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Analysis of the Predator-Prey Model with Climax

Prey Population

Jitka Kühnová

Abstract. The aim of the contribution is to study ODE predator-prey sys-
tem with a prey population embodying the Allee effect. Particular sta-
tionary points are analyzed and the results are illustrated by graphs of
numerical solutions for various values of model parameters.

1 Introduction
The relation between predator and its prey (or to say it less specifically, the
producer-consumer relation) represents one of the most important interactions of
two populations. It constitutes basis of any food chain and it represents one of
the driving powers of evolution since the both populations are forced to never-
ending increase or to extinction. The classical two-ODE Lotka-Volterra model of
the interaction is simple, illustrative, but unrealistic. Incorporation of a carrying
capacity for the prey population to it makes it slightly more realistic. But such
model do not admit periodic solutions that might explain observed cyclical changes
in abundances of the natural populations. Hence, Gause-type models based on
clear ecological assumptions and, in particular cases, possessing limit cycle solu-
tions are considered to be the appropriate models of the predator-prey interaction
(cf. e.g. [2]). These models often yields a conclusion, that neither the predator
population nor the prey one could extinct (from what we could say that we don’t
have to limit whaling because whales as the prey couldn’t extinct). But this is not
true in general.

The contribution analyse a generalized Gause-type predator-prey model with
the prey population exhibiting both Allee effect and intraspecific competition.
A population of a such type is called a climax one. It is limited above by car-
rying capacity of its environment and below by a certain threshold abundance
necessary for its survival.
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2 Introduction to Model Analysis
When we want to analyse autonomous system of two differential equations we
examine each nullcline, i.e. curves where at least one derivative is equal to zero,
and stationary points (intersections of nullclines) as well.

We have autonomous system of this type:

x′1 = f1(x1, x2) ,

x′2 = f2(x1, x2) ,
(1)

we use so-called variation matrix:

J(x̂1, x̂2) =
(

f ′11 f ′12
f ′21 f ′22

)
,

where

f ′11 =
∂f1(x̂1, x̂2)

∂x1
, f ′12 =

∂f1(x̂1, x̂2)
∂x2

,

f ′21 =
∂f2(x̂1, x̂2)

∂x1
, f ′22 =

∂f2(x̂1, x̂2)
∂x2

,

and (x̂1, x̂2) is stationary point.
Since the system is two-dimensional, we are able to establish qualitative prop-

erties of each separate stationary point by analysis of characteristic polynomial of
the variation matrix. We find eigenvalues λ1, λ2 of variation matrix J(x̂1, x̂2) and
if:

• λ1, λ2 ∈ R and λ1λ2 > 0 then stationary point (x̂1, x̂2) is a node,

• λ1, λ2 ∈ R and λ1λ2 < 0 then stationary point (x̂1, x̂2) is a saddle,

• λ1,2 = ±βi, i.e. λ1, λ2 are imaginary numbers then stationary point (x̂1, x̂2)
is centre or rotation point,

• λ1,2 = α± βi, α 6= 0, then stationary point (x̂1, x̂2) is focus,

• real parts of λ1 and λ2 are negative, then stationary point (x̂1, x̂2) is asymp-
totically stable,

• real part of λ1 i λ2 are positive, then stationary point (x̂1, x̂2) is unstable.

The characteristic equation det(J(x̂1, x̂2))− λI = 0 implies

λ1,2 =
tr(J(x̂1, x̂2))±

√
tr(J(x̂1, x̂2))2 − 4 det(J(x̂1, x̂2))

2

This relation allows us to reformulate the statement above. Let x̂ = (x̂1, x̂2) be
a stationary point of (1). Then the following holds:

1. if det(J(x̂1, x̂2)) < 0 then λ1λ2 < 0 and x̂ is saddle;
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2. let det(J(x̂1, x̂2)) > 0 and, consequently, we distinguish the following three
cases

(a) 4 det(J(x̂1, x̂2) < tr(J(x̂1, x̂2))2, then
tr(J(x̂1, x̂2)) < 0 then λ1,2 < 0 and x̂ is stable node;
tr(J(x̂1, x̂2)) > 0 then λ1,2 > 0 and x̂ is unstable node;

(b) 4 det(J(x̂1, x̂2) > tr(J(x̂1, x̂2))2, then
tr(J(x̂1, x̂2)) < 0 then λ1,2 < 0 and x̂ is stable focus;
tr(J(x̂1, x̂2)) > 0 then λ1,2 > 0 and x̂ is unstable focus;

(c) tr(J(x̂1, x̂2)) = 0 then x̂ is rotation point or focus.

3 Analysis of the Model
We consider the model:

x′1 =
[
ε1

(x1

θ
− 1
)(

1− x1

K

)
− γ1x2

]
x1

x′2 = (−ε2 + γ2x1)x2,

where ε1 denotes intrinsic grow rate of prey population, θ minimal abundance of
prey population for provide its reproduction, K carrying capacity for prey popula-
tion, γ1 intensity of predation, ε2 death rate of starving predator population and
γ2 rate of conversion consumed pray into predator growth rate.

The system possesses four nullclines: x1 = 0, x2 = ε1
γ1

(
x1
θ − 1

) (
1− x1

K

)
are

x1-nullclines and x2 = 0, x1 = ε2
γ2

are x2-nullclines. There are also four stationary
points (see Fig. 1):

(0, 0); (θ, 0); (K, 0);
(

ε2

γ2
,

ε1

γ1Kθ

(
ε2

γ2
− θ

)(
K − ε2

γ2

))

Figure 1 Nullclines and stationary points of the system

Variation matrix of this system is:

J(x̂1, x̂2) =

(
ε1

(
− 3x̂2

1
θK + 2x̂1

(
1
θ + 1

K

)
− 1
)
− γ1x̂2 −γ1x̂1

γ2x̂2 −ε2 + γ2x̂1

)
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And now, we look closer on each stationary point:

1. (0, 0)

Variation matrix for this stationary point is:

J(0, 0) =
(
−ε1 0
0 −ε2

)
.

• det(J(0, 0)) = ε1ε2 > 0 – so the stationary point is focus or node,

• tr(J(0, 0)) = −(ε1 + ε2) < 0 – stationary point is stable.

• 4 det(J(0, 0)) − tr(J(0, 0))2 = 4ε1ε2 − (ε1 + ε2)2 = −(ε1 − ε2)2 < 0 –
stationary point (0, 0) is stable node.

2. (θ, 0)

Variation matrix for this stationary point is:

J(θ, 0) =
(
−ε1

(
1− θ

K

)
−γ1θ

0 −ε2 + γ2θ

)
.

• det(J(θ, 0)) = ε1γ2

(
1− θ

K

) (
θ− ε2

γ2

)
. The term

(
1− θ

K

)
is positive while

the term
(
θ − ε2

γ2

)
could be positive or negative depending on ε2

γ2
.

(a) θ > ε2
γ2

In this case the term
(
θ − ε2

γ2

)
is positive and so det(J(θ, 0)) is also

positive. The stationary point (θ, 0) is node or focus.

• tr(J(θ, 0)) = ε1

(
1− θ

K

)
+γ2

(
θ− ε2

γ2

)
– sum of two positive numbers

is also positive number, so (θ, 0) is unstable.

• 4 det(J(θ, 0))− tr(J(θ, 0))2 = −
[
ε1

(
1− θ

K

)
−γ2

(
θ− ε2

γ2

)]2
< 0 – the

stationary point (θ, 0) is unstable focus.

(b) θ < ε2
γ2

In this case, the term
(
θ− ε2

γ2

)
is negative then also det(J(θ, 0)) is negative

and the stationary point (θ, 0) is saddle.

3. (K, 0)

Variation matrix for this stationary point is:

J(K, 0) =
(

ε1

(
1− K

θ

)
−γ1K

0 −ε2 + γ2K

)
.

• det(J(K, 0)) = ε1γ2

(
1− K

θ

) (
K − ε2

γ2

)
. The term

(
1− K

θ

)
is negative

and a sign of determinant also depend on parameter ε2
γ2

.
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(a) K > ε2
γ2

In this case, the term
(
K− ε2

γ2

)
is positive and the determinant negative.

The stationary point (K, 0) is saddle.

(b) K < ε2
γ2

In this case, the term
(
K − ε2

γ2

)
is negative, so det(J(K, 0)) is positive.

Stationary point (K, 0) is node or focus.

• tr(J(θ, 0)) = ε1

(
1− K

θ

)
+γ2

(
K− ε2

γ2

)
– sum of two negative numbers

is also negative number, hence stationary point is stable.
• 4 det(J(K, 0))− tr(J(K, 0))2 = −

[
ε1

(
1− K

θ

)
− γ2

(
K − ε2

γ2

)]2
< 0 –

stationary point (θ, 0) is stable node.

4.
(

ε2

γ2
, ε1

γ1Kθ

(
ε2

γ2
− θ

)(
K − ε2

γ2

))
This stationary point belongs to positive quadrant only when ε2

γ2
∈ (θ, K).

We denote it by (x̂1, x̂2) for simplification.

Variation matrix of this stationary point is:

J(x̂1, x̂2) =

(
ε1ε2
θKγ2

(
K + θ − 2ε2

γ2

)
−γ1

ε2
γ2

ε1γ2
Kθγ1

(
ε2
γ2
− θ
)(

K − ε2
γ2

)
0

)
.

• det(J(x̂1, x̂2)) = ε1ε2
θK

(
ε2
γ2
− θ
)(

K − ε2
γ2

)
> 0 – stationary point is node or

focus.

• tr(J(x̂1, x̂2)) = ε1ε2
θKγ2

(
K+θ− 2ε2

γ2

)
– trace would be positive if ε2

γ2
< θ+K

2 ,
stationary point (x̂1, x̂2)) would be unstable. Trace would be negative
if ε2

γ2
> θ+K

2 , and stationary point (x̂1, x̂2)) would be stable.

• 4 det(J(x̂1, x̂2))− tr(J(x̂1, x̂2))2 =
= 4 ε1ε2

θK

(
ε2
γ2
− θ
)(

K − ε2
γ2

)
−
(

ε1ε2
θKγ2

)2(
K + θ − 2ε2

γ2

)2
We also can express the term 4 det(J(x̂1, x̂2))) − tr(J(x̂1, x̂2)))2 as a
function of variable ε2, so

f(ε2) = 4
ε1ε2

θK

(
ε2

γ2
− θ

)(
K − ε2

γ2

)
−
(

ε1ε2

θKγ2

)2(
K + θ − 2ε2

γ2

)2

For the sake of simplicity, we introduce new variable ε̄2 and new param-
eters ε̄1, α by

ε̄2 =
ε2

γ2
, ε̄1 =

ε1

θK
, α = θ + K .

Then, we will examine the function

g(ε̄2) = f(ε2) = 4ε̄1ε̄2γ2(ε̄2 − θ)(K − ε̄2)− (ε̄1ε̄2)2(α− 2ε̄2)2 . (2)

Function g(ε̄2) is a polynomial of the fourth degree so it has at most
four roots. One could see that one of them is ε̄2 = 0.
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When we look closer at particular values of the function g(ε̄2), i.e. ε̄2 = θ,
ε̄2 = K and ε̄2 = α

2 . We could see that:

g(θ) = − (ε̄1θ)
2 (K − θ)2 < 0

g(K) = − (ε̄1K)2 (θ −K)2 < 0

g
(α

2

)
=

ε̄1γ2α

2
(K − θ)2 > 0

These expressions shows at least two roots for positive ε̄2. The fourth
root could be located between 0 and θ or on the negative part of the ε̄2

axis. The first derivative of the function g(ε̄2) holds:

g′(ε̄2) = −16ε̄1ε̄
3
2 + 12ε̄1(α− γ2)ε̄2

2 + 2ε̄1α(4γ2 − αε̄1)ε̄2 − 4ε̄1θKγ2

so for the first root ε̄2 = 0 applies:

g′(0) = −4ε̄1θKγ2 < 0 ,

consequently, function g(ε̄2) is decreasing in 0. And according to (2):

lim
ε̄2→−∞

g(ε̄2) = −∞ < 0

one could see, that the fourth root is negative. That is, because of two
roots between θ and K points, the stationary point (x̂1, x̂2) is node for
ε2 = θ. As the parameter ε2 increases, it became focus and further it
turns into node again.

The behaviour of the system for different values ε̄2 is displayed on the Fig. 2–6.
On the Fig. 2, solutions are figured individually for different initial conditions of
population sizes of predator and prey. It could be seen that predator extirpate the
prey at first and then extinct itself.

Figure 2 ε̄2 < θ – stationary point (0, 0) is stable node,
and stationary point (θ, 0) is unstable node
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We have the stationary point (x̂1, x̂2) on the Fig. 3 as the unstable focus. So-
lutions are figured for almost the same initial conditions of populations nearby
this unstable focus. We could also see, that both populations extinct (stationary
point (0, 0) is stable node). But if we “come closer” with x2-nullcline ε̄2 to the
point K+θ

2 , we get unstable focus with stable limit cycle (see Fig. 4). In the case
of stable limit cycle in the system, sizes of both populations fluctuate periodically
in accordance with observation of natural predator-prey communities. For distant
values of initial sizes of populations, trajectories don’t “roll” soon enough through
x1-nullcline and they end in the point (0, 0) again.

Figure 3 ε̄2 ∈ (θ, θ+K
2 ) – stationary point (x̂1, x̂2) is

unstable focus

Figure 4 ε̄2 → θ+K
2 – unstable focus with limit cycle

If ε̄2 > K+θ
2 , the stationary point (x̂1, x̂2) is stable focus and both, predator

and its prey, coexist with stable size of their populations (see Fig. 5). But if the
size of the predator population is big according to the size of the prey population,
predator could get the size of prey populations under its threshold. Then, prey
can’t keep up the population of the predator, the predator extinct followed by
the prey.
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Figure 5 ε̄2 <∈ ( θ+K
2 ,K) – stationary point (x̂1, x̂2)
is stable focus

At last, when ε̄2 > K, there are two possible situations (Fig. 6). The size of
prey population is big enough to survive predators atacks, but predator can’t live
from it and extinct. Because of lack of predator population, prey population settle
down on its carrying capacity K. The second possibility is that prey populations
isn’t big enough and predator population extirpate it under its threshold. After
this, both populations extinct.

Figure 6 ε̄2 > K – stationary point (K, 0) is stable
node

4 Conclusion

We analysed behaviour of the predator-prey system with climax prey population.
This analysis shows that both population could extinct in this case. This conclusion
should brought as a warning before too simplifying conclusions (and we should keep
population of whales after all).
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