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Abstract
Biology and medicine are not the only fields that present problems

unsolvable through a linear models approach. One way to overcome this
obstacle is to use nonlinear methods, even though these are not as thor-
oughly explored. Another possibility is to linearize and transform the
originally nonlinear task to make it accessible to linear methods. In this
aricle I investigate an easy and quick criterion to verify suitability of lin-
earization of nonlinear problems via Taylor series expansion so that linear
models with type II constraints could be used.

Key words: Linear models with constraints, compartmental anal-
ysis, nonlinear models, linearization via a Taylor series.
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1 Used symbols

h(A) rank of the matrix A
MA a matrixMA = I − PA

PA a projector on the spaceM(A) in Euclidean norm
M(A) range space of the matrix A
Rk k-dimensional linear vector space
χ2

f (0; 1 − α) (1 − α)-quantile of the random variable with χ2
f (0) distribution

X− generalized inverse of the matrix X
X+ Moore-Penrose g-inverse of the matrix X
(X)−m(Σ) minimum Σ-norm (seminorm) g-inverse of the matrix X
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2 Linearization via a Taylor series

Let us consider a general nonlinear model

Y ∼n (f (β1) ,Σ), β1 ∈ Rk1 , β2 ∈ Rk2 ,

where the parameter β2 occurs only in a constraint g (β1, β2) = 0, the function

f : V → Rn, V =
{(

β1

β2

)
: g(β1, β2) = 0

}
,

has continuous second derivatives, and g(·) is a q-dimensional function with
continuous second derivatives.
If we know approximate values β0

1, β0
2 of the parameters β1, β2 we can

linearize functions f(·) and g(·) via Taylor series

f(β1) = f
(
β0

1

)
+ F

(
β0

1

)
δβ1 +

1
2
κ(δβ1) + . . . ,

where

F
(
β0

1

)
= ∂f(β1)/∂β′

1|β1=β0
1
, κ(δβ1) = (δβ′

1F1δβ1, , . . . , δβ
′
1Fnδβ1)

′,

Fi = ∂2fi(β1)/∂β1∂β′
1|β1=β0

1
, i = 1, . . . , n,

and

g (β1, β2) = b + B1δβ1 + B2δβ2 +
1
2
ω(δβ1, δβ2) + . . . ,

where

b = g(β0
1, β

0
2), B1 =

∂g (β1, β2)
∂β1

∣∣∣β1=β0
1

β2=β0
2

, B2 =
∂g (β1, β2)

∂β2

∣∣∣β1=β0
1

β2=β0
2

and

{ω(δβ1, δβ2)}i = (δβ′
1, δβ

′
2)
(

A, B
B′, D

)(
δβ1

δβ2

)
,

A = ∂2gi (β1, β2) /∂β1∂β′
1

∣∣∣
β1=β0

1,β2=β0
2

,

B = ∂2gi (β1, β2) /∂β1∂β′
2

∣∣∣
β1=β0

1,β2=β0
2

,

D = ∂2gi (β1, β2) /∂β2∂β′
2

∣∣∣
β1=β0

1,β2=β0
2

,

i = 1, . . . , q, δβ1 = β1 − β0
1, δβ2 = β2 − β0

1.

After ommitting terms of the second and higher orders we get a linearized
model

Y − f
(
β0

1

) ∼n (F
(
β0

1

)
δβ1,Σ),

(
δβ1

δβ2

)
∈
{(

u
v

)
: b + B1u + B2v = 0

}
.
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If h
(
F
(
β0

1

))
= k1 < n, h (B1,B2) = q < k1 + k2, h (B2) = k2 < q, and Σ is

a positive definite matrix we say that the model is regular. It is a linear model
with type II constraints.
Let us denote shortly f0 = f

(
β0

1

)
, F = F

(
β0

1

)
.

Lemma 2.1 The best linear unbiased estimators (BLUE) of the parameters
δβ1, δβ2 in the regular linearized model

Y − f0 ∼n (Fδβ1,Σ), b + B1δβ1 + B2δβ2 = 0,

are ̂̂
δβ1 = δ̂β1 − C−1B′

1

(
MB2B1C−1B′

1MB2

)+ (
b + B1δ̂β1

)
, (1)̂̂

δβ2 = −
[
(B′

2)
−
m(B1C−1B′

1)

]′ (
b + B1δ̂β1

)
, (2)

and their variance matrices are

var

(̂̂
δβ1

)
=
(
MB′

1MB2
CMB′

1MB2

)+

, (3)

var

(̂̂
δβ2

)
=
[
B′

2

(
B1C−1B′

1 + B2B′
2

)−1
B2

]−1

− I, (4)

where δ̂β1 = C−1F′Σ−1(Y − f0) and C = F′Σ−1F.

Proof First we find a constrained extreme of the function

(Y − f0 − Fδβ1)
′ Σ−1 (Y − f0 − Fδβ1)

with a constraint b+B1δβ1 +B2δβ2 = 0. Derivatives of the Lagrange function

Φ (δβ1, δβ2) = (Y− f0 − Fδβ1)
′ Σ−1(Y− f0− Fδβ1)−2λ′(b +B1δβ1 + B2δβ2)

are

∂Φ (δβ1, δβ2)
∂δβ1

= −2F′Σ−1 (Y − f0) + 2F′Σ−1Fδβ1 − 2B′
1λ,

∂Φ (δβ1, δβ2)
∂δβ1

= −2B′
2λ.

We put both derivatives equal to a null vector and solve the ensuing system of
equations. By first calculating an estimator of δβ1 from the first equation for
the model without constraints, i.e. for λ = 0, we obtain

δ̂β1 = C−1F′Σ−1(Y − f0),

where C = F′Σ−1F, and therefore ̂̂δβ1 = δ̂β1 +C−1B′
1λ. After substituting in

the model the constraints b + B1δβ1 + B2δβ2 = 0 we solve, together with the
second equation, a system(

B1C−1B′
1, B2

B′
2, 0

)(
λ̂̂

δβ2

)
=

(
−
(
b + B1δ̂β1

)
0

)
.
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Using the Pandora-box matrix ([2, Lemma A.7.23]) in its special form ([2,
Lemma A.7.24]) we obtain a solution(

λ̂̂
δβ2

)
=

(
1 2
3 4

)(
−
(
b + B1δ̂β1

)
0

)
,

where

1 =
(
MB2B1C−1B′

1MB2

)+
,

2 = (B1C−1B′
1 + B2B′

2)
−B2

[
B′

2(B1C−1B′
1 + B2B′

2)
−B2

]−
,

3 = 2
′
,

4 =
[
B′

2(B1C−1B′
1 + B2B′

2)
−B2

]− − I,

and since ([2, Lemma A.7.9])

(B′
2)

−
m(B1C−1B′

1) = (B1C−1B′
1 + B2B′

2)
−B2

[
B′

2(B1C−1B′
1 + B2B′

2)
−B2

]−
we can write

λ = − (MB2B1C−1B′
1MB2

)+ (
b + B1δ̂β1

)
,̂̂

δβ2 = −
[
(B′

2)
−
m(B1C−1B′

1)

]′ (
b + B1δ̂β1

)
,̂̂

δβ1 = δ̂β1 + C−1B′
1λ = δ̂β1 − C−1B′

1

(
MB2B1C−1B′

1MB2

)+ (
b + B1δ̂β1

)
.

Variance matrices can be obtained as

var

⎡⎣⎛⎝ ̂̂δβ1̂̂
δβ2

⎞⎠⎤⎦ =

⎛⎝ I − C−1B′
1

(
MB2B1C−1B′

1MB2

)+
B1

−
[
(B′

2)
−
m(B1C−1B′

1)

]′
B1

⎞⎠ var(δ̂β1)×

×
(
I− B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1,−B′

1(B
′
2)

−
m(B1C−1B′

1)

)
.

Since var(δ̂β1) = C−1 and using [2, Lemmas A.8.4 and A.8.5]

var

(̂̂
δβ1

)
=
[
I− C−1B′

1

(
MB2B1C−1B′

1MB2

)+
B1

]
C−1

×
[
I − B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1

]
= C−1 − 2C−1B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1 + C−1B′

1

× (MB2B1C−1B′
1MB2

)+
B1C−1B′

1

(
MB2B1C−1B′

1MB2

)+
B1C−1

= C−1 − C−1B′
1

(
MB2B1C−1B′

1MB2

)+
B1C−1

= C−1 − C−1B′
1MB2

(
MB2B1C−1B′

1MB2

)+
MB2B1C−1

=
(
MB′

1MB2
CMB′

1MB2

)+

,
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and similarly, when we denote H = B′
2

(
B1C−1B′

1 + B2B′
2

)−
B2,

var

(̂̂
δβ2

)
=
[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1B′

1(B
′
2)

−
m(B1C−1B′

1)

= H−B′
2

(
B1C−1B′

1 + B2B′
2

)−1
B1C−1B′

1

(
B1C−1B′

1 + B2B′
2

)−1
B2H−

= H−B′
2

(
B1C−1B′

1 + B2B′
2

)−1 (
B1C−1B′

1 + B2B′
2 − B2B′

2

)
× (B1C−1B′

1 + B2B′
2

)−1
B2H−

= H−1HH−1 − H−1HHH−1

=
[
B′

2

(
B1C−1B′

1 + B2B′
2

)−1
B2

]−1

− I,

because the matrix
(
B1C−1B′

1 + B2B′
2

)
can be expressed as multiplication of

regular matrices (due to a model regularity)

B1C−1B′
1 + B2B′

2 = (B1,B2)
(

C−1 ,0
0 , I

)(
B′

1

B′
2

)
,

and since we can use common inverse matrices instead of g-inverse matrices(
B1C−1B′

1 + B2B′
2

)−
and

[
B′

2

(
B1C−1B′

1 + B2B′
2

)−
B2

]−
. �

Remark 2.1 Since (see [2, Lemmas A.7.24 and A.7.9])(
MB2B1C−1B′

1MB2

)+
=
(
B1C−1B′

1 + B2B′
2

)−1 − (B1C−1B′
1 + B2B′

2

)−1

× B2

[
B′

2

(
B1C−1B′

1 + B2B′
2

)−1
B2

]−1

B′
2

(
B1C−1B′

1 + B2B′
2

)−1
,

and

(B′
2)

−
m(B1C−1B′

1) = (B1C−1B′
1+B2B′

2)
−1B2

[
B′

2(B1C−1B′
1 + B2B′

2)
−1B2

]−1
,

the estimators of δβ1 and δβ2 in (1) and (2) can be expressed in equivalent
forms without generalized inverse matriceŝ̂

δβ1 = δ̂β1 − C−1B′
1

[
T − TB2 (B′

2TB2)
−1 B′

1T
] (

b + B1δ̂β1

)
, (5)̂̂

δβ2 = − (B′
2TB2)

−1 B′
2T
(
b + B1δ̂β1

)
, (6)

where T =
(
B1C−1B′

1 + B2B′
2

)−1
.

Now we turn back to the model with quadratic terms and explore the prop-
erties (1)–(4) of the estimators.

Lemma 2.2 If

Y − f0 ∼n (Fδβ1 +
1
2
κ(δβ1),Σ), b + B1δβ1 + B2δβ2 +

1
2
ω (δβ1, δβ2) = 0,

(7)
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then biases of the estimators (1) and (2) are

b1 = E

(̂̂
δβ1

)
− δβ1 =

1
2
C−1B′

1

[
MB2B1C−1B′

1MB2

]+
ω (δβ1, δβ2)

+
1
2

[
MB′

1MB2
CMB′

1MB2

]+
F′Σ−1κ(δβ1),

b2 = E

(̂̂
δβ2

)
− δβ2

=
1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′ (
ω (δβ1, δβ2) − B1C−1F′Σ−1κ(δβ1)

)
,

where C = F′Σ−1F.

Proof By [2, Lemmas A.7.24 and A.8.4] and due toMB2B2 = 0, we can write

E

(̂̂
δβ1

)
= E

(
δ̂β1 − C−1B′

1

[
MB2B1C−1B′

1MB2

]+ [
b + B1δ̂β1

])
= −C−1B′

1

[
MB2B1C−1B′

1MB2

]+
b

+
[
I − C−1B′

1

[
MB2B1C−1B′

1MB2

]+
B1

]
E
(
δ̂β1

)
= −C−1B′

1

[
MB2B1C−1B′

1MB2

]+
b

+
[
I − C−1B′

1

[
MB2B1C−1B′

1MB2

]+
B1

]
C−1F′Σ−1

(
Fδβ1 +

1
2
κ(δβ1)

)
= δβ1 − C−1B′

1

[
MB2B1C−1B′

1MB2

]+
(b + B1δβ1)

+
1
2

[
I− C−1B′

1

[
MB2B1C−1B′

1MB2

]+
B1

]
C−1F′Σ−1κ(δβ1)

= δβ1 + C−1B′
1MB2

[
MB2B1C−1B′

1MB2

]+
MB2

(
B2δβ2 +

1
2
ω (δβ1, δβ2)

)
+

1
2

[
C−1 − C−1B′

1MB2

[
MB2B1C−1B′

1MB2

]+
MB2B1C−1

]
F′Σ−1κ(δβ1)

= δβ1 +
1
2
C−1B′

1

[
MB2B1C−1B′

1MB2

]+
ω (δβ1, δβ2)

+
1
2

[
MB′

1MB2
CMB′

1MB2

]+
F′Σ−1κ(δβ1).

Then

b1 = E

(̂̂
δβ1

)
− δβ1 =

1
2
C−1B′

1

[
MB2B1C−1B′

1MB2

]+
ω (δβ1, δβ2)

+
1
2

[
MB′

1MB2
CMB′

1MB2

]+
F′Σ−1κ(δβ1).

Similarly by [2, Lemma A.7.20] and due to[
(B′

2)
−
m(B1C−1B′

1)

]′
B2 = I
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we obtain

E

(̂̂
δβ2

)
= E

(
−
[
(B′

2)
−
m(B1C−1B′

1)

]′ (
b + B1δ̂β1

))
= −

[
(B′

2)
−
m(B1C−1B′

1)

]′
b −

[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1F′Σ−1E (Y − f0)

= −
[
(B′

2)
−
m(B1C−1B′

1)

]′
b −

[
(B′

2)
−
m(B1C−1B′

1)

]′
× B1C−1F′Σ−1

(
Fδβ1 +

1
2
κ(δβ1)

)
= −

[
(B′

2)
−
m(B1C−1B′

1)

]′
(b + B1δβ1) −

1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′
× B1C−1F′Σ−1κ(δβ1)

=
[
(B′

2)
−
m(B1C−1B′

1)

]′(
B2δβ2 +

1
2
ω (δβ1, δβ2)

)
− 1

2

[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1F′Σ−1κ(δβ1)

= δβ2 +
1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′ [
ω (δβ1, δβ2) − B1C−1F′Σ−1κ(δβ1)

]
,

and therefore

b2 = E

(̂̂
δβ2

)
− δβ2

=
1
2

[
(B′

2)
−
m(B1C−1B′

1)

]′ [
ω (δβ1, δβ2) − B1C−1F′Σ−1κ(δβ1)

]
. �

3 Measures of nonlinearity and areas of linearization

In this section we suppose the observation vector to be normally distributed.
Bias of an estimator of δβ2 can be split into components, i.e.

b2 = E

(̂̂
δβ2

)
− δβ2 = b2,0 + b2,1,

where

b2,0 ∈ M
(
var(̂̂δβ2)

)
and b2,1 ∈ M

(
M
var(d

dδβ2)

)
,

as can be seen in Fig. 1.

Let a symbol λmax denote the biggest eigenvalue of the matrix var(
̂̂
δβ2). By

Theorem 9.2.1 in [3] it is easy to prove that for

̂̂
δβ2 ∼ Nk2(δβ2 + b2, var(

̂̂
δβ2))
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λ

Ēδβ2

M(var(̂̂δβ2))

E(̂̂δβ2))

̂

̂δβ2

δβ2

b2 b2,0

b2,1

max

Figure 1: The components of bias.

the random variable

T =
[̂̂
δβ2 − E

(̂̂
δβ2

)
+ b2,0

]′(
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

)+

×
[̂̂
δβ2 − E

(̂̂
δβ2

)
+ b2,0

]
has a noncentral χ2 distribution with f = h(var(̂̂δβ2)) degrees of freedom and
a parameter of noncentrality

δ = b′2,0

(
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

)+

b2,0. (8)

A random variable

T̄ =
(

δβ2 − ̂̂δβ2

)′(
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

)+(
δβ2 − ̂̂δβ2

)
can be then rewritten in the form

T̄ = T +
b′2,1b2,1

λmax
,

because by [2, Lemmas A.7.22 and A.7.2] it holds that[
var(̂̂δβ2) + λmaxMvar(d

dδβ2)

]+
=
[
var(̂̂δβ2)

]+
+

1
λmax

M
var(d

dδβ2)

and

b′2,1

[
var(̂̂δβ2)

]+
b2,1 = 0.

This consideration leads us to a modified confidence ellipsoid for the parameter
δβ2.
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Definition 3.1 A modified confidence ellipsoid for the parameter δβ2 in the
model (7) is defined as

Ēδβ2
=

{
u ∈ Rk2 :

(
u − ̂̂δβ2

)′{[
var(̂̂δβ2)

]+
+

1
λmax

M
var(d

dδβ2)

}(
u − ̂̂δβ2

)

≤ χ2
f (0; 1 − α)

}
,

where f = h(var(̂̂δβ2)).

As a certain analogy of the Bates-Wats measure of curvature, a measure of
nonlinearity for a confidence ellipsoid for the parameter δβ2 can be defined.

Definition 3.2 For a linear model with type II constraints in the form (7), we
define a measure of nonlinearity of confidence ellipsoid for the parameter δβ2 as

CII
ell,δβ2

= sup

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√√√√b′
2

{[
var(̂̂δβ2)

]+
+ 1

λmax
M
var(d

dδβ2)

}
b2

δs′K′
1

{[
var(̂̂δβ1)

]+
+ 1

κmax
M
var(d

dδβ1)

}
K1δs

: δs ∈ Rk1+k2−q

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

(9)

where κmax is the biggest eigenvalue of the matrix var(
̂̂
δβ1) and K1 is a matrix

of type k1 × (k1 + k2 − q) satisfyingM(K1) = M(MB′
1MB2

).

It is obvious that

P {T̄ ≤ χ2
f (0; 1 − α)

}
= P

{
χ2

f (δ) +
b′2,1b2,1

λmax
≤ χ2

f (0; 1 − α)

}
and certainly such δ0 > 0 exists which satisfies the equality

P {χ2
f (δ0) + δ0 ≤ χ2

f (0; 1 − α)
}

= 1 − α − ε (10)

for a sufficiently small ε > 0. Now we define an area of linearization of the
parameter δβ2 for this δ0.

Definition 3.3 An area of linearization of the parameter δβ2 for the model (7)
is

Lδβ2
=

{
K1δs : δs′K′

1

{[
var(̂̂δβ1)

]+
+

1
κmax

M
var(d

dδβ1)

}
K1δs ≤

√
δ0

CII
ell,δβ2

,

δs ∈ Rk1+k2−q

}
,

where the matrix K1 has properties mentioned in Definition 3.2.
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Lemma 3.1 If K1δs ∈ Lδβ2
, then

P {δβ2 ∈ Ēδβ2

} ≥ 1 − α − ε.

Proof By the definition of Lδβ2
and CII

ell,δβ2
, we can write√√√√b′

2

{[
var(̂̂δβ2)

]+
+

1
λmax

M
var(d

dδβ2)

}
b2

≤ CII
ell,δβ2

δs′K′
1

{[
var(̂̂δβ1)

]+
+

1
κmax

M
var(d

dδβ1)

}
K1δs ≤

√
δ0.

Since, with respect to M
var(d

dδβ2)
b2,0 = 0,

P{δβ2 ∈ Ēδβ2

}
=P{T̄ ≤ χ2

f (0; 1 − α)
}

=P
{

χ2
f (δ) +

b′2,1b2,1

λmax
≤ χ2

f (0; 1 − α)

}
≥ P {χ2

f (δ0) + δ0 ≤ χ2
f (0; 1 − α)

}
= 1 − α − ε. �

Because the parameter δβ2 is a function of the parameter δβ1 we must, in
order to verify of the property δβ1 ≈ K1δs ∈ Lδβ2

, construct also a modified
confidence ellipsoid for the parameter δβ1.

Definition 3.4 A modified confidence ellipsoid for the parameter δβ1 in the
model (7) is

Ēδβ1
=

{
u ∈ Rk1 :

(
u − ̂̂δβ1

)′{[
var(̂̂δβ1)

]+
+

1
κmax

M
var(d

dδβ1)

}(
u − ̂̂δβ1

)

≤ χ2
f1

(0; 1 − α)

}
,

where f1 = h(var(̂̂δβ1)) and κmax is the biggest eigenvalue of the matrix

var(̂̂δβ1).

Similarly as for δβ2, it is also possible to define a measure of nonlinearity
for δβ1.

Definition 3.5 For the linear model (7), we define a measure of nonlinearity
of a confidence ellipsoid for the parameter δβ1 as

CII
ell,δβ1

= sup

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√√√√b′1

{[
var(̂̂δβ1)

]+
+ 1

κmax
M
var(d

dδβ1)

}
b1

δs′K′
1

{[
var(̂̂δβ1)

]+
+ 1

κmax
M
var(d

dδβ1)

}
K1δs

: δs ∈ Rk1+k2−q

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(11)
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A sufficient condition for linearization regarding the confidence ellipsoid for
the parameter δβ2 is

Eδβ1
⊂⊂ Lδβ2

⇒
√

δ0

CII
ell,δβ2

� χ2
f1

(0; 1 − α), (12)

(cf. Fig. 2).

Eδβ1
Lδβ2

Rk1+k2−q

Rk1

Figure 2: The confidence ellipsoid Eδβ1
and the area of linearization Lδβ2

.

4 Numerical example

Tracer kinetics of liver blood flow can be described by a compartmental model
(Fig. 3) and an ordinary differential equation

dCL(t)
dt

= k1aCa(t) + k1pCp(t) − k2CL(t). (13)

We obtained the values of tracer concentration CL(ti) in liver, Ca(ti) in a
liver artery and Cp(ti) in a portal vein by measuring times ti, i = 1, 2, . . . , n.
To the equation (13) we can add a delay, in the liver artery or in the por-

tal vein or both. So overall, we can obtain three different equations for our
compartmental model (included the one without any delay):

(KMI)
dCL(t)

dt
= k1aCa(t) + k1pCp(t) − k2CL(t),

(KMII)
dCL(t)

dt
= k1aCa(t − τa) + k1pCp(t) − k2CL(t),

(KMIII)
dCL(t)

dt
= k1aCa(t − τa) + k1pCp(t − τp) − k2CL(t).

For the sake of simplicity, let us consider only the model without any delay,
denoted as (KMI). A vector of observations of tracer concentrations for this
model is in the form

Y = (Ca(t1), . . . , Ca(tn−1), Cp(t1), . . . , Cp(tn−1), CL(t1), . . . , CL(tn))′ ,
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k1a

k1p

k2

Ca(t)

Cp(t)

CL(t)

Figure 3: Dual-input one-compartmental model of blood flow in liver.

and a statistical model
Y ∼ N3n−2

(
Iβ1, σ2I

)
, (14)

where β1 = (μ1, . . . μn−1, ν1, . . . , νn−1, ζ1, . . . , ζn)′, with constraints

ζi+1 − ζi

ti+1 − ti
= k1aμi + k1pνi − k2ζi, i = 1, 2, . . . , n − 1.

Let for i = 1, 2, . . . , n − 1

μi = μ
(0)
i + δμi, νi = ν

(0)
i + δνi, ζi = ζ

(0)
i + δζi,

then for
Z = Y −

(
μ

(0)
1 , . . . μ

(0)
n−1, ν

(0)
1 , . . . , ν

(0)
n−1, ζ

(0)
1 , . . . , ζ(0)

n

)′
we have a model

Z ∼ N3n−2

(
Iδβ1, σ2I

)
,

where
δβ1 = (δμ1, . . . δμn−1, δν1, . . . , δνn−1, δζ1, . . . , δζn)′ .

Then for k1a = k
(0)
1a + δk1a, k1p = k

(0)
1p + δk1p, k2 = k

(0)
2 + δk2 and

β2 =

⎛⎝ k1a

k1p

k2

⎞⎠ , δβ2 =

⎛⎝ δk1a

δk1p

δk2

⎞⎠ ,

the model constraints

gi (β1, β2) = −k1aμi − k1pνi +
(

k2 − 1
ti+1 − ti

)
ζi +

1
ti+1 − ti

ζi+1 = 0,

i = 1, 2, . . . , n − 1, can be rewritten in the form



Suitability of linearization of nonlinear problems not only in biology. . . 183

gi (β1, β2) = −
(
k

(0)
1a + δk1a

)(
μ

(0)
i + δμi

)
−
(
k

(0)
1p + δk1p

)(
ν

(0)
i + δνi

)
+
(

k
(0)
2 + δk2 − 1

ti+1 − ti

)(
ζ
(0)
i + δζi

)
+

1
ti+1 − ti

(
ζ
(0)
i+1 + δζi+1

)
= 0,

i = 1, . . . , n − 1.

In a matrix form we can write

g (β1, β2) = b + (B1,B2)
(

δβ1

δβ2

)
+

1
2

⎡⎢⎢⎢⎢⎢⎣
(
δβ1

′, δβ2
′) ∂2g1(β1,β2)

∂(β1
β2

)∂(β1
′,β2

′)

(
δβ1

δβ2

)
...(

δβ1
′, δβ2

′) ∂2gn−1(β1,β2)

∂(β1
β2

)∂(β1
′,β2

′)

(
δβ1

δβ2

)
⎤⎥⎥⎥⎥⎥⎦ ,

where for Δti = ti+1 − ti, i = 1, . . . , n − 1,

bi = −k
(0)
1a μ

(0)
i − k

(0)
1p ν

(0)
i +

(
k

(0)
2 − 1

Δti

)
ζ
(0)
i +

1
Δti

ζ
(0)
i+1, i = 1, . . . , n − 1,

a matrix B1 is of type (n − 1) × (3n − 2) and it should be divided into three
blocks

B1 =
[
−k

(0)
1a In−1,−k

(0)
1p In−1, 1

]
,

where

1 =

⎡⎢⎢⎢⎢⎣
k

(0)
2 − 1

Δt1
, 1

Δt1
, 0, 0, . . . , 0, 0

0, k
(0)
2 − 1

Δt2
, 1

Δt2
, 0, . . . , 0, 0

...
...

...
...
...

...
...

0, 0, 0, 0, . . . , k
(0)
2 − 1

Δtn−1
, 1

Δtn−1

⎤⎥⎥⎥⎥⎦ ,

B2 =

⎛⎜⎜⎜⎜⎝
−μ

(0)
1 , −ν

(0)
1 , ζ

(0)
1

−μ
(0)
2 , −ν

(0)
2 , ζ

(0)
2

...
...

...

−μ
(0)
n−1, −ν

(0)
n−1, ζ

(0)
n−1

⎞⎟⎟⎟⎟⎠ .

For i = 1, . . . , n − 1 the (3n + 1) × (3n + 1) matrix

∂2gi (β1, β2)

∂

(
β1

β2

)
∂
(
β1

′, β2
′)
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has almost all elements equal to zero except for⎧⎪⎪⎨⎪⎪⎩
∂2gi (β1, β2)

∂

(
β1

β2

)
∂
(
β1

′, β2
′)
⎫⎪⎪⎬⎪⎪⎭

3n−1,i

= −1
2

⎧⎪⎪⎨⎪⎪⎩
∂2gi (β1, β2)

∂

(
β1

β2

)
∂
(
β1

′, β2
′)
⎫⎪⎪⎬⎪⎪⎭

3n,n+i−1

= −1
2

⎧⎪⎪⎨⎪⎪⎩
∂2gi (β1, β2)

∂

(
β1

β2

)
∂
(
β1

′, β2
′)
⎫⎪⎪⎬⎪⎪⎭

3n+1,2n+i−2

= +
1
2

and the corresponding symmetric elements.
Calculation of estimators of δβ1 and δβ2 is iterative. For initiative iteration

we put

μ
(1)
i = Ca(ti), ν

(1)
i = Cp(ti), ζ

(1)
i = CL(ti), i = 1, . . . , n − 1,

and k
(1)
1a , k

(1)
1p , k

(1)
2 are calculated as a solution to a system

B2

⎛⎜⎝ k
(1)
1a

k
(1)
1p

k
(1)
2

⎞⎟⎠ =

⎛⎜⎜⎜⎝
ζ
(1)
1 −ζ

(1)
2

Δt1
...

ζ
(1)
n−1−ζ(1)

n

Δtn−1

⎞⎟⎟⎟⎠ ,

i.e. from the model constraints for δβ1 = 0 and δβ2 = 0.
From (5), (6) we calculate the (k + 1)-th iteration of estimators of δβ1 and

δβ2, i.e. in this case

δβ
(k+1)
1 = Z(k) − B′

1

[
T − TB2 [B′

2TB2]
−1 B′

2T
] (

b(k) + B1Z(k)
)

δβ
(k+1)
2 = − [B′

2TB2]
−1 B′

2T
(
b(k) + B1Z(k)

)
,

where T = (B1B′
1 + B2B′

2)
−1, Z(k) = Y − β1

(k), and

b(k) = B1β1
(k) +

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
δβ1

(k)′, δβ2
(k)′
)

∂2g1(β1
(k),β2

(k))
∂(β1

β2
)∂(β1

′,β2
′)

(
δβ1

(k)

δβ2
(k)

)
...(

δβ1
(k)′, δβ2

(k)′
)

∂2gn−1(β1
(k),β2

(k))
∂(β1

β2
)∂(β1

′,β2
′)

(
δβ1

(k)

δβ2
(k)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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The matrices B1, B2 are constructed with the k-th iteration of the parameters
β1, β2 obtained from

β1
(k) = β1

(k−1) + δβ1
(k),

β2
(k) = β2

(k−1) + δβ2
(k).

Estimators of covariance matrices of the final estimators
̂̂
δβ1,

̂̂
δβ2 are cal-

culated from (3), (4), i.e. in this case (C = σ−2I)

̂
var(̂̂δβ1) =

̂
var(̂̂β1) = σ̂2

(
MB′

1MB2
MB′

1MB2

)+

,

̂
var(̂̂δβ2) =

̂
var(̂̂β2) = σ̂2

([
B′

2 (B1B′
1 + B2B′

2)
−1 B2

]−1

− I
)

,

where

σ̂2 =

(
Y − ̂̂β1

)′(
Y − ̂̂β1

)
n + q − (k1 + k2)

and (
MB′

1MB2
MB′

1MB2

)+

=
(
I − B1 [MB2B1B′

1MB2 ]
+ B1

)
.

For data from the graphic example in [4] (values of tracer concentration in
liver, artery and portal vein measures at 23 times—see Table 1 and Fig. 4), i.e.
for n = 23, q = n − 1 = 22, k1 = 3n − 2 = 67 and k2 = 3, we get these results
after 4 iterations: ̂̂

β2 =

⎛⎝ 0.002431475
0.009413782
0.039506253

⎞⎠ ,

σ̂2 = 0.001130171,

var

(̂̂
β2

)
= var

(̂̂
δβ2

)

=

⎛⎝ 3.238255e− 07 −6.991068e− 07 −2.103772e− 06
−6.991068e− 07 3.001722e− 06 1.255561e− 05
−2.103772e− 06 1.255561e− 05 5.826697e− 05

⎞⎠ .

Among the results we were interested only in the vector of kinetics parameters
β2, because they seem to be important for early diagnosis of substantional liver
diseases.
In Fig. 5 there are discrete points of measured tracer concentration in liver

and a curve of the tracer concentration in liver estimated from the model (i.e.
ζ1, . . . , ζn values).
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Now we calculate the measure of nonlinearity CII
ell,δβ2

by algorithmmentioned
in [1] (pp. 230–231) with the value of δ0 from (10) set at ε = 0.04. The value of

√
δ0

CII
ell,δβ2

=
√

1.570312
0.04511495

= 27.77618

is compared with the value of χ2
48(0; 0.95) = 65.17077. From the numerical re-

sults it is obvious that the condition mentioned in (12) is not satisfied, i.e. for
our data set it is not suitable to linearize the original nonlinear model and work
with the estimators of kinetics coefficients obtained from the linearized model,
although these estimators seem to be very accurate. If the estimated parameter
σ̂ was three times lower, which might be accomplished by more accurate mea-
surement or by measurement in shorter time intervals, the condition would be
satisfied and linearization would be appropriate.

i ti [s] CL(ti) [mmol/l] Ca(ti) [mmol/l] Cp(ti) [mmol/l]
1 0.00 0.000 0.000 0.00

2 3.30 0.000 0.000 0.00

3 6.75 0.000 2.350 0.00

4 10.00 0.000 4.230 0.07

5 13.25 0.030 4.350 0.19

6 16.75 0.111 3.620 0.68

7 20.00 0.156 2.440 1.36

8 23.50 0.126 1.600 1.88

9 26.75 0.204 1.220 2.11

10 30.00 0.309 1.220 2.49

11 33.50 0.294 1.500 2.30

12 36.75 0.360 2.000 2.21

13 40.50 0.378 2.230 2.26

14 43.50 0.411 2.162 2.21

15 47.00 0.489 1.970 2.40

16 50.50 0.519 1.790 2.28

17 54.00 0.561 1.600 2.35

18 57.00 0.516 1.480 2.26

19 60.50 0.618 1.580 2.23

20 64.00 0.543 1.530 2.16

21 67.00 0.561 1.620 2.26

22 70.50 0.510 1.430 2.16

23 74.00 0.600 1.430 2.07

Table 1: Measured data of tracer concentration.
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Figure 4: Curves of measured tracer concentration in a liver artery Ca(t) and
a portal vein Cp(t) and points of measured tracer concentration in liver CL(t).
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5 Conclusions

Many real-life systems are basicaly nonlinear. Particularly in biology and med-
icine we meet nonlinear problems very often. By treating them as linear we
employ a very rough and limited approximation [5]. There are many meth-
ods that solve nonlinear problems, mostly numerical methods, but these usualy
suppose accurate measurements, and they do not take into consideration inac-
curacy and uncertainty inherent in biology and medicine settings (subjective
examination, inter- or intraobjective variability and so on). One way out is to
apply linearization of nonlinear problems, for example the above-mentioned lin-
earization via Taylor series, to use the well-known and well-explored theory of
linear models. We know how to estimate parameters and their variability in the
linearized models [1]. However, we should check whether the type of problem
and measured data allow for treating the nonlinear problem in this way.
The aim of this article was to find a condition which would guarantee for

linear models with type II constraints that the true values of estimated param-
eters are covered by a modified confidence ellipsoid (with probability no less
than 1 − α − ε for a preset small ε > 0), and to verify in this manner that the
usage of linearization is appropriate. As can be seen in the numerical example,
this condition is not easy to satisfy, although calculated estimators (and their
variances) in the linearized model look very good. When solving a nonlinear
problem by linearization we should proove that the linearization is safe. In
case of linear models with type II constraints a method of such verification was
presented here.
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