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SELF-COMPLEMEIVrARY VERTEX-TRANSITTVE 
UNDIRECTED GRAPHS 

BOHDAN ZELINKA 

We consider undirected graphs without loops and multiple edges. If G is an 
undirected graph, then by G we denote the graph with the same vertex set as G in 
which two distinct vertices are adjacent if and only if they are not adjacent in G. 
The graph G is called the complement of G. If G is isomorphic to G, we say that G 
is a self-complementary graph. These graphs were studied by G. R i n g e l [1] and H. 
Sachs [2]. 

A vertex-transitive graph is a graph G with the property that to any two vertices 
u and v of G there exists an automorphism cp of G such that q)(u) = v. (Some 
authors call these graphs "transitive" or "symmetric".) 

In this paper we shall present some results on graphs which are simultaneously 
self-complementary and vertex-transitive. 

Theorem 1. / / n is the number of vertices of a regular finite self-complementary 
graph, then n = \ (mod 4). 

Proof. In [1] and [2] it was proved that for the number n of vertices of a finite 
self-complementary graph either n=0 (mod 4), or n = \ (mod 4) holds. The 
number of edges of a self-complementary graph G with n vertices is equal to one 
half of the number of edges of Kn, namely |n(n — 1). If G is regular of the degree r, 
we have 

\nr=\n(n — 1), 
which implies 

r = \(n-\). 

As r is an integer, n must be odd, which excludes the case n =0 (mod 4). Hence 
n = \ (mod 4), which was to be proved. 

As a vertex-transitive graph is always regular, we have a corollary. 

Corollary. / / n is the number of vertices of a finite self-complementary 
vertex-transitive graph, then n = \ (mod 4). 

Before proving a further theorem, we shall state two lemmas. 
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Lemma 1. Ler n = 3 be a prime number. Tlien either 2X2(n 1 ) = 1 (mod n), or 

2i/2(„-i) = - 1 (mod/i). 
Proof. According to Fermat's Theorem we have 2"_1 = 1 (mod n). This means 

that 2 " _ 1 - 1 is divisible by n. The number 2 " _ 1 - 1 can be written in the form 
(2 1 / 2 ( n - 1 ) +l) (2 1 / 2 ( n _ 1 ) - l ) .As n is prime, it must divide one of the numbers 
2i/2(n-i) + l 9 2 i /2 („-i)_ l 9 w h i c h impii e s t h e assertion. 

Fig. 1 

Lemma 2. Let n be a prime number, n = \ (mod 4) and let n have the property 
that for any m such that \=m<\(n — \) the conditions 2WM-1 (mod n) and 
2rni^ — \ (mod n) 1701d Then to any two distinct numbers x, y of the set {\, 
2,...,n} a unique number fi(x,y) can be assigned with the property that 
\=(3(x,y) = l

2(n-\) and either x-y = 2p{x'y) (mod n), or y-x=2lMx'v) 

(mod n). 

Proof. Suppose that there exist numbers p, q of the set S = {1, 2, ...,\(n-\)} 
such that 2P =2q (mod n) and p >q. Then the difference 2P - 2q = 2P q(2q - 1) is 
divisible by n. As n is a prime number and 2 p q is not divisible by any prime 
number other than 2, the number 2q - 1 is divisible by n and thus 2q = 1 (mod n). 
But we have \=q<p=2(n — 1) and thus this is a contradiction with the conditions 
of the lemma. Therefore the numbers 2m for meS are pairwise non-congruent 
modulo n. Further suppose that 2P = -2q (mod n) for some p, q from the set {\, 
2, ..., n}, p>q. Then analogously we obtain 2q = -1 (mod n), which is again 
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a contradiction. Therefore to each number t e S there exists exactly one number 
y(t) of this set such that either 2v ( 0 = t (mod n), or 2 y ( 0 = -t (mod n). If for t we 
take that one (uniquely determined) of the numbers x — y, y — x which is in S, we 
have P(x, y) = y(t). 

Theorem 2. Let nbea prime number, n = l (mod 4) and let n have the property 
that for any m such that l^m<\(n — l) the conditions 2m-£l (mod «) and 
2m^ — 1 (mod n) hold. Then there exists a self-complementary vertex-transitive 
graph with n vertices. 

Proof. The notation is the same as in Lemma 2 and in its proof. We construct 
the graph G as follows. The vertex set of G is V = | 1, 2, ..., n\. Two distinct 
vertices x, y of V are adjacent in G if and only if P(x, y) is odd. Now for each 
integer a we define the mapping cpa\ V-> V so that 

cpa(x)=x+a (modAz) 

for each x e V. Evidently each cpa is a bijection and cpa(x) — cpa(y) = 
x —y (mod n) for each x and y, hence each cpa is an automorphism of G. If u e V, 
v e V, then v=cpv-u(u) and therefore G is vertex-transitive. Further let the 
mapping ^p: V—»V be defined so that 

^p(x) = 2x (mod n) 

f o r e a c h j c e V . I f j c - y = 2 ^ y ) ( m o d n ) , t h e n i / ; ( j c ) - \p(y) = 2x-2y =2P(x>y)+l 

(mod n) and analogously for y — x. Therefore 

P(rp(x)^(y)) = P(x,y) + l 

for p(x,y)<\(n-l) and 

P(M>(x)^(y)) = l 

for /3(x, y) = \(n -1). Hence 

/ 3 ( ^ ( ; c ) , ^ ( y ) ) ^ ^ ( x , y ) ( m o d 2 ) 

and ty is an isomorphism of G onto its complement G. We have proved that G is 
vertex-transitive and self-complementary. 

The simplest example of such a graph is a circuit of the length 5. 
Another example of a number fulfilling the conditions of Theorem 2 is the 

number 13. Examples of prime numbers congruent with 1 modulo 4 which do not 
fulfil the conditions are the numbers 17 and 257. 

The conditions of Theorem 2 are not necessary. 

Theorem 3. There exists a self-complementary vertex-transitive graph with 9 
vertices. 
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Proof. This graph is K3 X K3, i. e. the graph whose vertices are all ordered pairs 
of the numbers 0, 1, 2 and in which the vertices [/, / ] , [k, I] are joined by an edge if 
and only if either i = k, or / = /, but not both simultaneously. This graph is in Fig. 1; 
brackets and commas are omitted. As it is a direct product of complete graphs, it is 
vertex-transitive. An isomorphism xp of G onto G is given as follows (brackets and 
commas are again omitted): 

00 .-> 00, 
01 •_> 11 H->02 H->22 ^ 0 1 , 

10 •-> 21 -> 20 -> 12 .-> 10. 

Problem 1. Does there exist a self-complementary vertex-transitive graph with 
n vertices for each n = \ (mod 4) ? 

Problem 2. Are there infinitely many numbers n satisfying the conditions of 
Theorem 2 ? 

Now we shall study infinite graphs. 

Theorem 4. There exists a self-complementary vertex-transitive graph with the 
vertex set of the cardinality K0. 

Proof. By R denote the set of all rational numbers, by N the set of all integers. 
By (a, b) we shall denote the interval consisting of all real numbers x such that 

a ^x<b. Denote M = u ( 2 2 \ 22k+l), M= u (22k+l, 22k+2). Evidently MnM = 
keN keN 

0, M u M is the set of all positive real numbers. For each positive real number x we 
have 2x e M if and only if x e M. Now we shall construct the graph G. The vertex 
set of G is R, two distinct vertices x and y are adjacent if and only if \x — y\ eM. 
For each aeR we define the mapping cpa: R—>R so that 

cpa(x) = x+a 

for each xeR. Evidently cpa(x) — cpa(y) = x—y for any a, x, y, each cpa is 
a bijection, therefore each cpa is an automorphism of G. If ueR, veR, then 
cpv-u(u) = v and hence G is vertex-transitive. Further, let the mapping ip: R-^R 
be defined so that 

\p(x) = 2x 

for each x eR. The mapping ip is a bijection and \ip(x) — ip(y)\ = 2\x — y | for any 
x andy. Therefore for x^y the number \ip(x) — ip(y)\ is in M if and only if 
\x — y | e M, hence xp is an isomorphism of G onto G and G is self-complementary. 

Theorem 5. inhere exists a self-complementary vertex-transitive graph with the 
vertex set of the power of continuum. 

Proof is analogous to the proof of Theorem 4 ; instead of the set of all rational 
numbers the set of all real numbers is used. 
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САМОДОПОЛНИТЕЛЬНЫЕ ВЕРШИННО-ТРАНЗИТИВНЫЕ 

НЕОРИЕНТИРОВАННЫЕ ГРАФЫ 

Богдан 3 ел и н к а 

Р е з ю м е 

В статье доказаны следующие теоремы. 
Теорема 1. Если п есть число вершин регулярного конечного самодополнительного графа, то 

п = 1 (тоа* 4). 

Теорема 2. Пусть п есть простое число, п = \ (той 4) и пусть п обладает тем свойством, что 
2 1 2 ("- ! >=1 (той* п) или 2 1 / 2 ( " _ 1 ) = - 1 (тоа* п) и для всякого т такого, что 

\=т<\{п-\), 

пусть 2тФ\ (тоа1 л) и 2тФ — 1 (тоа1 л). Потом существует самодополнительный вершинно— 
транзитивный граф с п вершинами. 

Теорема 4. Существует самодополнительный вершинно-транзитивный граф с множеством 
вершин мощности К0. 

Теорема 5. Существует самодополнительный вершинно-транзитивный граф с множеством 
вершин мощности континуума. 
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