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ABOUT a-ADDrnVE 
AND a-MAXrnVE MEASURES 

ZDENA RIECANOVA 

The a-additive and the a-maxitive measures have some common properties. 
With the help of the ©-measure (Definition 2) we can study some problems of 
a-additive and a-maxitive measures simultaneously. In the presented paper we 
study the problem of extension (Theorems 1, 2). 

1. Definitions and examples 

N. S h i l k r e t in [1] defined the a-maxitive measure in the following way: 

Definition 1 . Let 0t be a ring of subsets of a nonempty set X. A set function m: 

0t—* (0, oo ) is called a o-maxitive measure if m(0) = 0 and m\A)E,\ = sup m(E,) 

for each sequence {E,}7-i of mutually disjoint sets in 0t such that ( J E, e 0t. 

It is interesting that the a-maxitive measures and the a-additive measures have 
many common properties. One of their common generalizations may be the set 
function from the following definition. 

Definition 2. Let 0t be a ring of subsets of a nonempty set X. Let @ be a binary 
operation on (0, oo), which is commutative, associative and a@0 = a for all 
a € (0, oo ). A set function m: 0t—> (0, oo ) js called a @-measure if m(0) = 0 and 

m ( ( j £ ) = s u p {m(E\)@m(E2) © . . . © m(E„)} for each sequence {E,}T i of 

mutually disjoint sets from 0t such that [J E, e 0t. 
i i 

If a@b = a + b fro all a, be(0, oo), then the ©-measure on the ring 0t is 
a a-additive measure on 0t. If a@b = max{a, b} for all a, be (0, oo), then the 
©-measure on the ring 0t is a a-maxitive measure on 0t. The following is an 
example of a ©-measure which is neither additive nor maxitive. 
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Example 1. Let 0t be a ring of subsets of a nonempty set X and let m: 
3?-»(0, oo) be a a-additive measure on 0t. Let m(A) = em(A) for all sets Ae0t, 
A4=0 and m(0) = 0. Then m is a set function on 0t which is neither additive nor 
maxitive but m is a ©-measure if we define a®b = ab for all a, be(0, oo) and 
a®0 = a, a©oo = oo for all ae{0, oo). 

Observe that if m is a ©-measure on a ring 0t, then m is monotone and 

m I (J EJ = sup m l U f i ) for each sequence of mutually disjoint sets in 0t such 

that | J E„ e 0t. This follows from the relation 

m ( Q E , ) = S U P {m(Et)®m(E2)®...®m(E„)}^ 

=: sup m ( Q E\ ^ m ( Q E ) • 

Definition 3. Let 0t be a ring of subsets of a nonempty set X. A set function m: 

0t—*(0, oo) is called a supremeasure on 0t if m(0) = O and m ( | j E ) 

= sup m I ( J E l for each sequence of mutually disjoint sets in 0t such that 

U En €01. 
„-i 

Examples of supremeasures are the a-additive measures, the a-maxitive mea­
sures and the ©-measures on 0t. The relationship among these set functions is the 
following: 

m is a a-additive (or a-maxitive) measure on 0t => 
m is a ©-measure on 0t -> m is a supremeasure on 01. 

But no implication in the reverse direction holds, which is evident from Example 1 
and from the following example. 

Example 2. Let * = (-<», oo), 0t = 2x. Define 

m(A) = sup{\x-y\:x, yeA) for all AcX, A*0 

and m(0) = 0. Then m is a supremeasure on 0t. Suppose that m is a ©-measure on 
0t. Put 

Then 
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and because 

<°-'>-fi(sT7-:>-
we have 

l = m((0,l)) = sup{ì , i©! 1 © ! © . . . © - ^ ) , 

which is a contradiction. 
E x a m p l e 3. Let X be a metric (or more generally pseudometric) space with 

a metric p. Let £% = 2X . Define m(A) = sup {Q(X, y): x, ye A}, (the diameter of 
A) for all A<=X, A4=0 and m(0) = O. Then m is a supremeasure on £%, which is 
not a ©-measure and consequently m is neither a-additive nor a-maxitive. 

E x a m p l e 4. Let m be a a-additive measure on a ring £5? of subsets of 
a nonempty set X. Define m(A) = min {m(A), 1} for all A e £%. Then 

a) m is a supremeasure on 9t 
b) m is strongly subaditive on £5? (i.e. m ( A u B ) + m(AnB) ^ m(A) + m(B) 

for all A, Be£%) 
c) m is neither additive nor maxitive on £%. 
Observe the following: Let m be a supremeasure on £5?. Then: 
(a) m is a a-additive measure on 0t iff m ( A u B ) = m(A) + m(B) for all A, 

Be£S, AnB = 0. 
(b) m is a a-maxitive measure on £% iff m ( A u B ) = max {m(A), m(B)} for all 

A ; Be£», A n B = 0. 
(c) If © is a binary operation on (0, °°), which is commutative, associative and 

a@0 = a fro all a e ( 0 , °°) and if a^a@b for all ae(0, °°), then m is 
a ©-measure on £» iff m ( A u B ) = m(A) © m(B) for all A, B € £%, A n B = 0. 

2 . An extension of a supremeasure 

Let £R be a ring of subsets of a nonempty set X and 2if(£%) be the hereditary 
a-ring generated by £#. Let m: £%—»(0, °°) be a supremeasure on £J?. Denote 

1 = [ U £ : Ee®, i = l,2, ...J 

and define mo : 5ST—> (0, °°) and m , : 2if(£%)-» (0, °°) by the formulas 

mo ( U £ • ) = SUP m (U £ J f o r a" s e t s U E ' e 3 i r 

m,(A) = inf (mo(E): A c E e 5 i f } forallsets AeX(9t). 
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Lemma 1. If E„ Fe&t (i = 1, 2, .. ) and M E c U F < ^en sup m (\J E,| ^ 
, , i \ , / 

sup m (UF<) • 

Proof. Let A„ = L ) E (« = 1,2, . . .). We have m(A„) = m (\J E,) 

= m U ( F ' n A ) = sup m U ( F ' n A ) = sup m (U F <) f° r e a c n n a n ^ thus 

our assertion is evident. 

Corollary. (1) mn is monotone on 3C. 

(2) If A, e 3C (i = 1, 2, . . .) , then m„ (\J A,) = sup m„ ( | J A,) . 

(3) (m„(E) = sup {m(F): E=>Fe&t} for all sets Ee%. 

(4) /f m is strongly subadditive on 0t (i.e. m ( A u B ) + m(AnB) S= m(A) 
+ m(B) for all A, B e 0t), then m„ is strongly subadditive on J{. 

The following lemma is a modification of Lemma 3.1 from [3]. 

Lemma 2 . If m is a strongly subadditive supremeasure on <3t, then for each 
increasing sequence of sets A„ (n = 1,2,. .) in 7f(3t) and for each e>0 there 
holds: 

If B,eSr, B, =>A„ m,(B,)<m,(A,)+ 2TTT for all i ' = l , 2 , .. , then 

(Ûв.^iOU + É^т 
for each n. 

Proof. (By induction.) For n = \ the assertion holds. Suppose for some n the 
assertion holds. Then 

m, ( 0 B) < m, (\J B,) + m,(B„+,) - m, [(u B)nB„ + ,1 < 

<m,(A„) + Y/ 27TT + m,(A„+,) + 27rr2-t"' ( C l A ) n A „ . , = 

= m,(A„) + Y ;r7+T + m,(A„+,) + ;^T2-m,(A„) = m,(A„+,) + Y, TJTT • 

Theorem 1. Lef m be a strongly subadditive supremeasure on 9t. Let 

m,(A) = inf {supm (\JE\: A c Q E„ E, e 5? (/= 1, 2, ...)} 

for all sets A in 9C(0t). Then m, is a strongly subadditive supremeasure on 9((9t). 
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Proof. It is clear that m,(0) = O and m, is monotone on 3((9t). Let {A}T-i be 
an increasing sequence of sets in 3if(3?) and m,(A„)< oo for each n. Let e>0. Then 

for each i (i=l,2, ...) there exists B,e%, B,=>A, such that m,(A.) + XTTT> 

m, (£?,). It follows from Lemma 2 that 

w . ( A „ ) + 2 2 4 7 > ^ 1 ( y a ) 

for each n and hence 

m, ( 0 A) ^ m, ( Q B) = sup m, ( Q « ) ^ 

^sup I m,(A„) + ^ ^7TT[ = sup m,(A„) + e. 
n l 1-1 — . J » 

On the other hand it is clear that supmi(A„)^m, l | jA , ) and hence m, is 

a supremeasure on $f(i%). The strong subadditivity of m, on ^€(0t) follows from 
the strong subadditivity of mo on 3if and from the definition of m,. 

Remark. If the supremeasure m from Theorem 1 is a a-maxitive measure on 
9t, then also its extension m, is a a-maxitive measure on 26(9t). It suffices to show 
that m,(AuB) = max {m,(A), m,(B)} for all A, BeW(m), Ar\B = 0. If A, 

BeJC, then this assertion follows from the relation supm(( jE , ) = sup 
• \ i - i / n 

max {m(E,), ..., m(En)} = sup m(E.) for each sequence {EJT-i in 9t. If A, 
n 

Be2((9t), then there are E, Fe3if such that AcE, B<zF and mi(A) + e> 
m,(E), m,(B) + e>m,(F), thus m,(AuB) = m,(EuF) = max {m,(E), m,(F)} 
< max {m,(A), m,(B)} + e and hence m,(.Aui9) ^ max {mi(A), m,(i9)}. The 
reverse inequality is clear. 

3 . An extension of a ©-measure 

Let © be a binary operation on (0. °°) such that 
(a) it is commutative 
(b) it is associative 
(c) a © 0 = a for all a e (0, oo ) 
(d) a^a®b for all a, be{0, oo) 
(e) an\a, bn]b^> an@bn]a@b 
(f) an\a, bn\b => an®bn\a®b 
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If m is a supremeasure on a ring 9t of subsets of X, then m is a ©-measure iff 
m ( A u B ) = m(A)©m(i9) for all A, Be9t, AnB = 0. The last condition is 
equivalent to the following condition: 

m(AuB)@m(AnB) = m(A)@m(B) forall A,Be9t. 

If si is a class of subsets of X, the notations 

^ = { A < = X : t h e r e i s { A „ } : , in s4,A„\A) 
/ = ( A c X : there is {A„}r=i in.st', A„jA} 

are used. 
The following theorem will be proved by transfinite induction. A similar method 

for extending functionals was used in [4]. 

Theorem 2. Let m be a finite @-measure on an algebra &t of subsets of 
a nonempty set X. Let the supremeasure mx be an extension of m on the o-ring 
y(9t) generated by 9? and let m, be continuous from above on if(3t) (i.e. 
E„ |E=> m,(E„)lm,(E)). Then m, is a @-measure on y(<3t). 

Proof. For each ordinal a<Q (Q is the first uncountable ordinal) we define 
a class 9ta of subsets of X as follows: 

1. 5?, = 0t. 
2. @ta = 0? a i if a is an even non-limit ordinal. 
3. 9ta = 0t o i if a is an odd non-limit ordinal. 
4. 9?a = U -*P if a >s a I!1™1 ordinal. 

0<ct 

Let 0?Q = I J <9ta. Then 3?fl is a monotone class, 9tQ => 9? and hence 0?o => 5^(3?). If 
a<a 

A, Be¥(2ft), then there is an ordinal a<Q such that A, Be *3ta. Hence it suffices 
to prove that for each ordinal a<Q there holds: 

If A, Be&j, then m , ( A u f l ) © m , ( A n B ) = m,(A)©m,(i9) . We use the 
transfinite induction. 

If a = 1, the assertion holds. Let a< Q be any ordinal and let the assertion holds 
for all fi<a. Hence 

(a) If a is a non-limit ordinal, then there are monotone sequences {A„}~-,, 
{B„}Z-\ in 5?j i (both increasing or both decreasing) such that 

mi(A) = lim m,(A„), m,(B) = lim m,(B„) 

and hence 

m , ( A ) © m , ( 5 ) = lim [m,(A„)©m,(B„)] = 

= lim [m,(A„ui5„)©m,(A„ni9„)] = m , (Au i9 )©m, (An i9 ) . 

(b) If a is a limit ordinal, the proof is trivial. 
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Remark. The existence of such an extension m, which is continuous from above 
on Sf(0t) in the case of 0t being an algebra and m being finite, subadditive, 
continuous from above and exhausting on 0t (i.e. Ane9t, n = 1,2, ... mutualy 

disjoint and lim m ['(jA,)<°o => lim m(A„) = 0) follows from [2] p. 217. 
"-*" \ I - I / " — " 
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О 0-АДДИТИВНЫХ И а-МАКСИТИВНЫХ МЕРАХ 

Здена Риечанова 

Резюме 

В работе показано, что некоторые проблемы о-аддитивных и о-макситивных мер возможно 
изучать одновременно при помощи ©-меры. Действительная функция т множества определен­
ная на некотором кольце Я подмножеств данного множества X, называется ©-мерой, если она 
неотрицательна. 

i tÜfi)=sup[m(£,)©m(Ê)©..©m(£.)} 

для всякой последовательности непересекающихся множеств 

{Е.}:., 

из Я, соединение которых также принадлежит Я, и т(0)=О. Здесь символом © обозначается 
любая бинарная операция в множестве (0, <*>), обладающая следующим свойствами: 1) она 
коммутативна; 2) она подчиняется сочетательному закону; 3) а@0 = а для любого ое (0, °°). В 
работе изучается проблема продолжения ©-меры. 
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