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ON A CLASS OF DIFFERENCE SEQUENCES 
RELATED TO THE HP SPACE 

DEFINED BY ORLICZ FUNCTIONS 

BlNOD CHANDRA TRIPATHY — SABITA MAHANTA 

(Communicated by Pavel Kostyrko) 

A B S T R A C T . In this article we introduce the difference sequence space 
ra(M, A, 4>) using the Orlicz function. We s tudy its different properties like solid­
i ty completeness etc. Also we obtain some inclusion relations involving the space 
ra(M, A , 0 ) . 
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1. Introduction 

Throughout the article u?, ^oo, £p denote the spaces of a//, bounded and 
p-absolutely summable sequences respectively. The zero sequence is denoted 
by 9. The sequence space m((j)) was introduced by S a r g e n t [12], who studied 
some of its properties and obtained its relationship with the space £p. Later on it 
was investigated from sequence space point of view by R a t h and 
T r i p a t h y [10], T r i p a t h y [13], T r i p a t h y and S e n [14], T r i p a t h y 
and M a h a n t a [15] and others. 

The notion of difference sequence space was introduced by K i z m a z [4]. He 
studied the properties of the difference sequence spaces 

X(A) = {x = (xk) e w : (Axk) e X} , 

where Axk = Xk — £/c+i for all k £ N and for X = l^, c and CQ. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 40A05, 46A45, 46E30. 
K e y w o r d s : completeness, Orlicz function, difference sequence space, solid space, symmetric 
space. 
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An Orlicz function is a function M: [0, oo) —> [0,oo), which is continuous, 
non-decreasing and convex, with M(0) = 0, M(x) > 0 for x > 0 and M(x) —> oo 
as x —> oo. 

An Orlicz function M is said to satisfy ^-condition for all values of x, if 
there exists a constant K > 0, such that M(2x) < KM(x), for all values of 
x > 0. 

If the convexity of Orlicz function is replaced by M(x + y) < M(x) + M(y), 
then this function is called the modulus function, introduced by N a k a n o [7]. 
It was further investigated from sequence space point of view by R u c k l e [11] 
and many others. 

Remark. An Orlicz function satisfies the inequality M(Xx) < XM(x) for all A 
with 0 < A < 1. 

2. Definition and background 

Let ps denotes the class of all subsets of N, that do not contain more than 
s elements. Throughout (cf)n) represents a non-decreasing sequence of strictly 
positive real numbers such that n 0 n + i < (n + l)(f)n for all n £ N. By $ we 
denote the class of all these sequences (4>n). 

The sequence space m(0) introduced by S a r g e n t [12] is defined as follows: 

m((j)) = Uxk) e w : ||(xfc)||m(0) = sup j - £ \xk\ < oo} . 
^ s>i,crep3s ke<J J 

L i n d e n s t r a u s s and T z a f r i r i [5] used the notion of Orlicz function and 
introduced the sequence space 

44 = \(xk) e w : Yl M(^) < °° f o r s o m e P > ° | • 
L k=i v J > 

The space £M with the norm 

(arfc)|| = i n f { p > 0 : g м ( - ) < l } 

becomes a Banach space, which is called an Orlicz sequence space. The space 
£M is closely related to the space £p, which is an Orlicz sequence space with 
M(x) = xp for 1 < p < oo. 

In the later stage different Orlicz sequence spaces were introduced and studied 
by E t [2], E s i and E t [1], P a r a s h a r and C h o u d h a r y [9], N u r a y and 
G ii 1 c ii [8] and many others. 
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In this article we shall use the following known sequence spaces defined by 
Orlicz functions: 

£i{M, A) = \x = (xk) G w : f ] M(1-^+) < oo for some p > o ) , 

£oo(M, A) = ix = (xk) G w : s u p M ^ ^ ^ ) < oo for some p > o | 

(see for instance M u r s a l e e n et.al [6]). 

In this article we introduce the following sequence spaces: 

ra(M, A, (j>) = \ (xk) ew: sup ±- £ M(\=^A) < oo for some p > 0 \ . 
[ s >i , 9s kecr K p J ) 

Taking X = C, the set of complex numbers, from the section Particular 
Cases of T r i p a t h y and M a h a n t a [15], we have that the space ra(M, 0) is 
a Banach space under the norm 

x f c ) | |= inf ip>0: sup i У j м ( - ) 

A sequence space E is said to be solid (or normal ) if (akXk) G -E1, whenever 
(#fc) G F1 and for all sequences (ptk) of scalars such that |afc| < 1 for all k G N. 

A sequence space £" is a said to be symmetric if (xn) G -E implies (x7r(n)) G £", 
where 7r(n) is a permutation of the elements of N. 

The following results will be used for establishing some results of this article. 

LEMMA 1. ( S a r g e n t [12, Lemma 10]) In order that m((f)) C m(ip), it is 
necessary and sufficient that sup $f- < oo. 

S > 1 

LEMMA 2. ( S a r g e n t [12, Lemma 11]) 

(a) H\ C m(4>) C i^ for all (f) G $ . 
(b) ra(0) = £\ if and only if lim (ps < oo. 

(c) ra(0) = ôo fc/ and only if lim ^ > 0. 

Taking ra = 1, i.e., considering only the first difference, we have the following 
results from Theorem 2.2 of E t and N u r a y [3]. 

LEMMA 3 . If X is a Banach space normed by \\ • ||, then X(A) is also a Banach 
space normed by \\X\\A = \%i\ + \\&x\\-
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3. Main results 

In this section we prove some results involving the sequence space m(Af, A, </>). 

THEOREM 1. The space m(M, A,0) is a linear space. 

P r o o f . Let {xk),(yk) £ m(M, A,</>) and a,/3 G C. Then there exists positive 
numbers pi, f>2 such that 

sup ±Yм(^)< 00 
høєp.ФtľTÍ \ Pi J 

and 

s>l,o€Ps<l>s k e a 

1 ^ f\Ayk\\ 
sup — > M < 0 0 . 

S>l,<r€ps </>5 ^ V P2 J 

Let P3 = m-a>_:(2|o;|/9i, 2|/3|p2) - Since M is non-decreasing convex function, 

YM^A{aXk+M)<YM 
í\aAxk\ | |/?Ayfc| 

<үм(^)+Yм(^ 

^ s u p _ L E M f i ^ ^ ^ ) 

< s u p 1 E M ( 1 ^ ) + sup ^ M ( ^ ) < O O . 

==> (ax f c + /?yfc) e m(M, A, #). 

Hence m(M, A, <f>) is a linear space. • 

LEMMA 4. The space m(M,A,<t>) is a normed linear space, normed by 

hA((xk)) = \x1\+inl{p>Q: sup £ £ M(^f) < 1 

P r o o f . Clearly hA({~xk)) = / I A ( ( ^ ) ) . Next x = 9 implies Axk = 0 and as 
such M(0) = 0, therefore h/\{9) = 0. It can be easily shown that hA((xk)) = 0 

Ж = 
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Next let p\ > 0, p 2 > 0 be such that 

SUP ^мO-Щкi 
hvЄpsФsfZÍ \ 91 ) S > , , u ^ s т o k Є ( Ţ 

and 

тX-(^)<--sup / _ — \ i 
s>l,o-ep s 0s ~ \ 92 ) 

< 

Let p = pi + P2- Then we have 

lA(xfc+yfc)| 

S > l , a € P a ^ ^ V P 

Pi 

> l ^ € p a 0 « f c G o . V 

_ sup — > M J H • sup — > M 

Pi + P 2 s>l,<-ep s0s ^ V Pi / Pi + P 2 s>l,aeps9s ^ V P2 

Since pi > 0, p2 > 0, so by the definition of /IA, we have 

^A {{xk + 2/fc)) < /IA (Ofc)) + ^ A ((l/fe)) • 

Finally the continuity of the scalar multiplication follows from the following 
equality, 

MA(x f c ) ) = lAzil + inf{p > 0 : sup f ^ A f ( - - ^ - - ) < l ) 

= | A | / I A ( K ) ) -

This completes the proof of the theorem. D 

THEOREM 2. ra(M, A, (/>) C ra(M, A, -0) if and on!i/ if sup | ^ < oo. 
S>1 

P r o o f . By taking yk = M{ 'Axfc ' J in Lemma 1, it can be proved that ra(M, A, 4>) 

C m(M, A, VO if and only if sup | ^ < oo. D 
S>1 

COROLLARY 3 . ra(M, A, <j>) = ra(M, A, ip) if and only if sup &f- < oo and 
S>1 

sup —- < OO . 
s>l 9s 

THEOREM 4. Let M. M i . M2 be Orlicz functions satisfying ^-condition. Then 

(i) ra(Mi,A,0) Cra(MoMi,A,( / ) ) . 

(ii) ra(Mi,A,0) n r a ( M 2 , A , 0 ) C ra(Mi+M2, A, <j>). 
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P r o o f . 
(i) Let (xk) G m(Mi, A, <fi). Then there exists p > 0 such that 

sup - L V M x f J ^ U o o . 
B>l,<T€p. <Ps£^ \ P J 

Let 0 < e < 1 and S, with 0 < S < 1, such that M(i) < 5 for 0 < t < 5. 

Let j/fc = Mi ( ^ - r 1 ) and for any a e p s let 

£ M(yfc) = £ i M(yfc) + £ 2 M(yk), 
/cGcr 

where the first summation is over yk < S and the second is over yk > S. 
By the Remark 

YJlM(yk)<M(l)YJiyk<M(2)YJlVk. (1) 

For yk > S we have, 

Since M is non-decreasing and convex, so 

'2yfc 

Since M satisfies A2-condition, so 

Mfe) < ^ M ( 2 ) + \KV-JM(2) < KVfM(2). 

Hence 
^ M(yfc) < m a x ( l , KS~1M(2)) ^ yk. (2) 

From (1) and (2), it follows that (xk) G m(MoMi, A, 0). 
(ii) Let (xk) G m(Mi, A, 0) n m(M2, A, 0). Then there exists pi > 0, p2 > 0 

such that 

Sup i r M 1 ( H < 0 0 
5 > l , a 6 P a 0 s ^ V Pi J 

and 

sup j - ^ J M ) < 0 0 . 
s > l , < r e p a 0 s ~ \ P2 J 

Let p 3 = max(pi ,p2) . 
The remaining part of the proof follows from the inequality 

M(yk)<M{l + Vj)<l-M(2)+l-M 

J > i + M2) fif^-i) < £ Ml fl^-i) + £ м2 ( ^ 
fe v !>з 1 fe v PI j fe V P2 

D 
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Taking M\(x) = x in Theorem 5(i), we have the following result. 

COROLLARY 5. Let M be an Orlicz function satisfying A2-condition. Then 
ra(A,(/>) C ra(M,A,0). 

THEOREM 6. 

(a) / 1 ( M , A ) C r a ( M , A , 0 ) C ^ o o ( M , A ) . 

(b) ra(M, A, (f)) = £i(M, A) if and only if sup0 5 < oo. 
5 > 1 

(c) ra(Af, A, (j)) = -^oo(M, A) if and only if sup 4- < oo. 
S > 1 

P r o o f . 
(a) The result follows from Lemma 2, by taking yk = Ml [ ^fc| j . 

(b) The result follows from the point of view of Lemma 2. 
(c) The result follows from the point of view of Lemma 2. • 

From Lemma 3 and the fact that ra(M, (j)) is a Banach space, the following 
result follows. 

THEOREM 7. The space ra(M, A, <j)) is complete. 

The following result is a routine work. 

PROPOSITION 8. The space m(M, A,0) is a BK-space. 

PROPOSITION 9. The space ra(M, A,0) is not solid in general. 

P r o o f . To show that the space is not solid in general, consider the following 
example. • 

Example 1. Let (f>k = 1 and Xk = 1 for all k G N. Consider A/~ = (—l)k for all 
k G N and M(x) = x. Then (xk) G ra(M, A, 0) but (Xkxk) £ ra(M, A, (j)). 

PROPOSITION 10. The space ra(M, A, 0) zs nO£ symmetric in general. 

P r o o f . To show that the space is not symmetric in general, consider the fol­
lowing example. • 

Example 2. Let M(x) = x and (\>k = k for all k G N. Then the sequence (xk) 
define by Xk = k for all k G N is in ra(M, A, <fi). Consider the sequence (yk), the 
rearrangement of (xk) defined as follows 

(Uk) = (-Cl, X 2 , £ 4 , X 3 , ^ 9 , ^ 5 , ^ 1 6 , ^ 6 , ^ 2 5 , ^ 7 , X 3 6 , X 8 , X49, £10 , X 6 4 , X n , - , - , - , - ) . 

Then (yk) £ ra(M, A ,0 ) . Hence the space ra(M, A,0) is not symmetric in 
general. 

Acknowledgement . The authors thank the referees for their comments. 
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