Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Lubomir Kubacek; Jaroslav Marek
Uncertainty of the design and covariance matrices in linear statistical model
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 48 (2009), No. 1, 61--71

Persistent URL: http://dml.cz/dmlcz/137514

Terms of use:

© Palacky University Olomouc, Faculty of Science, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/137514
http://project.dml.cz

@/ Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
7 Mathematica 48 (2009) 61-71

Uncertainty of the design and covariance
matrices in linear statistical model’

LuBoMmir KUBACEK !, JarosLAv MAREK 2

Department of Mathematical Analysis and Applications of Mathematics,
Faculty of Science, Palacky University,
tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
Le-mail: kubacekl@inf.upol.cz
2e-mail: marek@inf.upol.cz

(Received January 15, 2009)

Abstract

The aim of the paper is to determine an influence of uncertainties in
design and covariance matrices on estimators in linear regression model.
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1 Introduction

Uncertainties in entries of design and covariance matrices influence the variance
of estimators and cause their bias. A problem occurs mainly in a linearization
of nonlinear regression models, where the design matrix is created by deriva-
tives of some functions. The question is how precise must these derivatives be.
Uncertainties of covariance matrices must be suppressed under some reasonable
bound as well.

The aim of the paper is to give the simple rules which enables us to decide
how many ciphers an entry of the mentioned matrices must be consisted of.
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62 Lubomir KUBACEK, Jaroslav MAREK

2 Symbols used

In the following text a linear regression model (in more detail cf. [2]) is denoted
as

Y ~n (Fﬁ72)7 /6 € Rk? (1)

where Y is an n-dimensional random vector with the mean value E(Y) equal
to FB3 and with the covariance matrix Var(Y) = . The symbol R¥ means the
k-dimensional linear vector space. The n x k matrix F is given. It is assumed
that the rank 7(F) of the matrix F is »(F) = k < n and the given matrix X
is positive definite. The k-dimensional unknown vector parameter 3 must be
estimated on the basis of the realization y of the random vector Y. Symbol
ez(-") means n-dimensional vector with the entry 1 at the i-th position; other
entries are zero. The matrix of the normal equation F'S'F is denoted as C;
its (4, j)-th entry is {C}; ; and the (4, j)-th entry of C~! is {C}*/. F/ means the
transpose of the matrix F. The (7, j)-th entry of the matrix 3 is 0, ; = {X};;
and the i-th component of the vector v is {v};.

The symbol 01}, Y /OF means

Y Y

ouy [ o or

aF = | o , (2)
Y LY
BFnyl’ : BFnk

where F;; = {F};;,i =1,...,n,j = 1,...,k, and 1}, = h'C'F'Y7! for an
arbitrary h € R¥, h # 0.

The Kronecker multiplication of matrices A and B is denoted as A ® B (in
more detail cf. [3]). If A = (ay,...,a,), then vec(A) = (a},...,a],). The
identity matrix is denoted as I.

3 Uncertainty in the design matrix

In the following text a sensitivity approach is used, i.e. the influence of uncer-
tainty in the design matrix is judged according to the linear term of the Taylor
series (cf. also in [1], chpt. VI). The Taylor series of the quantity 1Y = h'3
will be considered.

Lemma 3.1 Let h’ € R be an arbitrary vector. It is valid that

h'3 ~
a(’)FIB = 71;1,8/ + X7 'vhW/'C™!, 1, = X7 'FC'h, (3)
B=CclFsly, (4)

v=Y-FpB. (5)
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Proof The BLUE (best linear unbiased eastimator) of the linear function
h(B)=hpB,BeR, ishWB=1Y=nC 'F'E Y. Thus

on'B aC-1 OF’

=h FY 'Y +hC ' —xly
oF,, oF,, + oF,,
and
oc~t  AF'EIF)! OF __ _, OF
= =-C! SR+ c!
8Fi,j 8Fi,j (aFi,j - aFiJ
_ n k I — — n k _
= _C! {[el(- )(eg- ))’] SIF+F'YE 191(' )(eg- ))’}C 1
= _C—lF’E_leE")(eg,k))’C—l - C_leEk) (egn))’E_lFC_l.
It implies
on'p n n
6‘F-ﬁ- = Te(e)yclFETlY —n'c el (elV)yETIFCTInTY
7

+ h’Cflegk) (egn))’Ele

— 71;Ze1(-") (egk))/B + h/C_legk) (egn))’E_lv

{—1hB’+2—1vh’c—1}__, i=1,...n, j=1,... k. 0
7

Lemma 3.2 Let in the model from Lemma 3.1 the symbol OF denote the matrix
of uncertainties in the design matriz F. Then

-~
(1) E|Tr <5F’621F'6> = —Tr(0F'1,8), (6)
-
(it) Var Tr((SF’a;lFﬁ )] = 1,0FC'6F'l;, + h'C '6F' (MpEMp)*
x 6FC™'h, (7)

where
(MpEMp)t =2 -2 'FClFET !

is the Moore—Penrose generalized inverse of the matric MpXMp (in more detail

cf- [3]).

Proof The statement (i) is obvious. As far as (ii) is concerned, it is valid that

o' . (onB
Tr <6F’ 3Fﬂ> = Var {[Vec((SF)] vec (8—Fﬂ> }

— Var ([vec(aF)]’ {-(1 ©1,)8+ [(C'h) @ =] v}) .

Var
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Since B and v are noncorrelated, Var(8) = C~! and Var(v) = X — FC~'F’,

we have
on'B
!
Tr <5F F )

+ [vec(dF)]'[(C™'h) @ Z7(Z = FC7'F))[(h'C™!) @ '] vec(JF)
= [vec(6F))[C™* @ (1,1},)] vec(6F) + [vec(6F))[(C'hh'C™!) @ (MpEMp)*]
x vec(6F) = Tr[(6F)'1,1,6FC ™! + Tr[(6F) (MpEMp) "dFC 'hh'C™]
=1,6FC *(6F)'l;, + h'C(§F) (MpEMp) " 6FC ™ 'h. m

Var

= [vec(6F))/(I®1,)C (I ®1}) vec(JF)

Remark 3.1 Regarding Lemma 3.1 the influence of /F on the estimate of the
function '3, B € RF, can be evaluated. If 6F # 0, then instead of h’3 =
W' C'F'S" 'y (y is a realization of Y) we obtain

W3 ~hCFE ly - Tt[(0F)1,8 ] + Te[(6F)' S~ 'vh'C™}] (8)

(for practical purposes the values B and y — FB can be used on the right hand
side of the last approximate equality instead of B and v).

In an actual case we can judge whether uncertainty 0F in the used matrix
F satisfy the inequality

| — Te[(0F)1L, 8] + Tr[(0F)' S~ 'vh'C1]| < eVh'C—1h,

where £ > 0 is sufficiently small (according to an opinion of a statistician)
number.

If 6F = e{™ (egk))’A, then

~ T [(0F)L,8] + Tr[(6F)' S~ vh'C™!] =

=—-Tr [e§k> (e)1,3 |+ Tr [egk) (ez(-"))’E_lvh’Cfl]
=~} {8y + (=7 {C '},
Remark 3.2 According to Lemma 3.2 the influnce of §F on the estimator of
the function h'@, B € RF, can be evaluated. As far as the bias of the estimator
h’(3 is concerned, if
B = [(F + 6F)S 1 (F + 6F)] " (F + 6F)='Y,
then B
EM'B)~hgE—-Tr [(5F)’1h,8'],

i.e. the bias of the estimator is — Tr [(5F)’1h,8']. It must be suppressed under
some reasonable bound, i.e. it must be

| Tr [(6F)'1,8']| < eVh/C~1h.

(Instead of B the estimator of it can be used what could be sufficient for practical
purposes.)
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For the sake of simplicity let 6F = e{™ (egk))’A. Then

Tt [(6F)' 1,8 = AT [l (e{)1,8] = A{L,}:{8}:
thus it should be valid

1
A vh'C—1h—MM.
€ VHCTha TSy,

The value

AL =eVWCTh

crit,i,g

1
T80, ©)

is the maximum admissible contamination of the (i,7)-th entry of the design
matrix F. It causes a bias of the estimator h’ﬁ not larger than ev/h’C—1h.
As far as the variance of the estimator h’3 is concerned, we have

WA = W3+ {Tr [~ (F)1,8] + Tr [0F)=~'vh'C!]}
= (b —1,0F)B + W' C LYF' ="ty
and thus
Var(h'8) = (b’ —1,6F)C ' [h — (6F)'l;] + h'C~!(6F) (MpEMp)* dFC~'h

= Var(h'B) — 21, 6FC~'h + 1, 6FC ' (§F)'l, + h'C ' (6F)’
X(MFEMF)jL(;FCilh.

The variance of the estimator with an uncertain design matrix differs from the
variance of the estimator with the proper design matrix. The difference is

—21,6FC~'h + 1},0FC ' (6F)'l;, + W'C ! (§F) (MrEMp)"SFC™ 'h.
For the sake of simplicity let §F = el(-n) (eg-k))’ A. Then the difference is
Th,(i.5) =
= —2A{L}{C R}, + A2 [{CP({1})? + ({CT'RE)H{(MFEM) }i.

It can be assumed that v, (; ;) < h’C~'h and thus

- i\ 1/2
VVarwB) = /W C—h+ 315 = VNG T (14 o)
1 Yo
~ vVh/'C—'h (1 4 h,(i.9) ) .

2h/C—'h

The solution A‘(:Yi)t’i, ; of the quadratic equation

A2[{C}({1}:)? + ({C R} H{ (MFEMF) }i
—2A{1,},{C"'h}; — 2evVhW'CTh =0 (10)
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is the maximum admissible contamination of the (i,7)-th entry of the design
matrix F. It causes an enlargement of the standard deviation vh’C~—'h not
larger than ev'h’C~'h. The value of the quantity 74 (; ;) is the same for both
roots of the quadratic equation.

It is useful to arrange tables of the values Ac”t i (cf. (9)) and AV

crit,i,j
(cf. (10))foralli=1,...,nand j =1,...,k, cf. section 5 Numerical examples.

Remark 3.3 The most dangerous shift F of the matrix F with respect to the
bias of the estimator is in the direction of the gradient, i.e.

-
SF* = kE (ah 5) — kLG

OF
(The number & will be determined later.) The bias of the estimator caused by
0F* is
—Tr [(5F*)’1hﬁ'] = kB'BL,1,.
The number k£ now can be bounded according to the condition
kB B1,1, < evVh/C~1h.
The matrix

., &vh'C-th
0F* = —— 1,3 (11)
BB, 1,
can serve as a good information on the necessary accuracy of the matrix F in
connection with the bias of the estimator h’ ﬁ

It is to be remarked that in the case ¥ = ¢2I, the number k must satisfy

the inequality k < oe/ (ﬁ/ﬂ h’(F’F)_1h>-

4 Uncertainty in the covariance matrix

Lemma 4.1 In the regular linear model Y ~, (FB3,%), B € R*, for a given
linear function h'B3, 3 € R*, it is valid that

on'B

(901',]'

= *{lh}i{z_lv}j — {lh}j{Z_IV}i, Z,j = 1, ey .
Proof Since h'3 =h/(F'S™'F)~'F’S7'Y, it is valid that
on!

h'3 'Y 'F)-!
a 16 _ h/a( ) F/271Y+h/(F/271F) 1F/ Y
00 ; 00; ; ol
= WCIFE e (") + el (e”)] =TI FCTIF'ETY
_hWClES [ En)( (")) +e(")( En))]zfly

_ {7 [lh(E* v) + 3 vl’h} }j ii=1,...,n ]
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Remark 4.1 Since uncertainty in the covariance matrix does not cause the
bias of the estimator, only a change of the variance of the estimator must be
taken into account. Since it is valid that

W[F (S +6%)'F] 'F/(Z+6%) 'Y~ hC'FE Y
—Tr [fS1v'S" + 27)] =B - 216ES "y,

we have
Vars; {0 [F'(£ +0%)~'F] " 'F(2+0%) 7Y}
~h'C 'h + 41, 6Z(MprEMp) 621,
If
55— { e (™) +e{" (e )]A, i#j
[e" (e;)]A, i=j
then if ¢ # j

dn. i) = A, 6E(MpEMp)To3l,

((MPEMP) s, (MeEMe) 0\ () co
= 4l ) <{<M§2M§>+}j,i, {<M§2M§>+}j,j) ({IZ}i ) o

ifi=j
dn (1,0 = 4{1n}e){ MpEMp) T} A%

Since we can assume that dj, (; j) < h'C~'h, we can write

1 dy iy
VWO h+dy ;) ~ VINCTh <1 4 o eld) ) .

2h/C—'h
The matrix Dy, with the (7, j)-th entry

L dh. i) >
{Dh}i7j: (1+§hlclh 9 17.7217"'7717
can help to analyze the influence of 63 on the standard deviation of the es-
timator h’@. The value {D}; ; means the ratio of the standard deviation of
the estimator calculated with the covariance matrix ¥ + 3 to the standard
deviation of the estimator calculated with proper covariance matrix X.

The solution A, . . of the equation (for i # j)

crit,i,j

) ((MPEMA) o, {(MeEMR) ({1},
282(0)5 03) ({1 e ) ()
=ch/C 'h (12)

and the equation (for ¢ = j)
2A%({1,})*{(MpEMpg)t); s = ch’'C'h (13)
is the maximum admissible contamination of the (7, j)-th entry of the variance

matrix Y. It causes an enlargement of the standard deviation vh’C~—'h not

greater than ev/h/’C—'h.
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5 Numerical examples

Example 5.1 Let the regression model be

(g;) Lo, 0=0.1

Y
Ys
}/3 n
Yy

—_ ==
[ENEOCR N

and y = (1.6,1.9,2.6,3.1)".
Then

et (1.5, —0.5 21 0.0150, —0.0050
(F'F) _(0.5, 0.2)’ o (FF) =1 _0.0050, 0.0020 )

1w (1.0, 05,00, —0.5
(F'F) F<—0.3, ~0.1,0.1, 0.3)°

B=(FF) 'Fy= (é'gg) , v=y—FB=(0.08,-0.14,0.04,0.02)".

Let hy = (1,0)’ in situation A, hy = (0,1) in situation B and € = 0.2.
Then in situation A according Remark 3.4 formulas (9) and (10) we will
determine:

0.0245 0.0471 0.0129 0.0067
F 0.0490 0.0942 X 0.0064 0.0033

A‘(:m‘)t = 00 oo | OF" = 0 K
—0.0490 —0.0942 —0.0064 —0.0033

from (10) two solution 1A$/i)t and QAgfi)t are obtained

—0.9620 —6.4139 2.3413 2.7775
AWy _ | —1.2464 —5.9078 Ay _ | 20156 3.6855
15erit = | 17637 —5.2910 | > 2T erit = | 17637 5.2910

—2.9893 —4.5720 1.5608 8.5720

These two matrices cause an enlargement of standard deviation not more e-times.
As a criterion the value

min {|1A(V) A(V)crit,i,j|}

crit,i,j|7 |2
must be choosen in practice.

0.0071 0.0063 0.0046 0.0093
A _ 0.0063 0.0093 0.0093 0.0071
erit = | (0.0046 0.0093 oo 0.0093 |~
0.0093 0.0071 0.0093 0.0141
For example the value A(Fc)m’(&l) and A(Fc)rit,(3,2) for h = (1,0)" cannot
be determined, since {1,}5{B}: and {1,}3{B}2, respectively are zero. Ever it
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seems that the contamination of the design matrix F in the third row can be

any larger number, it is not so. An aproach to determination of the value
(F)

erit.i.q is infinitesimal and therefore some carefulness it necessary. If, e.g.
X2¥)

AF) 1) = 0.1, then the bias of the estimator (1,0)3 is (0.0096,0.0064),
what is admissible. However the value A (F c)”-t’ (3,1) = 1 leads to a non-admissible
bias.

In situation B according Remark 3.4 formulas (9), (10) and from the Remark
3.5 formula (11) we will determine:

—0.0298 —0.0573 —0.0106 —0.0055

AF) _ —0.0894 —0.1720 SF* — —0.0035 —0.0018
erit 0.0894 0.1720 |’ 0.0035 0.0018 |~

0.0298 0.0573 0.0106 0.0055

—2.2905 —-9.9767 3.7190 5.9767

AV _ —2.8165 —8.4173 AWV _ 3.3428 7.0840
15 erit —3.3428 —7.0840 [’ 2T erit 2.8165 8.4173 |’

—3.7190 —5.9767 2.2905 9.9767

and from the Remark 4.2 formulas (12) and (13) we will determine

0.0086 0.0069 0.0053 0.0105

A _ 0.0069 0.0169 0.0105 0.0053
erit | (.0053 0.0105 0.0169 0.0069
0.0105 0.0053 0.0069 0.0086

Let for 0F = JF* the value of the estimator (8) from Remark 3.3 be com-

pared with h'3 = I/ (égg >; W3 = W3 — Te[(6F*)1,8] + Tr[(0F*)'vh/C 1],

If h = (1,0), then h/3 — h/3 = 0.9755 — 1.0000 = —0.0245.
If h = (0,1), then /8 — h/3 = 0.5111 — 0.5200 = —0.0089.

Example 5.2 Let the regression model be

frzi .
= ,1=1,2,3,4,5 14
v B2 + ;i (14)
and results of measurement of y at points x1,..., x5 be

x| 1]2]3]4]5
y[|32]49]62]65]73
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Equations (14) enable us to obtain an approximate values B,

For 15t and 599 measurement two equations for unknown parameters lead
to an approximate values 8 = (10,2).
The linear version of the functions (14) obtained by the using the Taylor
expansion at the approximate point ,8(0) is in the form Y — g(ﬁ(o)) = Fi3,
(0) 0) ..
where F = 24000 and g(8) = (91(8)....95(8”)), 5:(8V) = S,
i=1,2,3,4,5. ’

In our case we will determine

0.3333 —1.1111
0.5000 —1.2500 .

F = | 0.6000 —1.2000 |, y?= 2" i=1,2,3,4,5
0.6667 —1.1111 By + i
0.7143 —1.0204

y° = (3.3333,5.0000, 6.0000, 6.6667, 7.1429)’,

B=p"+ip=p8" +(FSF) FE Ny -y = <

10.5230
2.2754 )7

v=y-FB= (—0.0127, —0.0226,0.2158, —0.2075, 0.0681)".
Let h = (1,0), ¢ = 0.1, ¢ = 0.2. Then in our linearized model we will

determine numerically from the Remark 3.4 formula (9) and from the Remark
3.5 formula (11)

—0.0681 —0.1294 —0.0342 —0.0180
—0.4915 —0.9333 —0.0047 —0.0025

AE) — | 03349 06359 |, 6F =] 00070 0.0037 |,
0.1672  0.3174 0.0140  0.0073
0.1184 0.2248 0.0197  0.0104

and from the Remark 3.4 formulas (9), (10) and from the Remark 3.5 formula
(11)

—0.5132 —1.2038 0.1342 0.3216
—0.3135 —0.7568 0.2530 0.6107

AV — | —0.3516 —0.8476 |, LA = | 0.5799 1.3966 |,
—0.2763 —0.6640 0.7268 1.7326
—0.2308 —0.5531 0.8581 2.0160

and from the Remark 4.2 formulas (12) and (13)

0.0095 0.0083 0.0116 0.0126 0.0160
0.0083 0.0536 0.0310 0.0172 0.0125
A — 1 0.0116 0.0310 0.0600 0.0303 0.0226
0.0126 0.0172 0.0303 0.0329 0.0296
0.0160 0.0125 0.0226 0.0296 0.0273
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Let h = (0,1)’, € =0.2. Then

0.0027 —0.1200 —0.0315 —0.0166
0.0043 —0.1912 —0.0114 —0.0060

AP | 00217 —0.9609 |, 6F*=| 0.0031 0.0016 |,
—0.0083  0.3674 0.0082 0.0043
—0.0038  0.1699 0.0125 0.0066
—0.5941 —1.3733 0.2216 0.5018
—0.5255 —1.1809 0.3422 0.7678

AV — [ —0.6593 —1.4756 |, .Y = | 0.8050 1.8022 |,
—0.5643 —1.2680 0.9644 2.1739
—0.4958 —1.1190 1.1108 2.5353

0.0076 0.0080 0.0097 0.0108 0.0143
0.0080 0.0166 0.0229 0.0165 0.0129
A — [ 0.0097 0.0229 0.1013 0.0389 0.0262
0.0108 0.0165 0.0389 0.0415 0.0347
0.0143 0.0129 0.0262 0.0347 0.0321

6 Concluding remarks

The aim in linear statistical models is to determine an estimator of the parameter
3 on the basis of the observation vector Y.

In this article we concentrated on a fundamental questions — how uncertainty
of the design and covariance matrices influence the bias and the variance of
estimators.

The quantities Agfi)t, OF*, AS,?t, Agi)t enables to judge how precise the
record of the design matrix and the covariance matrix must be.

In the last example it can be seen that in the situation B for ¢ = 0.2 the
record of the design matrix must take into account the values 0.001 and that
record of the covariance matrix must take into account the values 0.01.
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