Mathematica Slovaca

Zdena Rie¢anova
About g-additive and o-maxitive measures

Mathematica Slovaca, Vol. 32 (1982), No. 4, 389--395

Persistent URL: http://dml.cz/dmlcz/136307

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136307
http://project.dml.cz

Math. Slovaca 32, 1982, No. 4, 389—395

ABOUT ¢-ADDITIVE
AND o¢-MAXITIVE MEASURES

ZDENA RIECANOVA

The o-additive and the g-maxitive measures have some common properties.
With the help of the (-measure (Definition 2) we can study some problems of
o-additive and o-maxitive measures simultaneously. In the presented paper we
study the problem of extension (Theorems 1, 2).

1. Definitions and examples

N. Shilkret in [1] defined the o-maxitive measure in the following way:
Definition 1. Let R be a ring of subsets of a nonempty set X. A set function m:

R— (0, ®) is called a o-maxitive measure if m(@)=0 and m (0 E,) = sup m(E))
R !

for each sequence {E,}/-, of mutually disjoint sets in R such that D Ee®.

It is interesting that the o-maxitive measures and the g-additive measures have
many common properties. One of their common generalizations may be the set
function from the following definition.

Definition 2. Let R be a ring of subsets of a nonempty set X. Let @ be a binary
operation on (0, »), which is commutative, associative and a@0=a for all
ae (0, ). A set function m: R— (0, ®) is called a @-measure if m(#)=0 and

m (ij E,)=Sl'l.p {m(E\Y®m(E;) ®...® m(E.)} for each sequence {E}, of

mutually disjoint sets from R such that D Ee®R.
[ |

If a®b=a+b fro all a, be(0, ®), then the @D-measure on the ring R is
a g-additive measure on R. If a@®b = max{a, b} for all a, b € (0, ©), then the
®-measure on the ring R is a o-maxitive measure on R. The following is an
example of a ()-measure which is neither additive nor maxitive.
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Example 1. Let & be a ring of subsets of a nonempty set X and let m:
R—> (0, ) be a g-additive measure on R. Let mm(A)=e™* for all sets A€ R,
A#@ and m(@)=0. Then rm is a set function on R which is neither additive nor
maxitive but s is a (D-measure if we define a@ b = ab for all a, b e (0, ») and
a@®0=a, a@®x = for all ae (0, »).

Observe that if m is a @)-measure on a ring R, then m is monotone and

m (I:J E,) = sup m (L"J E,) for each sequence of mutually disjoint sets in R such

that D E, € R. This follows from the relation

n=1

m (D E,) =sup (m(E)@m(E:)®..®m(E.)} <

=supm (l:JE.)ém (DE) .

= =

Definition 3. Let R be a ring of subsets of a nonempty set X. A set function m:

R—(0, ) is called a supremeasure on R if m(@)=0 and m (0 E.)

= sup m (l_"J E,) for each sequence of mutually disfoint sets in R such that

1=1

05.69?.

n=|

Examples of supremeasures are the o-additive measures, the o-maxitive mea-
sures and the -measures on R. The relationship among these set functions is the
following:

m is a o-additive (or o-maxitive) measure on & >

m is a (D-measure on R = m is a supremeasure on R.
But no implication in the reverse direction holds, which is evident from Example 1
and from the following example.

Example 2. Let X=(—%, ©), ®=2%. Define

m(A)=sup {|x—y|: x,ye A} forall AcX, A+0

and m(@)=0. Then m is a supremeasure on R. Suppose that m is a @-measure on

R. Put
1\ = (n+2 n+1
A‘(O’2>“U(n+1’

n=2 n

Then

N W

111 1.1 1
=m(A)=sup {5’ 2®5 39D @ n_(n+_1)}
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and because

00=0 (ke d)

we have
1=m((0, 1))—sup{ 2696 @ @ ®n(n+l)}

which is a contradiction.

Example 3. Let X be a metric (or more generally pseudometric) space with
a metric 0. Let & =2%. Define m(A)=sup {o(x, y): x, y € A}, (the diameter of
A) for all Ac X, A#0 and m(@)=0. Then m is a supremeasure on R, which is
not a ()-measure and consequently m is neither g-additive nor g-maxitive.

Example 4. Let m be a o-additive measure on a ring R of subsets of
a nonempty set X. Define m(A)=min {m(A), 1} for all A eR. Then

a) m is a supremeasure on R

b) r is strongly subaditive on R (i.e. m(AuB) + m(AnB) = m(A) + m(B)
for all A, BeR)

c) m is neither additive nor maxitive on &.

Observe the following: Let m be a supremeasure on R. Then:

(a) m is a o-additive measure on & iff m(AuB) = m(A) + m(B) for all A,
Be®R, AnB=4.

(b) m is a o-maxitive measure on R iff m(AuB)=max {m(A), m(B)} for all
A; Be®R, AnB=§.

(c) If @ is a binary operation on (0, « ), which is commutative, associative and
a@0=a fro all ae(0,©) and if a<a@b for all ae(0, ®), then m is
a (P-measure on R iff m(AuB) = m(A)@® m(B)forall A, Be R, AnB=0.

2. An extension of a supremeasure

Let R be a ring of subsets of a nonempty set X and #(R) be the hereditary
o-ring generated by R. Let m: ®— (0, ) be a supremeasure on ®. Denote

={0 E:Ee®, i=1,2, }

=1

and define mo: ¥ — (0, ®) and m, : H(R)— (0, ©) by the formulas

(U E) =sup m (U E) for all sets 05.63’(

= 1= =1
mi(A)=inf {mo(E): AcEeX)} forallsets Ae¥H(R).
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Lemma 1. If E, Fe® (i=1,2,..) and | JE cJF, then sup m (UE) =<
| i n '
supm(l_"JF,).
n i
Proof. Let A.=lJE (n=1,2,..). We have m(A,) = m(L"JE,)

1
@ k
=m [U (F,nA,.)] sup m [U(F.nA,,)] = sup (U F) for each n and thus
1 ol

our assertion is evident.

Corollary. (1) m, is monotone on X.
Q) If Ae X (i=1,2, ...), then mo ([J A,) — sup mo (L"J A,).
1= n e 1

(3), mi(E)=sup {m(F): EoFe R} for all sets E€ %.

(4) If m is strongly subadditive on R (i.e. m(AuB) + m(AnB) = m(A)
+ m(B) for all A, Be R), then my is strongly subadditive on X.

The following lemma is a modification of Lemma 3.1 from [3].

Lemma 2. If m is a strongly subadditive supremeasure on R, then for each
increasing sequence of sets A, (n=1,2,..) in #(R) and for each >0 there
holds :

If Be¥X, BoA, m(B)<m(A)+-= foralli=1,2, .., then

21-‘!
- (L"J B,) <m(A)+3 55
=1 t 1
for each n.

Proof. (By induction.) For n =1 the assertion holds. Suppose for some n the
assertion holds. Then

(U B,) m, (U B) +m(Bai)—m [('L’IJI B)nB,.+|]<

<m (A, )+E Tana m.(A,H)+2m m. [(U, A,)r\A,H,] =

n+1

—m(A)=m(An)+ 2 £

= mu(A)+ 3 3 M Ane) + 7

2n#2
Theorem 1. Let m be a strongly subadditive supremeasure on R. Let
m(A)=inf {sgp m (,L"JlE'): A CEJ‘E,, EeR(i=1,2, )}
for all sets A in (R). Then m, is a strongly subadditive supremeasure on ¥(R).
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Proof. It is clear that m,(@#) =0 and m, is monotone on #(R). Let {A.}7-1 be
an increasing sequence of sets in #(R) and m;(A,) < « for each n. Let £>0. Then

for each i (i=1,2,...) there exists B, € ¥, B,o A, such that m,(A) + 2,—6;,>

m(B,). It follows from Lemma 2 that

m (A, )+2 2,+,>m1 (0 B,)

=1 =1

for each n and hence

m, (L-) A,) =m ( 3 B,) =sup m (L"J B,) =

=1

=sup {m,(A )+E 2,,,,] =sup mi(A,)+e€.

On the other hand it is clear that sup m(A)=Em (U A) and hence m, is

1=

a supremeasure on ¥(R). The strong subadditivity of m, on #(R) follows from
the strong subadditivity of m, on ¥ and from the definition of .

Remark. If the supremeasure m from Theorem 1 is a g-maxitive measure on
R, then also its extension m, is a g-maxitive measure on F(R). It suffices to show
that m,(AUB) = max {mi(A), mi(B)} for all A, Be #(R), AnB=0. If A,

Be X, then this assertion follows from the relation supm(U E) = sup

=1
max {m(E,), ..., m(E,)} = sup m(E,) for each sequence {E.}., in R. If A,

B e #(R), then there are E, Fe X such that AcE, Bc F and my(A)+ &>
m(E), m,(B) + £>m,(F), thus mi(AuB) = m(EUF) = max {m(E), m\(F)}
< max {m(A), m(B)}+ ¢ and hence m,(AuB) = max {m(A), m(B)}. The
reverse inequality is clear.

3. An extension of a (P-measure

Let @ be a binary operation on (0. ) such that
(a) it is commutative

(b) it is associative

(c) a@0=a for all ae (0, »)

(d) a=a@b for all a, be (0, »)

(e) a.la, b.1b=> a.Db.Ta@®b

(f) a.la, b.lb=>a.@b.la®b
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If m is a supremeasure on a ring R of subsets of X, then m is a ®-measure iff
m(AuB) = m(A)Y®m(B) for all A, Be®, AnB=0. The last condition is

equivalent to the following condition:
m(AuB)Y®m(AnB)=m(A)@®m(B) forall A, Be®R.
If o is a class of subsets of X, the notations

A" ={AcX:thereis {A.}» 1nd, A,TA}
A>={Ac X:thereis {A.}r-1insA, A, | A}

are used.
The following theorem will be proved by transfinite induction. A similar method

for extending functionals was used in [4].

Theorem 2. Let m be a finite (D-measure on an algebra R of subsets of
a nonempty set X. Let the supremeasure m, be an extension of m on the o-ring
HAR) generated by R and let m, be continuous from above on H(R) (ie.
E.|E=> m(E,)|m(E)). Then m, is a @-measure on ¥(R).

Proof. For each ordinal a< £ (L is the first uncountable ordinal) we define
a class R, of subsets of X as follows:

1. Bi=AR.

2. R.=R7% ,if ais an even non-limit ordinal.

3. R, =Ry , if ais an odd non-limit ordinal.

4. R,=|JRs if a is a limit ordinal.

B<a
Let Ra = |J R.. Then R, is a monotone class, R, > R and hence R > HA(R). If
a<$2

A, BeS(R), then there is an ordinal @ < L such that A, B € R,. Hence it suffices
to prove that for each ordinal a < £ there holds:
If A, Be®,, then m(AuB)®m(AnB)=m(A)®rm(B). We use the

transfinite induction.
If a =1, the assertion holds. Let a < £2 be any ordinal and let the assertion holds

for all < a. Hence
(a) If a is a non-limit ordinal, then there are monotone sequences {A,}~ -1,

{B.}.-: in R, , (both increasing or both decreasing) such that

m.(A)='lli_{E mi(A,), m.(B)='l‘i_r.r‘1° m(B,)
and hence
mi(A)®@mi(B) = lim [m(A,)@m(B,)]=
=lim [m(A.UB,)®m(A.NnB,)]=m(AuB)®m(AnB).

(b) If @ is a limit ordinal, the proof is trivial.
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Remark. The existence of such an extension m, which is continuous from above
on H(R) in the case of R being an algebra and m being finite, subadditive,
continuous from above and exhausting on R (i.e. A,e R, n=1, 2, ... mutualy
disjoint and 'l.in.l_ m (CJ A.)<°° = lim m(A,)=0) follows from [2] p. 217.
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O o-AJIUTHUBHBIX U 0-MAKCHUTUBHBIX MEPAX
3nena PucyaHosa
Pe3iome

B pa6oTe N0OKa3aHO, YTO HEKOTOPbIe NPOGACMEI O-aJIMTHBHBIX H O-MAKCHTHBHLIX MEP BOIMOXHO
H3y4aTs ORHOBPEMEHHO NpH nomouw (D-Mepsl. JeAcTBHTENLHAN DYHKIHA 71 MHOXCECTBA ONPEACICH-
Han Ha HEKOTOPOM KoJblie R NOAMHOXECTB JaHHOTO MHOXCECTBa X, Ha3smBaeTca (H-Mepoil, eciin oHa
HEOTPHLIATE/IbHA,

m (.L:J. E,) =sup {m(E.)@m(E;)@...@m(E.)}

JIA BCAKOM MOC/IEAOBATE/IBHOCTH HENEPECCKAIOWMXCA MHOXECTB
{E.}2-

13 R, coeauHeHne KOTOPaIX Takke npuHapiexut R, n m(d)=0. 3pecs cumpooM @ oGo3HauaeTcs
no6an GuHapHan onepaums B mHoxectse (0, ©), o6napaolan caeayioumm csoicTsamn: 1) oHa
KOMMYTaTHBHA ; 2) OHa NOAYHHAETCH COMCTATEILHOMY 3aKOHY ; 3) a@0 = a ana moboro a € (0, »). B
paGoTe u3yyaeTca npoGieMa NPOROIKEHHA (D-Mepbl.
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