t, x0, θ0),
ẋ1 = x2u0 + φ1(t, x0, x1, θ),
...
ẋn−1 = xnu0 + φn−1(t, x0, x1, . . . , xn−1, θ),
ẋn = u + φn(t, x0, x, θ),
˙̂σ = µ2(x0, x, σ̂).

(7)

with u0 and u defined in (5) is Lyapunov stable and x0(t) = 0, x(t) = 0, ∀ t ≥ T ,
where T is any given settling time.

Remark 2.7. When φi = 0, i = 0, 1, . . . , n − 1 and θ is known, system (1) is the
special case of the system discussed in [9]. The controller of [9] can locally finite
time stabilize the system (1) because high order perturbed terms φi = 0, (i =
1, 2, . . . , n − 1) with the same dilation coefficients as x-subsystem in [9] lead to the
homogeneousness of the system only in the local sense, not in the global sense.

3. ADAPTIVE FINITE-TIME STABILIZATION

In this section, we give a constructive procedure for the adaptive finite-time stabiliz-
ing control of system (1) within any given settling time T . As usual, we first discuss
the problem in a special case when x0(0) 6= 0, and then we extend our result to the
case when x0(0) = 0.

3.1. Control for x0(0) 6= 0

For x0-subsystem, we can take a finite-time control law in the form of

u0 = −k0x
α
0 − |x0|b0, (8)

where k0 is a positive design parameter, 0 ≤ α = a1

a2
< 1 with ai, i = 1, 2 being

positive odd integers, u0 = −k0 sign(x0) − |x0|b0 when α = 0.

Take a Lyapunov function V0
4
= 1

2x2
0 for system

ẋ0 = u0 + x0φ0(t, x0, θ0). (9)

Then

− k0x
1+α
0 − 2x2

0b0 ≤ V̇0|(9) =−k0x
1+α
0 − x2

0b0 + x0φ0(t, x0, θ0) ≤ −k0x
1+α
0 ≤0, (10)

which implies |x0(t)| ≤ |x0(0)|. Set k̄0 = max|x0(t)|≤|x0(0)| b0(x0).
From (10), we have

−(k0 + 2|x0(0)|1−αk̄0)x
1+α
0 ≤ V̇0|(9) ≤ −k0x

1+α
0 .

If we define K
4
= (k0 + 2|x0(0)|1−αk̄0), then we have:

−KV0

1+α
2 ≤ V̇0 ≤ −k0V0

1+α
2 . (11)



Adaptive Control of Uncertain Nonholonomic Systems in Finite Time 813

Thus by Lemma 2.4, x0 tends to 0 within a settling time denoted by T0. Moreover,

2V0

1−α
2

K(1 − α)
≤ T0 ≤ 2V0

1−α
2

k0(1 − α)
. (12)

To secure finite-time convergence within T for any x0(0) 6= 0, we need to keep

T0 ≤ 2V0

1−α
2

k0(1−α) < T by taking k0 > 2V0

1−α
2

T (1−α) .

Remark 3.1. For the one-dimensional system ẋ0 = u0 + x0φ0, when x0(t0) 6= 0,
the trajectory x0(t; x0(t0), t0) (or x0(t) for short) of the system satisfies: x0(t0) ·
x0(t) > 0, t < T0. Namely, the state x0(t) cannot becomes 0 when t < T0. Take

T∗ < 2V0

1−α
2

K(1−α) ≤ T0 < T , and then

x0(0) · x0(t) > 0, t ∈ [0, T∗]. (13)

On the one hand, from(11),

−1 − α

2
K dt ≤ dV

1−α
2

0 .

Integrating the above inequality from 0 to T∗, we have

0 <

(
x∗2

2

) 1−α
2 4

= V0(0)
1−α

2 − 1 − α

2
KT∗ ≤ V0(T∗)

1−α
2 ,

which yields 0 < x∗ ≤ |x0(T∗)|.
On the other hand, according to V̇0 ≤ −k0V0

1+α
2 ≤ 0,

|x0(T∗)| ≤ |x0(t)| ≤ |x0(0)|, t ∈ [0, T∗].

Therefore, it is not difficult to get

x∗ ≤ |x0(t)| ≤ |x0(0)|, t ∈ [0, T∗].

Note that controller (8) guarantees that u0(t) 6= 0 when 0 ≤ t ≤ T∗, then we have

0 < u0
4
= k0x

α
∗ + x∗ min

x∗≤|x0(t)|≤|x0(0)|
b0 ≤ |u0| ≤ k0|x0(0)|α + |x0(0)|k̄0

4
= u0.

Remark 3.2. For x0-subsystem of system (1), the case with φ0 = 0 is the special
case of x0-subsystem discussed in [9]. In [9] the main work lies on how to estimate
the uncertain coefficient term of u0, however in this paper we mainly work on the
estimation of perturbed term φi.

Then the task is completed if we can adaptively stabilize the time-varying x-subsystem
within the given settling time T∗:





ẋ1 = x2u0 + φ1(t, x0, x1, θ),
...
ẋn−1 = xnu0 + φn−1(t, x0, x1, . . . , xn−1, θ),
ẋn = u + φn(t, x0, x, θ)

(14)
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If u0 is a known constant, then the system (14) has been solved in [8]. Here u0

is unknown but it is bounded and will never be zero (when t ∈ [0, T∗]). Therefore,
with almost the same idea, we can extend the design procedure given in [8] to this
uncertain time-varying system (14). In the following, a procedure (almost the same
as in [8]) to construct an adaptive finite-time control for system (14) is only briefly
introduced (the detailed construction can be found in [8]).

The control law can be given as u = vn in a recursive form as follows

v0 = 0, vj = − sign(u0)

u0

w

rj+ν

rjβj−1

j Φj , 1 ≤ j ≤ n − 1, vn = −w

rn+ν

rn βn−1
n Φn (15)

with

w1 = x1+ν
1 , wj

4
= x

βj−1

j − vj−1(x1, . . . , xj−1, σ̂)βj−1 , 2 ≤ j ≤ n, (16)

where σ̂ is the estimate of σ, Φj(x, σ̂) is a C1 positive function (1 ≤ j ≤ n), which
will be determined later. For convenience, we also define

Qj = (|w1|
2(1+ν)

r2 + . . . + |wj |
(2(1+ν))
rjβj−1 )

1
2(1+ν) . (17)

In what follows, we consider the adaptive finite-time control design for system
(14), consistent with the procedures given in [8].

Step 1: Consider system

ẋ1 = x2u0 + φ1(t, x0, x1, θ), (18)

where |φ1| ≤ |x1|σ. Take v1 = − sign(u0)
u0

w1Φ1 = − sign(u0)
u0

x1+ν
1 Φ1, where Φ1 =

2+ν
2 − ν

2 σ̂
2

−ν x2
1 + l1 is C1 according to − 2

k > 2n (because rn +ν = 1+nν > 0). Note

that 2+ν
2 − ν

2 σ̂
2

−ν x2
1 ≥ x−ν

1 σ̂ by Young’s inequality and β0 = 1 + ν from (3), then
we have

xr2
1 u0v1 ≤ −x

2(1+ν)
1 Φ1 ≤ −l1x

2(1+ν)
1 − σ̂x2+ν

1 . (19)

Take L1 = l1, V ∗
1 = W1

4
=

x2+ν
1

2+ν (noting that 2 + ν = p0

q0
+ 1 according to (2), V ∗

1 is

nonnegative), and V1 = V ∗
1 + σ̃2

2 , where σ̃ = σ − σ̂. Obviously, ˙̃σ = − ˙̂σ because σ is
a constant. Then by (19) we have

V̇1 ≤ u0|xr2
1 ||x2 − v1| − L1x

2(1+ν)
1 + |x2+ν

1 |σ̃ − ˙̂σσ̃

≤ −L1x
2(1+ν)
1 + u0|w1||x2 − v1| + (σ̃ + η1)[φ̃1 − ˙̂σ], (20)

where η1 = 0 and φ̃1 = |x1|2+ν is C1.

After Step j − 1 (2 ≤ j ≤ n): For system




ẋ1 = x2u0 + φ1,
...
ẋj−1 = xju0 + φj−1,

(21)
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we assume that we already have

(i) vβi

i with vi defined in (15), is C1. Moreover, Φi(x, σ̂) is positive and C1, for
1 ≤ i ≤ j − 1.

(ii) There is a C1 function ρi,l ≥ 0, for any given 1 ≤ i ≤ l ≤ j − 1, such that

|∂v
βl
l

∂xi
| ≤ Q

(rl+ν)βl−ri

l (x)ρi,l(x, σ̂); Meanwhile, there is a C1 nonnegative function v̂i

for 1 ≤ i ≤ j − 1 such that |∂v
βi
i

∂σ̂ | ≤ v̂i(x, σ̂).

(iii) For the function Vj−1 = V ∗
j−1 + σ̃2/2, we have

V̇j−1 ≤ −Lj−1Q
2(1+ν)
j−1 + u0|wj−1||xj − vj−1| + [σ̃ + ηj−1][φ̃j−1 − ˙̂σ]. (22)

In Step 1, the above three conditions can be verified easily. All of them will also
be checked later in Step j.

Step j: It is time to consider system




ẋ1 = x2u0 + φ1,
...
ẋj−1 = xju0 + φj−1,
ẋj = xj+1u0 + φj .

(23)

Set

Wj(x)
4
=

∫ xj

vj−1

wj(x1, . . . , xj−1, s) ds =

∫ xj

vj−1

[sβj−1 − v
βj−1

j−1 ] ds, 2 ≤ j ≤ n (24)

is nonnegative and even positive when xj 6= vj−1(x1, . . . , xj−1, σ̂), In fact, we can

divide it into two cases: when xj ≥ vj−1, based on [sβj−1 − v
βj−1

j−1 ] ≥ 0, we have

Wj ≥ 0; when xj ≤ vj−1, Wj =
∫ xj

vj−1
[sβj−1 −v

βj−1

j−1 ] ds =
∫ vj−1

xj
[v

βj−1

j−1 −sβj−1 ] ds ≥ 0.

Moreover, Wj is C1 owing to Assumption (i) in Step j − 1. Then we can construct
C1 and positive-definite function (with respect to x1, . . . , xj and σ̃):

Vj = V ∗
j +

1

2
σ̃2 = V ∗

j−1 + Wj(x, σ̂) +
1

2
σ̃2. (25)

Let us consider the derivative of Vj :

V̇j ≤ −Lj−1Q
2(1+ν)
j−1 + u0|wj−1||xj − vj−1| +

j∑

i=1

∂Wj

∂xi
(xi+1u0 + φi)

+(σ̃ + ηj−1)φ̃j−1 −
(

ηj−1 − ∂Wj

∂σ̂

)
˙̂σ − σ̃ ˙̂σ.

Then we analyze each term on the right hand side of the above inequality.

i) By virtue of Young’s inequality, we have

u0|wj−1||xj − vj−1| ≤ 2u0|wj−1||wj |
1

βj−1 ≤ Lj−1

3n
Q

2(1+ν)
j−1 + l0j |wj |

2(1+ν)
rjβj−1 , (26)
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where l0j is a positive constant depending on k, Lj−1 and u0.

ii) There exist C1 nonnegative functions ψ̃j and γ̃j such that

j∑

i=1

∂Wj

∂xi
(xi+1u0 + φi) ≤ Lj−1

3n
Q

2(1+ν)
j + |wj |

2(1+ν)
rjβj−1 [ψ̃j + σ2γ̃j ] (27)

+ u0|wj ||xj+1 − vj | + wju0vj , (28)

where γ̃j(0, σ̂2) = 0.

iii) Similarly, we can obtain that, for ∀ j ≥ 1, there exists a C1 positive function
φ̄j satisfying

φ̃j−1(σ̃ + ηj−1) − (ηj−1 − ∂Wj

∂σ̂
) ˙̂σ ≤ Lj−1

3n
Q

2(1+ν)
j−1

+ |wj |
2(1+ν)
rjβj−1 φ̄j − |wj |

2(1+ν)
rjβj−1 γ̃j σ̃ + (σ̃ + ηj)φ̃j − ηj

˙̂σ, (29)

where ηj = ηj−1 − ∂Wj

∂σ̂ , φ̃j = φ̃j−1 + |wj |
2(1+ν)
rjβj−1 γ̃j .

Then we can construct

vj = − sign(u0)

u0

w

rj+ν

rjβj−1

j Φj , (30)

where

Φj(x, σ̂) = lj +
Lj−1

3n
+ l0j + ψ̃j(x, σ̂) + φ̄j(x, σ̂) + (1 + σ̂2)

1
2 γ̃j(x, σ̂), j ≥ 2

is positive. Obviously,

u0wjvj + |wj |
2(1+ν)
rjβj−1

(
Lj−1

3n
+ l0j + ψ̃j + φ̄j + σ̂γ̃j

)
≤ −lj |wj |

2(1+ν)
rjβj−1 .

Therefore, putting (26), (27) and (29) together leads to

V̇j |(23) ≤ −LjQ
2(1+ν)
j + u0|wj ||xj+1 − vj | + (σ̃ + ηj)(φ̃j − ˙̂σ), (31)

where Lj = min{n−1
n Lj−1, lj}, which is consistent with condition (iii).

Before the end of Step j, we need to verify the three assumptions listed in Step

j − 1 for Step j. Φj is C1 because ψ̃j , φ̄j , γ̃j are so. Therefore, v
βj

j is C1 because

wj is C1 and (rj + ν)βj ≥ rjβj−1. Therefore, condition (i) given in Step j − 1 are
still valid in Step j.

Moreover, by induction, it is not hard to confirm condition (ii) for Step j, namely,
there are C1 nonnegative functions ρi,j and v̂j for any given 1 ≤ i ≤ j such that

∣∣∣∣∣
∂v

βj

j

∂xi

∣∣∣∣∣ ≤ Q
(rj+ν)βj−ri

j ρi,j(x, σ̂),

∣∣∣∣∣
∂v

βj

j

∂σ̂

∣∣∣∣∣ ≤ v̂j . (32)
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Up to Step n: Take

Vn = V ∗
n +

1

2
σ̃2 =

n∑

i=1

Wi +
1

2
σ̃2 (33)

which is positive definite with respect to x1, . . . ., xn, σ̃, and the adaptive control law





u = vn = − sign(u0)
u0

w

rn+ν

rn βn−1
n Φn,

˙̂σ = φ̃n(x, σ̂).
(34)

Then, with (31), we have

V̇n|(14) ≤ −LnQn(w1, . . . , wn)2(1+ν), (35)

where Qn is positive definite with respect to w1, . . . , wn (and therefore x1, . . . , xn).
Hence, the equilibrium (0, σ) of the closed-loop x-subsystem with the adaptive con-
trol law (34) is Lyapunov stable. Moreover, according to (33) and (35), for any given
(x(0), σ̂(0)) with σ̂(0) ≥ 0, we also have

|σ̃(t)| ≤
√

2V ∗
n (x(0), σ̂(0)) + (σ − σ̂(0))2

4
= C̃, (36)

and therefore,

0 ≤ σ̂(t) ≤ C
4
= C̃ + σ, (37)

where C only depends on the initial condition (x(0), σ̂(0)) and σ (or θ).
In the following, we will prove the adaptive finite-time stabilization of the x-

subsystem within a given settling time T . To do this, we give some lemmas. The
next lemma was shown in [8].

Lemma 3.3. For every continuous function Ṽ (x, σ̂) satisfying Ṽ (0, σ̂) = 0 and for
every C > 0, there is a constant ρ > 0 depending on C such that Ṽ (x, σ̂) ≤ 1 for all
(x, σ̂) satisfying V̄ (x, σ̂) ≤ ρ and σ̂ ∈ [0, C], where V̄ (x, σ̂) is positive definite with
respect to x and satisfying V̄ (0, σ̂) = 0.

Then we can obtain:

Lemma 3.4. There is a positive constant ρ depending on C such that for any

(x(0), σ̂(0)) ∈ Ω
4
= {(x, σ̂2) : V ∗

n (x, σ̂2) ≤ ρ}, the settling time Tx for the closed-loop
x-subsystem satisfies

Tx ≤ 4(2 + ν)V ∗
n (x(0), σ̂(0))

−ν
2+ν

−νLn
(38)

P r o o f . According to V ∗
n =

∑n
j=1

∫ xj

vj−1
[sβj−1 − v

βj−1

j−1 ] ds ≤ ∑n
j=1 2|wj |

2+ν
rjβj−1

and Lemma 2.5, we have

(V ∗
n )

2(1+ν)
2+ν ≤ 2Q2(1+ν)

n . (39)
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Noting that φ̃1(x) = Q
2(1+ν)
1 x−ν

1 is independent of σ̂, |wj |
2(1+ν)
rjβj−1 γ̃j ≤ Q

2(1+ν)
j γ̃j , and

recalling the definition of φ̃n, we have

φ̃n = φ̃1(x) +
n∑

j=2

|wj |
2(1+ν)
rjβj−1 γ̃j ≤ Q2(1+ν)

n φ0, (40)

where φ0 = x−ν
1 +

∑n
j=2 γ̃j . By (35), (39) and (40), V̇ ∗

n ≤ −LnQ
2(1+ν)
n + σ̃φ̃n ≤

−Ln

4 (V ∗
n )

2(1+ν)
2+ν − Ln

2 Q
2(1+ν)
n (1− 2C̃

Ln
φ0). Then, based on Lemma 3.3, we can get a con-

stant ρ such that for any (x, σ̂) ∈ Ω
4
= {(x, σ̂) : V ∗

n (x, σ̂(t)) ≤ ρ}, we have 2C̃
Ln

φ0 < 1,

and therefore, V̇ ∗
n ≤ −Ln

4 (V ∗
n )

2(1+ν)
2+ν . By Lemma 2.4, the proof is completed. ¤

The following is one of our main results.

Theorem 3.5. If x0(0) 6= 0, system (7) is adaptively finite-time stable within any
given settling time T under the controllers in the form of

u0 = −k0x
α
0 − |x0|b0, (41)

and {
u = u∗ = Kvn(x1

K , x2

K , . . . , xn

K ),
˙̂σ = φ̃n(x1

K , x2

K , . . . , xn

K ),
(42)

where vn and φ̃n are defined in (34) with suitable K ≥ 1.

P r o o f . As discussed, we have selected a suitable k0 such that the state x0

converges to zero within T0 ≤ T for the system (9). Now we should construct an

adaptive controller for x-subsystem (14) to make its settling time Tx ≤ T∗ <
2V ∗

0

1−α
2

K(1−α)

as mentioned in Remark 3.1.
If (x(0), σ̂(0)) ∈ Ω and obtained Tx satisfies Tx ≤ T∗, then we can take adaptive

control laws in the form of (42) with K = 1.
If (x(0), σ̂(0)) ∈ Ω and Tx > T∗, we will employ a time-rescaling technique to

re-construct an adaptive finite-time controller to make the closed-loop system with
a “modified” settling time, TK

x ≤ T∗.
Take x̄i = xi

K with K ≥ 1, then we get equations from system (14):





dx̄1

dt = x̄2u0 + φ1

K ,
...
dx̄n−1

dt = x̄nu0 + φn−1

K ,
dx̄n

dt = u
K + φn

K

4
= ū + φ̄n(x̄)

(43)

where x̄ = (x̄1, . . . , x̄n)T . |φi

K | ≤ ∑i
l=1 |x̄l|σ, 1 ≤ i ≤ n makes Assumption 2 still

valid for system (43). Therefore, control ū = vn(x̄, ˆ̄σ) and update law ˙̄̂σ = φ̃n(x̄, ˆ̄σ)
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given in the form of (34) with the same li, i = 1, . . . , n can adaptively finite-time
stabilize system (43), where ˆ̄σ is the estimator of σ . Here, we only require that (13)
should hold when t ∈ [0, TK

x ], where TK
x (x̄) is the settling time of the system (43).

On the one hand, similar to (36), |˜̄σ(t)| ≤
√

2V ∗
n (x̄(0), ˆ̄σ(0)) + (σ − ˆ̄σ(0))2

4
= ˜̄C,

and therefore, 0 ≤ ˆ̄σ(t) ≤ C̄
4
= ˜̄C + σ. Noting that limK→∞ V ∗

n (x̄(0), ˆ̄σ(0)) = 0, we

can find K1 ≥ 1 such that, when K ≥ K1,
˜̄C ≤ C̃, and then C̄ ≤ C. Meanwhile,

(x̄(0), ˆ̄σ(0)) ∈ Ω when K ≥ K1. Applying Lemma 3.4 to system (43) gives that

TK
x ≤ 4(2 + ν)(V ∗

n (x̄(0), ˆ̄σ(0)))
−ν
2+ν

−νLn
, (44)

when K ≥ K1. Since V ∗
n (0, ˆ̄σ(0)) = 0, there exists a positive number K2 ≥ K1 such

that TK
x ≤ T∗ for any K ≥ K2.

In the case when (x(0), σ̂(0)) /∈ Ω, we can first find enough big K0 such that
(x̄(0), ˆ̄σ(0)) ∈ Ω when K > K0. Then the analysis can be completed in a way
similar to the case when (x(0), σ̂(0)) ∈ Ω and Tx > T∗.

¤

3.2. Control for x0(0) = 0

We have discussed the case when x0(0) 6= 0. Now we show how to propose adaptive
finite time control laws for system (1) within any given finite settling time T when
x0(0) = 0. Obviously, if x(0) is also 0, we can certainly take

{
u0 = u = 0;
˙̂σ = 0.

Therefore, we will only study the case when (x0(0), x(0)) ∈ Γ = {(0, x) : ‖x‖ 6= 0}.
At first, we give a lemma.

Lemma 3.6. Consider the the one-dimensional system

ẋ0 = u0 + x0φ0(t, x0, θ0), x0(0) = 0, (45)

the closed-loop system with u0 = β − x0b0(x0) enjoys the following properties:

|x0(t)| ≤ βt, x0(t) > 0, t > 0,

where β > 0.

P r o o f . Based on u0(0) = β > 0, we can get ẋ0(0) > 0. According to Remark 3.1,
it is not difficult to know that x0(t) ≥ 0, ∀ t > 0. On the one hand, according to
ẋ0 = u0 + x0φ0(t, x0, θ0) ≤ β we have |x0(t)| = x0(t) ≤ βt, ∀ t > 0. On the other
hand, based on ẋ0 = u0 + x0φ0(t, x0, θ0) ≥ β − 2x0b0, we have

x0(t) ≥ βe−µ(t)

∫ t

0

eµ(τ) dτ ≥ βe−µ(t)t > 0, ∀ t > 0,

where µ(t) = 2
∫ t

0
b0(x0(s)) ds ≥ 0. ¤
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Theorem 3.7. Consider the system (1) satisfying Assumptions 1 and 2 in the case
when (x0(0), x(0)) ∈ Γ. Let T be its settling time. Take real numbers β > 0 and

ε > 0 and take α as in (8). Select ts(‖x(0)‖) = min
{

1
max

τ∈[0, ‖x(0)‖]
4{ε+b0(x0(τ))} , T

4 , ‖x(0)‖
}

,

and k0 such that k0 ≥ 8V ∗
0 (x0(ts))

1−α
2

3T (1−α) .

Then the controller in the following form:

u0 =

{
β − x0b0(x0), if t < ts (‖x(0)‖)
−k0x

α
0 − x0b0, otherwise

(46)

{
u(t) = u∗(x, u0),
˙̂σ = φ̃n(x, u0),

(47)

finite-time stabilize the closed-loop system (7) within settling time T , where (47) can
be taken in the form of (42) (with u0 = β

2 when t < ts). Moreover, the equilibrium
(0, 0, σ) of the closed-loop system (7) is Lyapunov stable.

P r o o f . To keep the controllability of the x-subsystem when t ∈ [0, ts], we need to
prove

u0(t) ≥ β

2
, t < ts(‖x(0)‖).

In fact,
u0(t) ≥ β − 2x0b0 ≥ β − 2βtsb0

≥ β − 2βb0

max
τ∈[0, ‖x(0)‖]

4{ε + b0(x0(τ))} ≥ β

2
.

According to the analysis given for the case when x0(0) 6= 0, it is not hard to see
that adaptive control law (47) taken in the form of (42) with suitable K stabilizes

x-subsystem within T∗ < ts +
2V ∗

0 (x0(ts))
1−α

2

K(1−α) ≤ T . Then, with the selection of k0,

x0-subsystem can reach x0 = 0 within T , which implies that the whole system is
finite-time convergent within settling time T .

Next, we investigate the Lyapunov stability of the closed-loop system (7). When
t ∈ [0, ts], based on (46) and Lemma 3.6, we have

|x0(t)| ≤ βt ≤ βts ≤ β‖x(0)‖.

In fact, for any ε > 0, when t ∈ [0, ts], if β‖x(0)‖ ≤ ε
2 , then |x0(t)| ≤ ε

2 ; when
t ≥ ts, according to the Lyapunov stability of the closed-loop x0-subsystem, we have
for any ε > 0, there is δ1 such that if |x0(ts)| ≤ β‖x(0)‖ ≤ δ1, then |x0(t)| ≤ ε

2 .
According to the Lyapunov stability of the closed-loop x-subsystem (14) with update
law ˙̂σ = φ̃n based on the analysis of the preceding subsection, there exists δ2 such
that if ‖x(0)‖ ≤ δ2 and |σ̃(0)| ≤ δ2, then ‖x(t), σ̃(t)‖ ≤ ε

2 .

Thus, when ‖x(0)‖ ≤ min{ ε
2β , δ1

β , δ2} and |σ̃(0)| ≤ δ2, we have

‖x0(t), x(t), σ̃(t)‖ ≤ |x0(t)| + ‖x(t), σ̃(t)‖ ≤ ε.
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Fig. 1. Trajectories of x0 (solid line), x1 (dashdot line), x2 ( dashed line) and σ̂ (point

line) in Case 1.

Hence the closed-loop system (7) is Lyapunov stable. Thus, the proof is com-
pleted. ¤

Remark 3.8. Note that the system considered in [9] is a special case of system (1)
when φ0 = θ = 0. To handle the uncertain θ, adaptive controller is employed here.

Example 3.9. Consider the following system in the form of (1):




ẋ0 = u0 + θ0x
2
0/5,

ẋ1 = u0x2 + θx1,
ẋ2 = u1 − u0x1,

(48)

where θ0 = θ = 1/3 are uncertain parameters, and φ0 = θ0x0/5, b0 = |x0|
10 , φ1 = x1,

where θ0x
2
0/5 and θx1 represent un-modeled dynamics or the perturbations. When

θ0 = θ = 0, (48) becomes a kinematic model of tricycle-type mobile robot where u0

and u represent the wheel’s angular velocities [10].

Case 1. When (x0(0), x1(0), x2(0), σ̂(0)) = (1, 1/2, 2.2, 0.4) and the settling time

T = 6. For α = 1/3, according to k0 ≥ 2V0

1−α
2

T (1−α) = (1/2)4/3, we can take k0 = 1/2.

Thus the adaptive control laws can be given as the follows:

u0 = −1

2
x

1/3
0 − x2

0

10
.





u1 = −(x
9/7
2 − v

9/7
1 )5/9{2.6 + 16.5(22/9 + 2(17 + σ̂9x2

1))
2ρ2

1,1/9

+[(1 + σ̂2)1/2 + 3|x2 − v1|v̂1x
16
9

1 ](2x1)
4/9ρ2

1,1}
˙̂σ = φ̃2(x, σ̂) = x

16/9
1 + 2w

14/9
2 x

4/9
1 ρ2

1,1
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Fig. 2. Trajectories of x0 (solid line), x1 (point line), x2 (dashdot line) and σ̂ (dashed

line) in Case 2.

where
v1 = 2x

7/9
1 (2 + σ̂9x2

1/9), v̂1 = 9(2 + σ̂9x2
1/9)2/7σ̂8|x2|3/7,

and
ρ1,1 = (4 + 2σ̂9x2

1/9)9/7 + 2x2
1(2 + σ̂9x2

1/9)2/7σ̂9/7.

Case 2. When (x0(0), x1(0), x2(0), σ̂(0)) = (0, 1, −4, 1/4) and the settling time
T = 8, the adaptive controllers can be given as follows:

u0 =

{
3/4 − x2

0/10, if t < 2,

− 1
2x

1/3
0 − x2

0

10 , if t ≥ 2

where u1 is the same as given in Case 1.

Remark 3.10. If θ0 = θ = 0, with the design method of [9] we can get:
When (x0(0), x1(0), x2(0)) = (0, 1, −4),

{
u0(t) = 1/2
u(t) = 0

if t < 2, (49)

{
u0(t) = −x

9
11
0

u(t) = −4(x
11
9

2 − 3.5x1)
7/11 − 4|x1| sgn(x

11
9

2 − 3.5x1)
if t ≥ 2 (50)

When (x0(0), x1(0), x2(0)) = (1, 1/2, 2.2), controller can be taken as the form
of (50).

In Figure 1 and Figure 2, the left figures stands for the simulations for the al-
gorithms in this paper and the right figures represents the simulations for the algo-
rithms (49) and (50) from the reference[9]. From these simulations, it is not difficult
for us to get: In Case 1, both algorithms from this paper and reference[9] can work
well; however, in Case2 only the algorithms from this paper can work well.
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4. CONCLUSIONS

The controllers of [9] can only make the chained form systems with uncertain param-
eters and perturbed terms finite time stable locally. Inspired by the design method
of adaptive control of [8], we extended the finite-time stabilizing control for non-
holonomic systems in [9] to adaptive finite-time stabilization for the chained form
systems with uncertain parameters and perturbed terms. The existing adaptive
finite-time control laws were mainly constructed for the systems with single control
input. Here, the nonholonomic system under consideration consists of two coupled
control sub-systems. To solve the control problem, we first finite-time stabilized one
of the two subsystems within a given settling time, and then we used time-rescaling
technique to make the second subsystem convergent faster than the first one. Both
rigorous mathematical proofs and a numerical simulation were given.

We note that although controllers in the form of (41) and (42), or, (46) and
(47) works well for system (1), it may be interesting to consider how to design con-
trollers such that nonholonomic systems in chained form with dynamic uncertainty
are globally or semi-globally finite time stable.
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