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CONFIDENCE REGIONS
IN A MULTIVARIATE REGRESSION MODEL
WITH CONSTRAINTS II

LuBoMirR KUBACEK

(Communicated by Gejza Wimmer)

ABSTRACT. The multivariate model, where not only parameters of the mean
value of the observation matrix, but also some other parameters occur in con-
straints, is considered in the paper. Some basic inference is presented under the
condition that the covariance matrix is either unknown, or partially unknown, or
known.
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1. Introduction

The multivariate regression model, where not only parameters of the mean
value matrix but also other parameters are involved in the constraints (con-
straints of the type II) is dealt with.

As a motivation example the following problem can serve. A group of points
on the Earth surface is a basis for an investigation of the recent crustal move-
ment. At different times t1,...,t,,, positions of points are estimated, e.g. by
navigation satellites (GPS). After m measurements, i = 1,...,m, estimated co-
ordinates of the investigated points are at our disposal. If they are on the same
Earth block, they must satisfy some constraints because their relative position
are not changed. If they are not on the same block, then in the constraints
some new parameters occur. These new parameters characterize unknown shifts
among different blocks.

The aim of the paper is to contribute to the theory of such models.
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LUBOMIR KUBACEK

2. Notation and auxiliary statements

The investigated model will be denoted as
Y ~nm (XBl,2®|), G;B; + G2B; + Gg = 0. (l)

Here Y is an n x m random matrix with the mean value E(Y) = XB1, X is an
n X k1 known matrix (design matrix), By is an k; X m matrix of the unknown
parameters (coordinates of the investigated points), Gi,Go and Gg are given
matrices of the type ¢ x k1, ¢ X kg and g X m, respectively, and Bs is a q X ko
matrix of unknown parameters occurring in the constraints only. The rows of the
random matrix Y are independent and their common covariance matrix is X.

The model is regular if the rank r(X) of the matrix X is r(X, k,) = k1 < n,
r(G1,G2) = ¢ < k1 + k2 and 7(Gz2) = k2 < ¢. The matrix ¥ is positive definite
(p.d.).

The model can be rewritten as
vec(Y) ~pm [(1 @ X)vec(B1), X @],
(1® Gy)vec(B1) + (1 @ G2)vec(B2) + vec(Gg) = 0. (2)

(Here vec(A) = vec(ay,...,an) = (a},...,a,)".)

The notation can be compared with the notation of the univariate regression
model with constraints of the type II

Y* ~p (X681, E7), GiB1+G38;+8 =0,

r(X*

k) = k<, T(GI,(q,ki)’G;,(q,kz)) = q < ki + ks, T(GE,(q,kz)) =k <gq.
Thus it is useful to state some results from the theory of univariate regular linear
models with constraints of the type II.

In the following text the notation from [6] is used, i.e. if A is an m x n
matrix, then A~ is an n X m matrix with the property AA“A = A. If N is
an n X n positive semidefinite matrix, then A;l( N is an n X m matrix with the

property V{y € # = {Au : u € R”}}AA;(N)y =y & V{y € #(A)}

!
V{x: Ax =y} ||A Yl = \/y’ (A;(N)) NA_ nY <[]y The symbol A*

means the n X m matrix such that AATA = A, ATAAT = AT AAT = (AAT),
(A+A) — A*A. Further P4 — AA* — A(A’A)~A, M4 = | — P.

LEMMA 2.1. Let C* = (X*)(Z*)~1X*. Then

(<x*>', (G*); ) _ ([,
0, (G m(%*, g) —\ [21], !
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
= {1-(€)7(61)M6;61(C") H(G})'Ma;] *G; }
x(C) XM (B) 7,
= (C*)7(6])Me;G;(C*)7H(G])' Mg; ™,
- ! * *\ — *\/ *\ —
= {6 )ieren-1ey | GHEN XY (E)7,
*\/1 !

= {[(52) ]m[G{(C*)—l(G{)’]} :

Proof. Two equalities must be valid (cf. [6]).

(i)

( (X*?’, (G1) ) ( (X(;,),’ ggg: );( 5(3)*, 8 ) ( o (G

(% &)

(o 8) (%l ), (= 0y (60 &)

-(& &) |(%) Eﬁgﬁ);( 5 o) (% 9)

The equality (i) is easy to be proved.
The relationships

X*(C*)7H(G}) = X*(C")7H(6}) [Me; G5 (€)™ (G}) Mgy ] *
xG{(C")™H(G1) = X*(C) " (G1)[(G3) rmi6: (-1 61y (G3)
= X*(C")7H(G}) - X*(C") MG} [G3(C) (G}’
+G3(63)]™" — [G1(C")"1(G1)' + G3(G)] ™
«G3{(G3)[G1(C)1(G1) + G3(G3)|'G2 ) (G3)[Gi(C) (G}
+G3(63) 7 HGH(C) ™ (61 + G3(G5)] - X*(C*) (63 (G5 (C™) ™!

x(G])' + G3(G3)] ' G3{ (G3)'[G1(C") (G} + G5(G3)]'G;} =0,
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LUBOMIR KUBACEK
[M¢;G;(C*)™1(G])' Mg;]*G1(C*) 1 (G})'
= [Mg;G;(C*) 7 (G])'Mg; ] *[G}(C*)~H(G}) + G3(G3)'],
[M¢;G;(C*)7H(G})'Mg;]t = [G(C*)7H(G})' + G5(G3)']
~[G}(C*)H(GT) + GE(GE)’]‘lGE{(GE)’[G’{(C*)‘l(GI)’

£G3(GATIGE ) ((63)GH(C) (G + G3(G3)]

and
(G3) Tmias e 1601
= [GT(C*)_I(GT)'+GS(GS)']_lGS{(GS)’[GI(C*)_I(G’{)’
* *\/1—1 % -1
+G3(G3)'|7'G3 |
must be taken into account in order to prove (ii). d

COROLLARY 2.2. In the regular univariate linear model with constraints II the
BLUEs of the parameters 3, and B, can be expressed with respect to Lemma 2.1
(cf. also, e.g. [2])

B, = [11]y* +[12](-g0)
= B, - (C)7(6}) Ma; G;(CT)™H(GI)'Ma; ] (613, + &),
B = (©)xy(E) Y
B = [2y +[22-&0) = ~ {(6) lreriom v}
x(G}B, + &),
Var(3y) = (€)' = (€)7H(G]) [Ma; G1(CT) T (G}) M)+ G1(CT)
var(By) = {(G)[GH(C) NG + GGGy 1,
cov(By,By) = —(C)7HGYIGI(C) M (G) +G3(G3)] ' Gy
<{(63)[G1(€) 7 (G1) + G3(63)1 63}

COROLLARY 2.3. Using the model (2) in relationships from Corollary 2.2 we
have in the model (2) and (1), respectively,

vee(By) = vee(By) — [ ® (X'X)™1] (18 G))
x {M(16,)(1®Gy) [Z@ (X'X)] (1© G/1)M(1®G:»)}+ vec(G1 B + Go).
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL

Since M(19a,) = | ® Mg,, we can write

Miee)(1© G1) [E& (XX) 1] (18 G)Maay }
= {2 ® [Mg,G:1(X'X)'G{Mg,]} " = 271 ® [Mg,G1(X'X)"1G\Mg,] " .
Thus
vee(By) = vec(By) (I ® {(x’X)-lc;'1 [MGzGl(X’X)‘lG’lM@]Jr})
x vec(G1 By + Go)
= Vec{§1 — (X'X)"1G, [Mazcl(x'xrlcgmcz}+(51§1 + GO)},
vec(B1) = {l ® [(x'x)—lx'] } vee(¥) = vec(X'X) XY,

Analogously

VGC(Ez) =- (' ® Glz)r—n{u@cl)[2®(x'x)—1](1®c'1)}]/ vec(G1By + Go)
= {18 [, 00x-ray] | vee(GiB: + Go)
= vec{ - [(G'z)r_n[cl(x'chal},(Glﬁl +Go) .
Var[vec(él)] =¥XQ® {|V|G'1Mc2 (X'X)Mg; Mg, }+’
Var[vec(ag)] =¥ Q® ({GQ [Gl(xlx)_lGl + GQGQ]_lcz}_l - |),

covlvec(B1), vec(Bs)] = —E ® [(x,x)_lcll(G/2)7_n[c;1(xfx)—1c;’1 }

3. Estimation of parameters of X

The matrix ¥ can be either known, or known partially, or it is fully unknown.
Three typical situations occur. The matrix is of the form ¥ = 02V, where V is

m x m p.d. known matrix and 02 € (0, 0) is an unknown parameter. The other
P

formis ¥ = Y 9;V;, where V1, ..., V,, are given m x m symmetric matrices and
i=1

9 = (94,...,9,) is an unknown vector parameter, 9 € 9 C RP (p-dimensional
Euclidean space), ¢ an open set. The last possibility is that 3 is fully unknown.
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LUBOMIR KUBACEK

Let the residual matrix ¥ — XB; be denoted as v;;. With re pect to Corol
lary 2.3

vy — v+ X(X'X)7'G] Mg, G (X'X) 'GiMg,]*(G1B; + Gy),

where v =Y —XB, — ¥ X(X’X)~!X'Y MxY and B, is the BLUE in th
model vee(Y) ~pm [(1® X) vee(B1), £ @ 1] without constraints.
Obviously

vee(vrr) ~nm [0,2 ® (Mx + Px(x/x) 16)Mg, )]
(the matrices v and B are uncorrelated).
LEMMA 3.1. Let n x m matriz U be normally distributed, 2.e.
vec(U) ~ Ny (0,2 W),
where m X m matriz 3 is p.d.. Then UW~U ~ W,,(r(W),X) (Wishart distr -
bution).
Proof. Let W = JJ/, where J is n x (W) matrix, r(J)  r7(W). Let K be
n x (W) matrix with the property r(K) — (W), K’'J — 1. Then
(1@ K')vec(U) ~ Ny, (0,5 1),

i.c. the rows of the matrix K'U are independent and they have the common
covariance matrix 3. Therefore

UKK'U UWTU~ W, (r(W),X).

Since # (U) C .# (W) with probability 1, UW1U = U'W U for any g-inverse
of the matrix W.

COROLLARY 3.2. It is valid that
V/II!II ~ VVnL(TL + q — (}Cl + I\'Q), E)

Proof. Since Mx+Px(x/x) 1¢,mg, is anid mpotent matrix, thus the identity
matrix is also its g-inverse and

r(Mx +Pxxx) 16/ me,) = Tr(Mx + Px(x'x) 1o )
B TI‘(M)() + T‘(GllMg,z) =n-—ky +q—ks.

Tte last equality is implied by th* relationship

( o ) —q=r(GiMg,) +(G2)  r(GiMa,) + k.
2
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
LEMMA 3.3. If Y is normally distributed and ¥ = o2V, i.e.
vee(¥7) ~ Num{ 0,02 [V @ (Mx + Px(xi)-10y015,)] |
then the estimator of o2, which is unbiased and with the minimum variance, is

2
Xm(n+q—k1—k2)
m(n+q— ki —k2)

67 = Tr(vi v VY /Im(n+q— ki — kg)] ~ o?

Proof. Since V™! ® | is a g-inverse of the matrix
V@ (Mx +Pxx/x)-16;Mq, )

thus the expression in the statement is only a transcription of the well known
formula from the theory of linear univariate models

53 = [vec(vy)] (VT @ 1) vec(v ) /[m(n + g — ki — k2)).
O

If Y is not normally distributed, then 7, is still at least unbiased estimator
of 0.

P

THEOREM 3.4. Let ¥ = ) 9;V;, Vy,...,V,, known n X n symmetric matrices,
I=1

¥ = (V1,...,9p) €9 (open set) and let ¥¢ be an approrimate value of the vector

Y. Then the Yo-MINQUE of an estimable function W9,9 € 9, is

p
W =% N Tr(vhv B0 'ViSg!)/(n+q— ki — k), SgiA=h,
I=1
where

p
Bo=D 0V, {Syoitiy =Tr(Sg'ViZg'Vy),  ii=1...,p.
=1
If the matriz SEEI is regular, then
~ ) Tr(vy v S 'Visg))
9=——— 8% :
n+q—k1—k2 o , '_1 -1
Tr(viviBg VpEg )
In the case of normality of the observation vector Y
2 -
n+q— ki — ko et

Vary, (@) =
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LUBOMIR KUBACEK

Pr oof In the univariate regular linear model with constraints II, i.e. Y* ~
(X*B, Z 19 Vz), 80 + Glﬁl + G2,32 = 0 lt lS Va.lld

hd = Z/\iV;I(ES)_lvi(ES)—IVUa S (Mxn ps

. B2 M +A=h.
et (@) Mgy 0TX M(GIVMG,;)
If the matrix S « i
(MX*M(GI)’MGE S Mxx Miasyag *)+ s regular, then
-1 *\—1
vir(E%)o Vi(Z*) g vir
S o1 )
d=S )+

M S5M
( X Mpy Mgy 0T MGty Mgy

vir ()5 Vo (Z%) gt vy

In the multivariate model it means

W =3 Nifvee(v)]' (57 @ (Vi @ 1)(S5 @ 1) vee(v,)

i=1
P
= Z)‘iTr(l/II!IIEO—IViE(TI)v S*A=h,
i=1
where

+
[M(I®X)Mu®c' (Zo® I)M(I®X)M(’®G’1>M<1®cz>} '

IM(18G3)
Since
M(I®X)M(,®G,)M(I®G ) M(I®X)M(,®G,1)U®MG2) = M(I@X)(I@MGSMGZ)
= ""[1@9(){1\/1@,1MG2 n=1® MXMGiMG:) =
=[(|®MXM )(Eo®l)(l®M )+
¢\ Mg, XMgy g,
_ -1
=%, ® MXMG’IMG2 =
(8-)is =T [ (35" @ Mxnig, ) Vi@ ) (55" @ Mgy, ) (V; 1)
2
—1 -1
U T (e, ) = o ()
x Tr(Z5'ViZg'V;) = {n — [k1 — 7 (G Mg,)]} Tr(Z5V, 55 1V;)
=[n+q— (k1 + k)] Tx(Z5 'V, E51V;) =
S, = [n +q- (kl + k‘z)]szal.

Now it is obvious how to finish the proof. 0

More about MINQUE cf. [7].
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL

4. Confidence regions

The normality of the observation matrix Y is assumed in this section.
An estimator

3(B1, By) = Tr(A;B;) + Tr(A:B,)

(A; is a given m X k; matrix and A is a given m X ke matrix) is also normally
distributed and

—~

Tr (Al,Ag) 2 ~
B,
~ Ny |Tr [(Al,Az) ( 31 )] , Var ¢ Tr | (A1, A2) 2 ’
2 32
B: _ / Yy
Var < Tr (A],Az) é/: =Tr [A; MG”lMGQXXMG’lMcg Alz
2

_ -1
+Tr[A2 ({G’1 [G1(X'X)"1G} + G3G}) 1c;2} —|> A’22]

2Ty [A1(x’x)—lc’l(Gg);[Gl(x,X),IGUA;z]

(cf. Corollary 2.3).

If ¥ is given, the determination of the (1 — )-confidence interval for ®(-, )
is elementary.

If ¥ = 0%V, where V is a given p.d. m x m matrix and o2 is an unknown
parameter, it is sufficient to take into account Lemma 3.3, i.e. the (1 — a)-con-
fidence interval is [d, u]

B, ay .
d = Tr (A1)A2) ( Z:l ) _tm(n+q—k1—k2) <1 - —') orr Q7

B, 2
B, an .

u = Tr|(A1,Ag) E:l + tm(ntq—ki —k2) (1—§>011 Q,
2

where tm(n+q—ki—kg)(1 — §) is (1 — §)-quantile of the Student distribution with
m(n + q — k1 — k2) degrees of freedom, &y is given by Lemma 3.3 and
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L UBOMIR KUBACEK

+
Q =Tr [Al (MGUWGQ X’XMG/1 A’[G2) AIIVJ +
—1 -1 /
+ Tr [Al ({G’1 [G1(X'X)"'G] + G2G}] GQ} | AZVJ
—2Tr [Al(x'xrlcg(c;)m[cl XX IGl]A’QVJ .

If the matrix X is a priori unknown, its estimator v, v;;/(n+q — ki — k>
from Corollary 3.2 is at our disposal only. Thus the problem ari es whether thi
estimator can be used instead of the actual matrix 3. The following statement
can help in a decision. For the sake of simplicity a procedure 15 demonstrated
on the function ®(B;) = Tr(AB ), where A 1s a given m X k; matrix. only. (Fou

more general situation cf. also [3].)

THEOREM 4.1. Let € > 0 be such small positwve real number that decreasing the
confidence level 1  «a to1— a - € can be tolerated. Let

U = A(Mg; a1, X' XMy a1, ) TA.

If
t* . ey KTHUE)
P N {Z + 2 + diag(D)[diag(Z)]'} < T 11/, 3

then the estimator of X, i.e.

~ w .
= n+q-—k _?2:!111/11/(71'*‘61—% h2)

can be used for a determination of confidence region and the confidence le el 1
al least 1 —a — e, where 1« is a level under the known matriz X.

Here k = 1 — Xx2(1 —a —¢)/3(1 — a), * means the Hadamard product of
matrices, i.e. {KxL};; — {K}; {L}i;, t is sufficiently large real number uth

the property that

W; 4 Wy,
Tuj5 € { }‘] - t\/(aiﬂgm f—af,])/f, fJ +t4/(04,05,, + 02 ) f}

occurs with sufficiently large probability, f —n+q —ky — ko, w, , — {W}, and
< means such ordering matrices, that K < L means {K},;  {L},, for all
and j. Symbol diag(X) means the vector of diagonal entries of the matriz 3.
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CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL
Proof. Since W = v}, v;; ~ W, (f, %), f = n+q— ki — kg, it holds w; ; ~;

(foij, floiios; + af’j)]. Obviously {X x X + diag(X)[diag(X)]'}, ; = 04,055 +
012, ;- 1f t is sufficiently large, then regarding the Chebyshev inequality

04,i0jj + 02,
P <y 2 TR Zl_i%]ﬂ
f t2

When X is given, the (1 — a)-confidence interval for the function Tr(AB;) is

Wi,

f

— i

[ (AB1) — /¥ (1 — ) Tr(US), Tr(ABy) + /X3 (1 — @) TH{UE)

Small changes of the entries of the matrix 3 imply small changes of the bound-
aries of the interval. Let the matrix of changes §¥ satisfy the inequality

1— Xl(1

where € > 0 is a sufficiently small number chosen in advance. Then

| Tr(USS)| < [ Tr(UX) = £ Tr(US), (4)

P{Tr(ABl) € [’I‘r(Aél) —/X3(1 — a)[Tx(US) + | T(UsE)[);

Te(ABy) + VX1~ a)[Tr(UE) + ITr(Uéz)l]} }

> P{T‘r(ABl) e [T&(AE) —\/x3(1 - a)[Tx(US) — | Tr(UsE);

TR(ABy) + /(1 - a)[Tr(US) - |Tr<uaz)u] } > P{Tr(ABo

Tr(US) — (1 - X%(;_—O‘_)e)) Tr(US)|;

xi(l -«

Te(AB,) - fo(l ~a)

Tr(AB,) + J 21— a)|Tr(US) - (1 - %) Tr(US)

:P{Tr(ABl) e [ (AB;) — Vi - @) Tr(US); Tr(AB,)

+\/x§(1 —a)ﬂ(uz)” =l-a—c¢.
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Let ¢ > 0,685 = cU and at the same time |Tr(UdX)| < xTr(UX). Then
c— rkTr(UX)/ Tr(U?). If

Tr(U)

DUy = o U2y - )
T(0?) U

18] < & Ull=h e

then | Tr(UX)| < ||6XZ]|[|U]| < & Tr(UX) (cf. (4)).
If t is sufficiently large, then |6; ; — o; ;| is smaller than t\/(aZ 0, + UZJ) f
and thus the condition (3) implies the validity of the statement.

P
If ¥ — > 9;V;, then sometimes, under some condition, the confidence region
i1
can be determined in a similar way as in Theorem 4.1,

THEOREM 4.2. Let ¥ = Z 9. Vi,ug = [Tr(UVLU),... Tr(UV,U)) and the

1=1
other notations be the same as in Theorem 4.1. Then

{19:\7’{2':1, p}w-ﬁ|<\[ {25}}

C {19; 9 =g + 60, g—w’szo_lw < gﬂ&&l_}

a1
”ASE—1”A
0

= P{Tr(ABl) € {’I‘r(AEl) —/xi (1 -a) Tr(Uf)),

AB,) + \/Xf(l_a)ﬁ(uﬁ)” Sloa- .

Here & — Z TAYS 9 15 given by Theorem 3.4. v > 0 is sufficiently small numb r

such that 1 — 7 can be considered as a practical certainty.

P
Proof. Analogously as in Theorem 4.1 let 0¥ = > V;§9; satisfy the inequality
=1
Tr(U6X)| = |u/4 69| < kTr(UX). A sufficient condition for the validity of this
inequality is
f r2[Tr(UX))?

[ oo
=60 S 109 < = .
2 2 UAS_1 uy



CONFIDENCE REGIONS IN A MULTIVARIATE REGRESSION MODEL

If |uy69| < kK Tr(UX), then

P{Tr(ABl) € {’I‘r(Aél) - \/X$(1 — o) TY[U(S +63)),

Tr(AEl) + \/xf(l —a)Tr[U(E +52)]]} >l—a-—ce.

With respect to the Bonferroni rule (cf. [1, p. 492]) and the Chebyshev inequality

P{V{z’ =1, p}o} — D4 < \/E,/{%sgl}ivi} ~1—ny

and thus the statement is proved. O

Remark 4.3. A verification of the inequality

P L OB @

1
2 u;,SE_luA
0

can serve as a basis for a preliminary decision, whether $ can be used instead
of the X in a construction of the confidence interval for the function Tr(AB;).
It follows from the following consideration.

Even the set
p
{519: £69'S5,-169 < ;} (6)

is included into the set

{50: Vii=1,...,p}60;| < ﬂ,/{%s;&l}m}, (7)

also the set (6) covers the actual value 9 of the parameter 9 for sufficiently large
p/~ with practical certainty. Thus (5) implies the validity of |u/,69| < k Tr(UX)
with certainty.

In [4] the problem how large should be the value ¢t (= ) in some situations
is solved. It was found out that ¢ = 3 can be sufficiently large. Thus it seems
that the condition (5) can be sometimes too rigorous in practice.

. . . B .
Until now scalar functions of the parameter matrix Bl was considered.
2

A special vector function of the parameter B, is ®(B;) = (b'B1A’)’, where b is a
k1- dimensional given vector and A is a given s X m matrix, where r(A) = s < m.

583



LUBOMIR KUBALEK
THEOREM 4.4. The (1 — o)-confidence ellipsoid for the function ®(B) is

Es(l—a)= {u . ue R, etk =stl AR/ b

(Avy v A a
X b’(MGIIMGZX’XMcllMG2)+b(u — AB;b) < Fs,n+q—(k1+k2)—s+1(1 —a),.

Proof. Since
= ‘ +
(A® b') vec(B1) ~ N, [(A ® b') vec(B,), bf (MG/I M, X' XM MGQ) bAEA’] ,
/ / + / /
b (MG'lMc;2 X XMG/IMG2> bAv; v, A
/ M ! + !
~ Ws[n—i- q—ki — ko, b ( G101, X XMG;MG?) bAzA]
and the vector (A @ b') vec(B}) and the matrix
+
b (Moyaig, X' XMy, ) bAVG v A
are stochastically independent, the Hotelling theorem (cf. [5]) can be used, i.e.
= +
[(A® b') vec(By) — (A® b') vee(By)]' [b’ (Ma,l Mg, X' XM, Mc2) b

-1 =~ 2
xAg'”g”A'] [(A® b')vec(By) — (A® b') vec(By)] ~ —2——X‘°’—
ng—ki—ko—s+1

k]

where x2 and xi+q_k1_,€2_s 41 are stochastically independent. The relationship
for the (1 — a)-confidence ellipsoid can be now easily obtained. O

Another special vector function of B; is AB1b, where A is a s X k; given
matrix of the rank r(A) = s < k; and b is a given m-dimensional given vector.

THEOREM 4.5. Let #(A') C M (Mg ms,) and r(Asi) = s < ki, de

{A};.Bib, i = 1,...,s, are unbiasedly estimable functions with nonzero dis-

persions of their estimators. Then (1 — «)-confidence ellipsoid for the function
@(Bl) = ABlb 18

= + -1
(9@q> l_a = u: UERS,(U_ABlb)/ A MG,M X/XMG,M A/
11G2 1MG2

= bV, v, b
X(u — ABlb)/ (Sﬁjﬁ%k;) < Fs,n+q——k1—k2(1 - a)}
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Proof. Since
AB,b ~ N, [ABlb, b'SbA(Mc; are, X’XMG3M02)+A’] ,

2
_ Xn+q—ki—
- ' _ ~ b ESpntakizhe
b}]b—bznv”b/[n-HI (k1 + k2)] ~ b'Eb— q— ki — kg’

the random vector AB1b and the random variable b'Sb are stochastically inde-
pendent and {A(MGIIMG2 X'XMg;, Me, )+A’] = s, the statement is obvious. O

Let the (1 —a)-confidence region &5 (1—a) must be determined for the matrix
function ®(B;) = AB;D, where (A, k,) =7 < k1,7r(Dpms) = s < m, #(A") C
4 (Mg, Mcz) and it is assumed that ¥ is known. The confidence region can be
obtained in a standard way as a set

2 -1

Ep(l - a) = {u : ﬂ{(u’ _ D'B/A) [A(MGQMGZ X’XMG/IMcz)*A’}

x(U - ABD)(D'ED) ! <y (1-a)}}.
In an analogous way as in the preceding part of this section, the expression for

&9 (1 — a) can be investigated when X is either unknown, or partially unknown.
The case ¥ is unknown will be investigated only.

LEMMA 4.6. Let

Q = (D'BJA’ — D'B{A") [A(Mo; o, XXM, ) A "'(AB,D - AB,D)
and
1(6%) = T+{QID'(S + 6%)D) ' } - Tr[Q(D'=D) .
Then
n(0¥) = — Tr[D(D'ED)~'Q(D'ED) ! D’'6X]
~ (—r’I‘r[D(D’ED)‘lD’é‘E],2rTlr[(D’ED)_lD’(SED(D’ED)‘ID’(SED]).

Proof. Since

8TI‘[Q(D'2D>_1]} _ ‘: l -1y 0% / -1
{ o T Tr |Q(D’ED)"'D mo(o D) ]

_ { —2¢/,D(D'SD)"'Q(D'ED)"'D'e;, i+ j,
~ 1 -e/D(D'ESD)-'Q(D'ED)"!'D'e;, i=j,

585



LUBOMIR KUBACEK

the random variable n(63), for sufficiently small 63, can be expressed as

n(65) = ZZ&’H QE'=D),

do;
=1 j=1 )

=-) Tr[D(D'SD)~'Q(D'ED)'D’e;e]]d0;

i=1

_Z > Tr[D(D'ED)~'Q(D'ED)"'D’(e;€] + e;€])]d0 ;

i=1 j=it+1
= - Tr[D(D’ED)"'Q(D'ED) " !D'6X].

Let (D’ED)~!D'§EXD(D'ED)~! = U. Then
E{— Tr[D(D’ZJD)‘lQ(D’ED)‘lD’éE]} = —E[Tr(QU)]

N -1 =
_ —E(’I‘r{D’(Bl _By)A [A(MGQM% x’XMG;MGZ)JFA'] A(B, — Bl)DU})
=\ ' / ’ + A’ -1
= —E|[vec(B, — By)]'( (DUD") ® {A [A(MG;Mczx XM ig,) A} Y
X VGC(Bl - él)]
D’ / / + A’ -1
— _Tr|((DUD) ® {A [A(MGQMGQX XMa; u1g, ) A] A}
X |:2 & (MG'lMGQ XIXMG;MG2)+:|:|
— — Tr(DUD'E) Tr{A’ [A(Mg; are, X' XM g, )P A
A(Mg e, x’XMGIIMGQ)+} = —Tr[D(D'ED) " 'D'6ED(D’'ED)'D'Y]
-1
x Tr{ [AM; g, X'XMg; a6, ) FA] T AMG; o, X’XMG/IMGz)’“A’}
— _rTr|[(D'SD)"'D'6ED].

Further

Var[Tr(UQ)] = Var{(Bl — B)'A'[A(Mgy arg, XXM 1, ) PA]

xA(By — §)DUD'} = Var[[vec(Bl -By) ((DUD’) ® {A’ [A(Mg; a1, X’
XXMG’IMGZ)+AI]_1A}> vec(31 - §1):|
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_ 21&{ [((DUD’) ® {A’ [A(Mg; p16, X' XMy 1, ) T A] ‘1A})
2
(26 (Mo, XXMayure,) ]| |} = TH(DUD'EDUD'S)

X TI'{A/ [A(MG”IMG2 XIXM(;/IMG2)+A/]—1A

% (Mg ara, X' XMg; ag, ) A [A(Mayarg, X' XMay g, )T A
xA(Mg; Mg, x’XMGflMGQV} =2Tr[D(D'ED)"'Ds=D(D'ED) ™
xD'ED(D'ED)"'D'§ED(D'ED)"'D'E] Tx(l,,,)
=2r Tr[(D'ED)"'D'6ED(D'ED)~'D'6XD].
0

THEOREM 4.7. Lett > 0 be a given sufficiently large number and let 6% satisfy
the inequality

~rTr[(D'SD)"'D'§ED] + t,/2r Tr[(D/SD) -1 D'SSD(D'SD)~! D'6=D)
<X =) = xi(1-a—e¢) (8)
for a given € > 0. Then
P{ABlD € {U : Tr{(U — AB1D) [A(Mg; prg, X' XMg; are, ) YA
x (U — AﬁlD)} <xZ,(1— a)}} >l-a-—ce.
Proof. With respect to Lemma 4.6
Tr{(U — AB:D) [A(Mcy are, X'XMgy; ars, ) TA]

(U — AB;D)[D'(Z + 6%)D] 1}
=x%, — Tr[D(D'ED)"'Q(D’'ED)"!'D'E] = X2, + n(s=).
If 6% satisfy inequality (8), then 7(6X) is with sufficiently high probability

smaller than x2,(1 — a) — x%,(1 — a — €) = §, what is implied by the Chebyshev
inequality. Thus

P{Xzs +77(62) < Xzs(l - a)} ~ P{X?‘S < X12"s(1 - a) - 6}
=P <x3(l~a-¢e}=1-a—c.
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Remark 4.8. For a first orientation let % — ¢33, ¢ > 0. Then
—r Tr[(D'ED)~'D’63XD] +1\/2rTr[(D’ZD)—lD/dﬁD(D’ED) ID'§D]

= —rsc+tV2rsc? < = c< |00, co,,

)
—rs +tv/2rs’
what means that |do,, ;| < c|o; ;| implies a smaller destroy of the confidence level
than ¢ > 0. Since
1

o 2
Oij ~1\ Oijy — 0i.0,,; + 0;
’ ( ==k T o) )

we must have at our disposal the degrees of freedom n + ¢ A1 — ko for the
Wishart matrix large enough that at least

0ii0yy + 0%, cloy ]
n+q kl - kz 3

In such a case the estimator & - mv;lln can be used 1 a determina-
tion of the (1 — a)-confidence region for the function ®(B;) AB;D, instead of
the actual matrix 3.
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