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Abstract

We contribute to the reverse of the Fundamental Theorem of Rieman-
nian geometry: if a symmetric linear connection on a manifold is given,
find non-degenerate metrics compatible with the connection (locally or
globally) if there are any. The problem is not easy in general. For nowhere
flat 2-manifolds, we formulate necessary and sufficient metrizability con-
ditions. In the favourable case, we describe all compatible metrics in
terms of the Ricci tensor. We propose an application in the calculus of
variations.

Key words:Manifold, linear connection, metric connection, pseudo-
Riemannian geometry.
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1 Preliminaries—affine differential geometry

Recall briefly some well-known facts from affine and metric differential geometry.
Let M be an n-dimensional smooth manifold (“smooth” always means of the
class C∞), TxM the tangent space at x ∈ M , and let π : TM → M denote the
tangent vector bundle of M . F(M) = C∞(M) denotes the ring of all smooth
functions on M , X (M) the C∞(M)-module of all smooth vector fields on M
(which can be viewed as sections of the projection π), and Λ(M) the exterior
algebra over M . π1 : J1TM → M is the first jet prolongation of the tangent
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158 Alena VANŽUROVÁ, Petra ŽÁČKOVÁ

vector bundle π : TM →M , that is, the fibred manifold of 1-jets in J1(M,TM)
which may be represented by local sections of the projection π. We have also
a canonical projection π1

0 : J1TM → TM = J0TM . Given an n-dimensional
smooth manifold M , a (generalized) connection1 on TM is a (smooth) section
Γ: TM → J1TM of π1

0 . A section Γ of π1
0 which is linear as a fibred morphism

of vector bundles is called a linear connection on TM , [10], [8]. Any linear
connection Γ on TM induces the so-called covariant derivative on M , and vice
versa. Recall that a covariant derivative on M is a mapping (X,Y ) �→ ∇XY ,
∇ : X (M) ×X (M) → X (M), such that

∇X(Y + Z) = ∇XY + ∇XZ, ∇X(fY ) = f∇XY + (Xf)Y,

∇fX+gY Z = f∇XZ + g∇Y Z
(1)

for any vector fields X,Y, Z on M and functions f, g ∈ F(M) on M ; often,
under a linear connection on M we mean just ∇. To emphasise that ∇ arises
from a linear connection Γ we can write ∇Γ. In what follows, (M,∇) will denote
a manifold with linear2 connection in the above sense.
If (U,ϕ), U ⊂ M open, ϕ = (x1, . . . , xn) is a local chart on M denote

by (xi, vi) the induced adapted coordinates on V = π−1(U) ⊂ TM and by
(xi, vi, vi

j) the corresponding fibre coordinates on (π1
0)−1(V ) ⊂ J1TM . A con-

nection Γ on TM can be locally given by functions vi
j ◦ Γ = Γi

j(x, v) called
components of Γ. A connection is linear if and only if its components are just
linear functions in vk, that is, there exist functions Γi

jk of coordinates on U ⊂M

such that Γi
j(x, v) = Γi

jk(x)vk holds.
If (xi) are local coordinates on U ⊂ M , we can introduce components

(Christoffel symbols) of ∇ relative to the chart under consideration directly
as the functions Γk

ij(x) given on U by
3 ∇i

∂
∂xj := ∇ ∂

∂xi

∂
∂xj = Γk

ij
∂

∂xk . Note that

the linear connection Γ (or ∇, respectively) is fully determined by components
Γk

ij provided they satisfy the well-known transformation law on overlappings of
neighborhoods, [9, I, Ch. 3, Th. 7.2, Th. 7.3]; recall that Γk

ij are not components
of a tensor.
Covariant derivation extends to tensor fields, [9, I]: if F is of type (r, s) then

∇XF is of the same type, and ∇F is of type (r, s+ 1).
The torsion of a manifold (M,∇) with linear connection is a type (0, 2)

tensor field T given by T (X,Y ) = ∇XY − ∇Y X − [X,Y ] for X,Y ∈ X (M).
Here [ , ] is the Lie bracket, [X,Y ]f = X(Y f) − Y (Xf) for f ∈ F(M); T is
skew-symmetric. The curvature of (M,∇) is a type (0, 3) tensor field R defined
by R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z = ∇X(∇Y Z) −∇Y (∇XZ) −∇[X,Y ]Z.
The map R(Xx, Yx) : TxM → TxM is linear and skew-symmetric, R(Y,X) =

−R(X,Y ). A connection ∇ is called torsion-free (torsion-less, or symmetric) if
1In the sense of Ehresmann
2Many authors still use the term “affine connection” instead, from historical reasons; note

that affine connection or affine manifold may have a different meaning: each tangent space
TxM is considered as an affine space, and TM → M as an affine bundle, similarly for mor-
phisms etc., [9, I, Ch. 3].
3As usually, 〈 d

dx1 , . . . , d
dxn 〉 is a basis of coordinate vector fields.
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T ≡ 0 (in local coordinates, Γi
jk = Γi

kj), and flat if T ≡ 0 and R ≡ 0. ∇ is flat
if and only if around any point, there are local coordinates such that Γi

jk = 0
holds. We introduce the Ricci tensor Ric of type (0, 2) as a trace of a linear
map, namely Ric(Y, Z) = Tr{X �→ R(X,Y )Z} (the other possibility differs
up to a sign). Components of torsion T = T i

jk
∂

∂xi ⊗ dxj ⊗ dxk, of curvature

R = Ri
hjk

∂
∂xi ⊗ dxj ⊗ dxk ⊗ dxh and of Ricci tensor Ric = Rjkdxj ⊗ dxk in

terms of components of connection are T i
jk = Γi

jk − Γi
jk,

Ri
hjk =

∂Γi
kh

∂xj
− ∂Γi

jh

∂xk
+
∑

s

(
Γi

jsΓ
s
kh − Γi

ksΓ
s
jh

)
, (2)

Rjk =
∑

i
Ri

kij =
∑

i

(
∂Γi

jk

∂xi
− ∂Γi

ik

∂xj

)
+
∑
i,s

(
Γi

isΓ
s
jk − Γi

jsΓ
s
ik

)
. (3)

Due to the co-called first Bianchi Identity (Ri
[hjk] = 0)

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (4)

and antisymmetry of the curvature we get

Rjk −Rkj =
∑

i

(
Ri

kij +Ri
jki

)
= Ri

ikj = Tr Rkj =
∑

s

∂Γs
sj

∂xk
− ∂Γs

sk

∂xj
. (5)

Hence in general, the Ricci tensor is not necessarily symmetric, even for a sym-
metric connection. We can see the following:

Lemma 1 The Ricci tensor satisfies [14, p. 14]

Ric(Z, Y ) − Ric(Y, Z) = TrR(Y, Z).

In general, the functions ψi =
∑

s Γs
is (“traces”) that appear in (5) do not

transform as components of a tensor (1-form) since Γi
jk do not, either. Never-

theless, they play the following role:

Lemma 2 (Local necessary and sufficient condition for symmetry of Ric) The
following conditions are equivalent for (M,∇):
(i) The Ricci tensor Ric is symmetric on M .
(ii) The curvature tensor R is trace-less, TrR = 0.
(iii) In each coordinate neighborhood the components of connection satisfy

∂Γs
is

∂xj
− ∂Γs

js

∂xi
= 0, i, j = 1, . . . , n. (6)

The equations (6) in fact tell that there is a function fU on U such that

ψi =
∑

s Γs
is = dfU

dxi , i = 1, . . . , n; ψi is a “gradient vector”. That is, if we
introduce a one-form on a coordinate nbd U by ψU =

∑
i ψidxi = Γs

isdx
i then

(6) is a necessary and sufficient condition for ψU be closed on U , dψU = 0.
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Recall that an exterior q-form ω on M is a totally antisymmetric type (0, q)
field; ω is closed if dω = 0, and exact if ω = dα for some (q − 1)-form α. Since
d2 = 0, exact forms are obviously closed, but not vice versa. The so-called
Poincaré lemma guarantees that any closed form is locally exact. Obviously, a
form α from the above formula is not determined by ω uniquely (in fact, there
are many (q − 1)-forms with the same differential).
Symmetry of the Ricci tensor is closely related to the concept of parallel

volume element. We say that (M,∇), dimM = n, is locally equiaffine, or
volume preserving if locally, around each point x ∈ M , there exists a non-
vanishing and covariantly constant n-form ω; ∇ω = 0. If this is the case, ω is
called a (local) volume element. The following holds, [14]:

Lemma 3 (M,∇) with T ≡ 0 is locally equiaffine if and only if the Ricci tensor
is symmetric.

(M,∇) with T ≡ 0 is called equiaffine if it admits a parallel volume element.
If M is simply connected and (M,∇) is locally equiaffine then it is equiaffine
[14, p. 15]. Hence a symmetric linear connection with a trace-less curvature
tensor (equivalently, with symmetric Ric) on a simply connected manifold is
equiaffine.

1.1 Parallelism and recurrency

If c : I →M , t �→ c(t) is a curve, let ζ(t) = (c(t), c′(t)) denote the corresponding
tangent vector field along the curve c; c′(t) = dc

dt . Let Y be a vector field
along c. Then the covariant derivative ∇ζY along c is defined; in terms of local
coordinates, if Y = Y k(t)( ∂

∂xk )c(t) then

∇ζY =
∑

k

⎛
⎝dY k

dt
+
∑
i,j

Γk
ij(c(t))

dci

dt
Y j

⎞
⎠ ∂

∂xk
.

A regular4 differentiable curve t �→ c(t) is an unparametrized geodesic5, [13],
or pregeodesic, [14], if there is a real function φ(t) : I → R along c such that
∇ζζ = φζ. Equations of (pre)geodesics read x′′i + Γi

jkx
′jx′k = φx′i. If the

tangent vector field is parallel along the curve, ∇ζζ = 0, we speak on canonically
parametrized geodesics; the so-called canonical affine parameter s is determined
uniquely up to affine transformations s �→ as+b with a 
= 0. In local coordinates,
canonically parametrized geodesics are described by the well-known system of
differential equations

ẍi + Γi
jkẋ

j ẋk = 0, j, k = 1, . . . , n. (7)

Connections with the same “symmetric part” ∇s, ∇s(X,Y ) = 1
2 (∇(X,Y )+

∇(Y,X)), have the same geodesics, and pregeodesics, too.

4in the sense that ċ(s) = dc
ds

�= 0 for all s ∈ I
5to emphasize that the particular parametrization is unrelevant for actual considerations
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A diffeomorphism f : (M,∇) → (M̂, ∇̂) is called a geodesic mapping if all
geodesics of (M,∇) are mapped into unparametrized geodesics of (M̂, ∇̂).
A non-vanishing tensor field F on (M,∇) is called parallel, or covariantly

constant (with respect to ∇) if ∇F = 0; equivalently6, ∇XF = 0 for any
X ∈ X (M). A non-vanishing tensor field F on M is recurrent if there is a
one-form ω such that

∇F = ω ⊗ F. (8)

Lemma 4 Let a type (r, s) tensor field F on (M,∇) be recurrent; ∇F = ω⊗F
for some 1-form. Let F be non-vanishing on M . Then the 1-form ω is closed.

Proof Recurrency means that for arbitrary vector fields Y1, . . . , Ys and one-
forms ω1, . . . , ωr on M ,

(∇X F )(Y1, . . . , Ys, ω
1, . . . , ωr) = ω(X) · F (Y1, . . . , Ys, ω

1, . . . , ωr).

In local coordinates about any point p ∈ M , let ω = ωk dx
k, and ∇k = ∇ ∂

∂xk
.

It follows that ∇kF
i1...ir

j1...js
= ωk ·F i1...ir

j1...js
for any k = 1, . . . , n; n = dimM . Let the

component F i1...ir

j1...js
(for fixed indices) be non-zero at p, and due to continuity,

in some nbd U of p (from continuity again, the component is either positive,
or negative around the point). Then the components of the 1-form can be
expressed in U as

ωk =
1

F i1...ir

j1...js

· ∇k F
i1...ir

j1...js
= ∇k (ln |F i1...ir

j1...js
|) =

∂

∂xk
(ln |F i1...ir

j1...js
|), k = 1, . . . , n.

That is, about any point p ∈ M , ω = d(ln |F i1...ir

j1...js
|); i.e. ω is locally exact, and

dω = d(df) = 0. �

Lemma 5 Let F be a type (r, s) tensor field on (M,∇). Let α ∈ F(M) be a
non-vanishing real function; α(x) 
= 0 for x ∈M . Then the following conditions
are equivalent:

• α⊗ F is parallel with respect to ∇,
• ∇F = d(− ln |α|) ⊗ F .

Proof Since∇(α⊗F ) = (∇α)⊗F+α⊗(∇F ) and α 
= 0, we have: ∇(α⊗F ) = 0
iff ∇F = −( 1

α · ∇α) ⊗ F = −d(ln |α|) ⊗ F . Hence α ⊗ F is parallel if and only
if ∇F = df ⊗ F where f = − ln |α|. �

Lemma 6 If a tensor field F of type (r, s) on (M,∇) is recurrent, ∇F = ω⊗F ,
and the 1-form is exact, ω = df , then e−f ⊗ F is parallel w.r.t. ∇.
Proof If ∇F = df ⊗ F denote α = e−f . Then f = − lnα, and ∇(α ⊗ F ) =
dα⊗F+α·d(− lnα)⊗F = dα⊗F+α·(− 1

α )·dα⊗F = 0. Hence α⊗F = e−f ⊗F
is parallel. �

6In more geometric language, the condition tells that the field is preserved under parallel
transport along all curves in M .



162 Alena VANŽUROVÁ, Petra ŽÁČKOVÁ

1.2 Compatible metrics

Recall that a pseudo-Riemannian metric on a smooth manifoldM is a (smooth)
type (0, 2) tensor field on M such that in any point x ∈ M , the corresponding
bilinear form gx defined on TxM is symmetric and non-degenerate; (M, g) is
called a pseudo-Riemannian manifold. If gx is moreover positive definite for all
x ∈M , (M, g) is called the Riemannian space. A linear connection ∇ (may be
non-symmetric in general) on (M, g) is compatible with g if g is parallel with
respect to ∇, ∇g = 0.
The Fundamental Theorem of Riemannian geometry states that any pseudo-

Riemannian manifold (M, g) admits a unique linear connection ∇̃, called the
Riemannian (or Levi-Civita) connection, or metric connection, of (M, g), char-
acterized by the pair of conditions T ≡ 0, ∇̃g = 0 (the parallel transport
with respect to ∇̃ along any curve preserves the scalar product of tangent
vectors defined by g). On (M, g), components Γi

jk of the Levi-Civita connec-
tion are related to components gij of the metric by the well-known formula

Γ�
ik = 1

2g
�j
(

∂gij

∂xk + ∂gjk

∂xi − ∂gki

∂xj

)
.

On the other hand, given a manifold equipped with a linear connection,
(M,∇), we might be interested in metrics the given connection is compatible
with. If∇ is torsion-free, it means to find a metric g onM such that∇ is just the
Levi-Civita connection of (M, g). We say that a manifold (M,∇) is metrizable,
or locally metrizable, respectively, if there exists a metric (or exists locally,
respectively) compatible with the connection (metrization problem, MP).
Essentially the same problem can be formulated in a bit more general set-

ting as follows, [13] (the answer is formulated in Corollary 1): If (M,∇) is given
find all geodesic mappings (i.e. diffeomorphisms which map geodesics onto un-
parametrized geodesics) of (M,∇) onto (all possible) pseudo-Riemannian man-
ifolds (M̄, g) (due to diffeomorphisms, we can in fact suppose M̄ = M).
In local coordinates, the formula ∇g = 0 reads7

∂gij

∂xk
= gsjΓs

ik + gisΓs
jk. (9)

In principle, to answer the question on (local) metrizability of a connection
means to solve the system8 (9). Employing the curvature, necessary integrability
conditions for metrizability can be given in the form of an infinite system of
linear equations in 1

2n(n+1) functions gij (with coefficients which are functions
in Γ′s and their partial derivatives), [7]; the coordinate-free form reads

g(R(X,Y )Z,W ) + g(Z,R(X,Y )W ) = 0, (10)

g(∇rR(X,Y ;Z1; . . . ;Zr)(Z),W ) + g(Z,∇rR(X,Y ;Z1; . . . ;Zr)(W )) = 0 (11)

for all X,Y, Z,W,Z1, . . . , Zr ∈ X (M), 1 ≤ r < ∞. Flat connections are locally
metrizable9. If (10) has at least a 1-dimensional solution space containing a

7In components, gij;k =: ∇g( ∂
∂xi , ∂

∂xj ; ∂
∂xk ) =

∂gij

∂xk − gsjΓs
ik − gisΓs

jk .
8Which can be done directly in simple cases.
9For the detailed theory of flat affine manifolds, cf. [9, I], flat Riemannian manifolds are

discussed e.g. in [23].
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non-degenerate metric and any solution of (10) satisfies also (11) for r = 1 then
(M,∇) is metrizable, [7].

Corollary 1 If there exist 1
2n(n + 1) (differentiable) functions gij which solve

the system
gsjR

s
ik� + gisR

s
jk� = 0 (12)

and satisfy gij = gji, det(gij) 
= 0, and any solution of (12) solves the system

gsjR
s
ik�;m + gisR

s
jk�;m = 0 (13)

then (locally) there exist geodesic mappings of (M,∇) onto pseudo-Riemannian
spaces.

On a (pseudo-)Riemannian manifold (M, g) with the metric tensor g besides
the curvature tensor R in type (1, 3), we can consider the type (0, 4) tensor
R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), usually also called curvature tensor; the re-
lations R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ) = −R̃(Y,X,Z,W ) = −R̃(X,Y,W,Z)
hold. In a coordinate system (U,ϕ = (xi)) based at a point x ∈ M , compo-
nents R�

ijk of R and Rhijk of R̃ = Rhijkdx
j ⊗ dxk ⊗ dxi ⊗ dxh are related by

Rhijk = ghsR
s
ijk , and g

�hRhijk = R�
ijk
10.

Lemma 7 The Ricci tensor of the Levi-Civita connection of a (pseudo-)Rieman-
nian manifold (M, g) is always symmetric, [6, p. 331].

The sectional curvature of a two-space P given by the linearly independent
tangent vectors X,Y ∈ TxM is given by

K(X ∧ Y ) =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y ) − g(X,Y )2
=
R̃(X,Y, Y,X)
||X ∧ Y ||2 (14)

where ||X∧Y || is the area of a parallelogram determined by X and Y , [3, p. 94],
[6, p. 327] etc. The sectional curvature determines the whole curvature tensor
R̃, [8, p. 137].
On (M, g), the Ricci tensor in type (1, 1) is introduced with components

Ri
j = gi

sRsj , and the scalar curvature 
 as its trace, 
 = TrRic = Rs
s = gijRij .

A Riemannian manifold (M, g) is called isotropic at a point x ∈ M if the
curvature is the same constant,K(x), on every (two-plane) section, and isotropic
if it is isotropic at every point, [1]. If x is an isotropic point of (M, g) then the
following formula holds at x in any local coordinates around x:

Rhijk = K(x)(ghjgik − ghigjk). (15)

A two-dimensional manifold is (trivially) isotropic, therefore it satisfies (15).
Pseudo-Riemannian manifolds with symmetric Ricci tensor for which the

Ricci tensor is proportional to the metric tensor, Ric = λg, are called Einstein
spaces, [12, p. 263], [15], [17]. In the Loretzian case, they are important in

10As already mentioned, Rhijk = Rjkhi = −Rihjk = −Rhikj .
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Einstein’s theory of general relativity (the Einstein’s field equation is a dynam-
ical equation which describes how matter changes the geometry of spacetime;
in vacuum, it is given by the condition Ric = 0). The factor of proportionality
can be calculated11, λ = 1

n
, hence for Einstein spaces,

Ric =
1
n

g. (16)

Particularly, all two-dimensional pseudo-Riemannian manifolds are Einstein spaces
as we check below, cf. [12, p. 263], [15, p. 101].

2 Metrizability of 2-manifolds

Let us pay attention to existence of compatible metrics in the simplest case n =
dimM = 2. Let (x1, x2) denote local coordinates on a coordinate neighborhood
U of a manifoldM2. In dimension two, the curvature is simply given by Rhijk =
K(x)(ghjgik − ghigjk) [8, p. 137], and the function K(x) is called the Gauss
curvature. The Riemann curvature R in type (1, 3) and the Ricci tensor Ric are
related by [12], [15]

Ri
hjk = δi

jRkh − δi
kRjh. (17)

As far as Ri
hjj = 0 and Ri

hij = Rjh holds for j 
= i, the curvature tensor
of a linear connection ∇ on M2 is completely determined by its Ricci tensor;
explicitely,

R11 = −R2
112 = R2

121, R21 = −R1
121 = R1

112,

R12 = −R2
212 = R2

221, R22 = −R1
221 = R1

212.
(18)

Particularly, R = 0 if and only if Ric = 0, and recurrency is also inherited:

Lemma 8 For (M2,∇), Ric is recurrent if and only if R is recurrent.

Proof Let Ric be recurrent, ∇Ric = ω⊗Ric. In local coordinates, if ω = ωjdx
j

then ∇�R
i
hjk = δi

j∇�Rkh − δi
k∇�Rjh = δi

jω�Rkh − δi
kω�Rjh = ω�R

i
hjk, hence

∇R = ω ⊗R. Vice versa, if ∇R = ω ⊗R holds then ∇�Rjk = ω�R
i
kij = ω�Rjk,

and ∇Ric = ω ⊗ Ric. �

On (M2, g), non-zero components of type (0, 4) curvature R̃ are (up to a
sign) equal just R1212, and (15) reads ([15, p. 62], [8, p. 137])

Rhijk = K(ghjgik − ghkgij) (19)

where K = K(x) is the Gauss curvature, K = R1212
det(gij)

.

Lemma 9 The curvature tensor of a two-dimensional pseudo-Riemannian mani-
fold (M2, g) satisfies

Ri
hjk = K(δi

kghj − δi
jghk), (20)

and the Ricci tensor is proportional to the metric tensor,

Ric = K · g =
1
2

 · g. (21)

11In fact, � = Rijgij = λgijgij = nλ.
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Proof We can either use the fact that M2 is trivially isotropic, [1, p. 374],
and (16) holds, or proceed by direct evaluation: Rt

hij = Rs
hijδ

t
s = Rs

hijgskg
kt =

Rhijkg
kt = K(ghjgik − ghkgij)gkt = K(δt

ighj − δt
hgij). It follows immediately

for the Ricci tensor that Rhj = ΣiR
i
hij = K ·Σi(δi

ighj − δi
hgij) = K · ghj , hence

Ric = Kg, and 
 = Rhjg
hj = 2K. �

Corollary 2 (M2, g) is always an Einstein space. For a nowhere flat (M2, g),
the Ricci tensor is symmetric and non-degenerate.

Note that according to [9, I, p. 280], any non-flat Riemannian 2-manifold
has a recurrent curvature provided its sectional curvature does not vanish. We
can check:

Lemma 10 The Ricci tensor of a nowhere flat pseudo-Riemannian manifold
(M2, g) is recurrent, and the corresponding 1-form is exact12.

Proof R 
= 0 is equivalent with K(x) 
= 0 on M (from continuity, K is either
positive, or negative). Since by (21), g = α(x) · Ric with α(x) = 1

K(x) 
= 0,
and ∇g = 0, we get easily that α(x) · Ric is parallel. According to Lemma 5,
∇Ric = d(− ln |α|) ⊗ Ric holds. �

It follows from the above discussion on pseudo-Riemannian manifolds that
two conditions are necessary for local metrizability of a (symmetric) connection
on a 2-manifold: the Ricci tensor must be symmetric, and must be also recurrent,
with the corresponding 1-form being closed; Ric may be degenerate only in the
case R = 0, and then Ric = 0 holds. Furthermore, for global metrizability, the
1-form from the recurrency condition must be even exact. A flat connection
is always (globally) metrizable, with 1

2n(n+ 1)-parameter solution space; even
the signature can be prescribed. So let us pay attention to the situation when
the curvature tensor (or equivalently, the Ricci tensor) is non-zero in one point
x0 ∈M , and due to continuity, in some neighborhood of x0

13.

Theorem 1 (Existence of local metrics on two-manifolds) Let a 2-dimensio-
nal manifold (M2,∇) with a symmetric linear connection be given such that
the Ricci tensor is regular, |Rij | 
= 0, symmetric, Rij = Rji, and recurrent,
∇Ric = 
⊗ Ric for some 1-form 
. Then locally, there is a metric compatible
with the connection.

Proof Let x0 ∈ M . |Rij | 
= 0 implies existence of a pair (i, j) of indices such
that Rij 
= 0 about14 x0. Recurrency together with regularity guarantee that
d
 = 0 (Lemma 4). Hence about x0, there is a function f such that 
 = df .
Consequently, e−f ·Ric is parallel about x0. Therefore g = e−f · Ric is a local
metric on a nbd of x0 compatible with ∇. �

12and consequently closed
13The subset of non-flat points is open.
14Under “about x” we mean on some neighborhood of x.
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Of course, the function f from the proof is not unique. Any function f̃ with
the same differential, df̃ = df , also gives a metric; such a function differs up to
a constant, f̃ = f + a, a ∈ R.

If R is nowhere zero, a similar proof quarantees existence of global metriz-
ability of a nowhere flat affine manifold:

Proposition 1 Let (M2,∇) be a two-dimensional manifold with a symmetric
linear connection. If the Ricci tensor of ∇ is regular, symmetric, and recurrent,
∇Ric = 
 ⊗ Ric, and the 1-form 
 is exact, i.e. 
 = df for some function
f ∈ F(M), then g = e−f ·Ric is a (global) metric tensor compatible with ∇.

Theorem 2 (Global metrizability of no-where flat connections on 2-manifolds)
A nowhere flat symmetric linear connection on M2 is metrizable if and only if
its Ricci tensor is regular, symmetric, recurrent, and the corresponding 1-form
is exact. If this is the case, and ∇Ric = df⊗Ric holds for some smooth function
f ∈ F(M), then all global metrics compatible with ∇ form a 1-parameter family
described by the formula

gb = exp(−f + b) ·Ric, b ∈ R, (22)

that is, any of them arises from the Ricci tensor as a multiple by a smooth
function. Moreover, any two compatible metrics differ up to a scalar multiple.

Proof The main statement has been already proved - the “if” part in Theorem
1 and Proposition 1, and the “only if” part in Corollary 2 and Lemma 10. As
to the rest, let g = e−f · Ric, g̃ = e−f̃ · Ric be two compatible metrics, then
f̃ − f = a, Ric = ef̃g, and g = eag̃. We get g̃ = e−f−a ·Ric; i.e. (22) holds. �

As an immediate consequence of Theorem 2 we obtain:

Corollary 3 Two pseudo-Riemannian metrics g1, g2 compatible with the same
nowhere flat (symmetric) linear connection on M2 are homothetic.

Unicity of g declared in [18, p. 532] must be understood in this way.

For positive-definite metrics, this result is a special case of the Theorem 1
of O. Kowalski from [11, p.131] (recall that two metrics g1, g2 on a manifold are
called conformally equivalent if there is a function κ on M such that g2 = κg1,
[23, p. 99]): Let g, g′ be two Riemann metrics on a smooth manifold M with
the same Riemann curvature tensor R. Then g, g′ are conformally equivalent
on the closure of the set of all regular points of R.

3 Application in the calculus of variations

Let us mention the relationship of our problem to the Calculus of Variations.
The so-called Inverse Problem (IP) of the calculus of variations is: if a system
ẍi = f i(t, xk, ẋk), i, k = 1, . . . , n of second order differential equations (SODEs)
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is given, find—sufficiently differentiable—Lagrangian functions L(t, xk, ẋk) and
a multiplier matrix gij(t, xk, ẋk) such that

gij(ẍi − f i) ≡ d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
.

Given a system of second order ODEs of a particular type

ẍi + Γi
jk(x)ẋj ẋk = 0, k = 1, . . . , n, (23)

that is, second derivatives can be expressed as quadratic forms in first deriva-
tives, we can use the above theory for deciding whether the system (23) is
derivable from a Lagrangian. In fact, provided det(gij) 
= 0, the system (23) is
equivalent to the system

gmi(ẍi + Γi
jk(x)ẋj ẋk) = 0, i,m = 1, . . . , n. (24)

Another speaking, MP can be viewed as a particular case of IP, where f i =
−Γi

jk(x)ẋj ẋk (that is, f i are quadratic forms in components of velocities, with
coefficients depending only on components of positions) in the particular case
when the multipliers are time- and velocities-independent. We can assume that
the coefficients in (23), the functions Γk

rs(x), are components of a symmetric
linear connection ∇ on some neighborhood U ⊂ R

n. If ∇ is (locally) metrizable,
and gij(x) (with det(gij(x)) 
= 0 at any x ∈ U) are components of some non-
degenerate metric g compatible with ∇ on U , then (23) and (24) are equivalent,
hence the functions gik(x) can be taken as the desired variational multipliers.
One of particular Lagrangians comming from MP (and solving IP) is

L = T =
1
2
gij(x)ẋiẋj , (25)

the kinetic energy. There might exist multipliers of a more general form
gik(t, x, ẋ), depending on “time, positions and velocities”, which might bring
more complicated Lagrangians, [5].

4 Examples

Example 1 ([7, p. 122]) On R
2 with coordinates x = (x1, x2), assume the

system of ODEs

(ẍ1)2 + (x1 − x2)(ẋ1)2 = 0, (ẍ2)2 + (x1 − x2)(ẋ2)2 = 0. (26)

Curves c(s) : I → R
2 (parametrized by arcs length), which are solutions of the

system, represent the family of geodesics of a (symmetric) linear connection
∇ with components Γ1

11 = Γ2
22 = x1 − x2, Γi

jk = 0 otherwise. We ask if the
(torsion-free linear) connection is metrizable, i.e. we wish to find type (0, 2)
symmetric tensor field g with ∇g = 0. The corresponding system

∂1g11 = (x1 − x2)g11, ∂1g12 = 0, ∂1g22 = 0,
∂2g11 = 0, ∂2g12 = (x1 − x2)g12, ∂2g22 = (x1 − x2)g22
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can be solved directly, but the only solution is trivial, gij = 0 for all i, j. Or, ar-
gumentation using the Ricci (or curvature) tensor can be used: R11 = R2

121 = 0,
R12 = R1

112 = 1, R21 = R2
221 = −1, R22 = R1

212 = 0, hence the Ricci tensor is
not symmetric, our linear connection is not metrizable (even locally).
It appears that in this particular case, the quickest and most comfortable

way is to use the criterion from Lemma 2 (iii): we check that ψ1 = ψ2 = x1−x2,
∂1ψ2 = 1 while ∂2ψ1 = −1.

Example 2 The system of equations

ẍ1 = −(ẋ1)2 − (ẋ2)2, ẍ2 = −4ẋ1ẋ2 (27)

corresponds to a torsion-free linear connection on R
2 with components

Γ1
11 = Γ1

22 = 1, Γ1
12 = Γ1

21 = 0, Γ2
11 = Γ2

22 = 0, Γ2
12 = Γ2

21 = 2.

Now our “quick” criterion fails, the connection determined by (27) has symmet-

ric Ricci tensor: ψ1 = 3, ψ2 = 0, Ric = (Rhk) =
(−2 0

0 −1

)
. But the connection

is not metrizable, either, since Ricci is not recurrent: system of linear equations
for functions α1(x), α2(x) such that Rij;k = αkRij

4 = R11;1 = α1R11 = −2α1, 0 = R11;2 = α2R11 = −2α2,

4 = R22;1 = α1R22 = −α1, 4 = R22;2 = α2R22 = −α2 etc.

is inconsistent in our case. The connection is a non-metrizable one. There are
no time- and velocities-independent multipliers gij .

Example 3 ([2]) The system

ẍ1 = 0, ẍ2 = −2ẋ1ẋ2 (28)

defines on R
2 (or on R × S

1, or on the torus T
2 = S

1 × S
1) a symmetric linear

connection ∇ with Christoffel symbols Γ2
12 = Γ2

21 = 1, Γk
ij = 0 otherwise.

We can easily check that Ric is symmetric, since ψ1 = Γ1
11 + Γ2

12 = 1, and
ψ2 = Γ1

21 + Γ2
22 = 0. But it is degenerate, evaluation of the components brings

(Rij) =
(−1 0

0 0

)
. Therefore ∇ is not metrizable (even locally). If we try to

solve directly the system corresponding to ∇g = 0,

∂1g11 = 0, ∂1g12 = g12, ∂1g22 = 2g22,
∂2g11 = 2g12, ∂2g12 = g22, ∂2g22 = 0,

we get a similar answer, G = (gij) =
(
a 0
0 0

)
.

Example 4 ([2]) Equations

ẍ1 = −(ẋ1)2, ẍ2 = −(ẋ2)2 (29)
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determine on M2 = R
2 a symmetric linear connection ∇X1X1 = X1 = 0,

∇X2X2 = X2, ∇XiXj = 0 otherwise, Xi = ∂
∂xi , with Christoffels

Γ1
11 = Γ2

22 = 1, Γk
ij = 0 otherwise.

The curvature tensor R vanishes, equivalently, Ric = 0, the connection ∇ is
flat, hence (locally) metrizable, and the system (29) is variational. To find out
components of the metric, or another speaking, variational multipliers gij , we
can solve the system of PDEs

∂1g11 = 2g11, ∂1g12 = g12, ∂1g22 = 0,
∂2g11 = 0, ∂2g12 = g12, ∂2g22 = 2g22.

Given x0 ∈ M , a non-singular 2 × 2 matrix (g0
ij) and initial data gij(x0) = g0

ij

the solution is g11 = g0
11e

2x1
, g12 = g0

12e
x1+x2

, g22 = g0
22e

2x2
, hence we get a

(global) metric on R
2 and the corresponding Lagrangian,

gij = g0
ij · exi+xj

, L =
1
2
g0

ije
xi+xj

ẋiẋj

(remark that direct search for solution of the corresponding system of PDEs
need not be easy in most cases). The Ricci tensor brings the same answer.
Note that if we introduce essentially the same connection on the “infinite

cylindr” S
1 × R, or on the torus T

2 = S
1 × S

1, such a connection is not
globally metrizable. Indeed, consider the (continuous, even smooth) function
f(t) = |X1(γ(t))|, t ∈ (0, 1), the length of the (smooth and globally defined)
coordinate vector field X1 along the “flow line” (which is the circle without one
point): it satisfies f ′ = 2f ; the metric behaves “exponentially”. We must ex-
pect problems with successful “taping” of the metric on the overlap of coordinate
neighborhoods.

Another example of C∞-connection which is metrizable locally but not glob-
ally is given in [16], cf. [22].

Example 5 For the system

ẍ1 + ẋ1ẋ2 = 0, ẍ2 − 1
2

exp(x2)(ẋ1)2 = 0, (30)

non-zero components are Γ1
12 = Γ1

21 = 1
2 , Γ2

11 = − 1
2e

x2
. The Ricci tensor

with components Ric = − 1
4e

x2
dx1 ⊗ dx1 − 1

4dx
2 ⊗ dx2 is covariant constant,

∇Ric = 0, therefore recurrent with vanishing (and consequently exact) 1-form
ω = 0 = d (const) entirely on R

2. All (global) compatible metrics on R
2 form a

one-parameter family

gb = exp (x2 + b) dx1 ⊗ dx1 + exp (b) dx2 ⊗ dx2, b ∈ R, (31)

which yields Lagrangians L = 1
2e

x2+b(ẋ1)2 + 1
2e

b(ẋ2)2.
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