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SELF-COMPLEMENTARY VERTEX-TRANSITIVE
UNDIRECTED GRAPHS

BOHDAN ZELINKA

We consider undirected graphs without loops and multiple edges. If G is an
undirected graph, then by G we denote the graph with the same vertex set as G in
which two distinct vertices are adjacent if and only if they are not adjacent in G.
The graph G is called the complement of G. If G is isomorphic to G, we say that G
is a self-complementary graph. These graphs were studied by G. Ringel[1] and H.
Sachs [2].

A vertex-transitive graph is a graph G with the property that to any two vertices
u and v of G there exists an automorphism ¢ of G such that ¢(u)=v. (Some
authors call these graphs “transitive” or ‘‘symmetric”.)

In this paper we shall present some results on graphs which are simultaneously
self-complementary and vertex-transitive.

Theorem 1. If n is the number of vertices of a regular finite self-complementary
graph, then n=1 (mod 4).

Proof. In[1] and [2] it was proved that for the number n of vertices of a finite
self-complementary graph either n=0 (mod 4), or n=1 (mod 4) holds. The
number of edges of a self-complementary graph G with n vertices is equal to one
half of the number of edges of K, namely in(n—1). If G is regular of the degree r,
we have

imr=in(n-1),
which implies
=3(n—1).

As r is an integer, n must be odd, which excludes the case n» =0 (mod 4). Hence
n=1 (mod 4), which was to be proved.
As a vertex-transitive graph is always regular, we have a corollary.

Corollary. If n is the number of vertices of a finite self-complementary
vertex-transitive graph, then n=1 (mod 4).
Before proving a further theorem, we shall state two lemmas.
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Lemma 1. Let n=3 be a prime number. Then either 2'* V=1 (mod n), or

212D = —1 (mod n).

Proof. According to Fermat’s Theorem we have 2"~'=1 (mod n). This means
that 2"7'—1 is divisible by n. The number 2"™'—1 can be written in the form
(22" 4+1) (2'*""P—1).As n is prime, it must divide one of the numbers
2VAn=b 1 2V2=Y — 1 which implies the assertion.
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Fig. 1

Lemma 2. Let n be a prime number, n=1 (mod 4) and let n have the property
that for any m such that 1=m<j}(n—1) the conditions 2"#1 (mod n) and
2m# —1 (mod n) hold. Then to any two distinct numbers x, y of the set {1,
2,...,n} a unique number f(x,y) can be assigned with the property that
1=B(x,y) = Xn—1) and either x —y = 2°*» (mod n), or y —x=2"""
(mod n).

Proof. Suppose that there exist numbers p, q of the set S ={1, 2, ..., 2(n — 1)}
such that 2° =2 (mod n) and p >q. Then the difference 2 —2¢ = 27 929 —1)is
divisible by n. As n is a prime number and 2°7? is not divisible by any prime
number other than 2, the number 2¢ — 1 is divisible by n and thus 2 =1 (mod n).
But we have 1=q <p =;(n — 1) and thus this is a contradiction with the conditions
of the lemma. Therefore the numbers 2" for m €S are pairwise non-congruent
modulo n. Further suppose that 2° = —29 (mod n) for some p, q from the set {1,
2, ..., n}, p>q. Then analogously we obtain 2?= —1 (mod n), which is again
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a contradiction. Therefore to each number ¢ €S there exists exactly one number
y(¢) of this set such that either 2"”=¢ (mod n), or 2"”= —¢ (mod n). If for ¢t we
take that one (uniquely determined) of the numbers x —y, y —x which is in S, we

have B(x,y) = y(¢).

Theorem 2. Let n be a prime number, n =1 (mod 4) and let n have the property
that for any m such that 1=m <j3(n—1) the conditions 2"#1 (mod n) and
2m% —1 (mod n) hold. Then there exists a self-complementary vertex-transitive
graph with n vertices.

the graph G as follows. The vertex set of G is V=41, 2, ..., n;. Two distinct
vertices x, y of V are adjacent in G if and only if 8(x, y) is odd. Now for each
integer a we define the mapping @,: V— V so that

Proof. The notation is the same as in Lemma 2 ancIr in its proo}. We construct

@.(x)=x+a (mod n)

for each xe V. Evidently each @, is a bijection and @.(x) — @.(y) =
x —y (mod n) for each x and y, hence each g, is an automorphism of G. If ue V,
veV, then v=¢,_,(u) and therefore G is vertex-transitive. Further let the
mapping y: V— V be defined so that

Y (x)=2x (mod n)

for each x € V. If x —y =2°** (mod n), then y(x) — y(y) = 2x —2y = 2=
(mod n) and analogously for y —x. Therefore

B(y(x), w(y)=B(x,y)+1
for B(x, y)<i(n—1) and

By (x), y(y)=1
for B(x, y)=3(n—1). Hence

By (x), () #B(x, y) (mod 2)

and v is an isomorphism of G onto its complement G. We have proved that G is
vertex-transitive and self-complementary.

The simplest example of such a graph is a circuit of the length 5.

Another example of a number fulfilling the conditions of Theorem 2 is the
number 13. Examples of prime numbers congruent with 1 modulo 4 which do not
fulfil the conditions are the numbers 17 and 257.

The conditions of Theorem 2 are not necessary.

Theorem 3. There exists a self-complementary vertex-transitive graph with 9
vertices.
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Proof. This graph is K; X K, i. e. the graph whose vertices are all ordered pairs
of the numbers 0, 1, 2 and in which the vertices [i, j], [k, [] are joined by an edge if
and only if either i = k, or j =, but not both simultaneously. This graph isin Fig. 1;
brackets and commas are omitted. As it is a direct product of complete graphs, it is
vertex-transitive. An isomorphism ¥ of G onto G is given as follows (brackets and
commas are again omitted): :
00 — 00,

01 - 11— 02— 22 — 01,
10 — 21 —» 20 — 12 — 10.

Problem 1. Does there exist a self-complementary vertex-transitive graph with
n vertices for each n=1 (mod 4)?

Problem 2. Are there infinitely many numbers n satistying the conditions of
Theorem 27?
Now we shall study infinite graphs.

Theorem 4. There exists a self-complementary vertex-transitive graph with the
vertex set of the cardinality .

Proof. By R denote the set of all rational numbers, by N the set of all integers.
By (a, b) we shall denote the interval consisting of all real numbers x such that

a=x<b. Denote M= U (2%,2%**") M= u (2**', 2**?), Evidently MnM =
keN

keN
¥, MUM is the set of all positive real numbers. For each positive real number x we
have 2x e M if and only if x e M. Now we shall construct the graph G. The vertex
set of G is R, two distinct vertices x and y are adjacent if and only if |x —y|e M.
For each a e R we define the mapping ¢,: R— R so that

@.(x)=x+a

for each x e R. Evidently ¢@.(x) — @.(y) = x—y for any a, x, y, each ¢, is
a bijection, therefore each ¢, is an automorphism of G. If ue R, v eR, then
@.-(u)=v and hence G is vertex-transitive. Further, let the mapping y: R—>R
be defined so that

Y(x)=2x

for each x € R. The mapping v is a bijection and |y (x) —y(y)| = 2|x —y| for any
x and y. Therefore for x#y the number |y(x)— Y(y)| is in M if and only if
|x —y| € M, hence v is an isomorphism of G onto G and G is self-complementary.

Theorem S. There exists a self-complementary vertex-transitive graph with the
vertex set of the power of continuum.

Proof is analogous to the proof of Theorem 4 ; instead of the set of all rational
numbers the set of all real numbers is used.
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CAMOIOITOJIHUTEJIbHBIE BEPIIMHHO-TPAH3UTHBHBIE
HEOPUEHTHPOBAHHBIE I'PA®BI

Borgan 3enunka

Pe3ioMe

B craThe 1OKa3aHbI ClieAyiOLINe TEOPEMBI.

Teopema 1. Eciiu 7 €CTb YMCIIO BEPLIMH PEryJiPHOTO KOHEYHOrO CaMOJOMNOJIHUTEILHOTO rpada, To
n =1 (mod 4).

Teopema 2. Ilyctb n ectb npoctoe yucno, n =1 (mod 4) v nyctb n 061agaeT TEM CBOUCTBOM, YTO
2'2"Y=1 (mod n) nnm 2'*"~P= —1 (mod n) u s BCAKOTO M TAKOrO, YTO

1=m<i(n-1),

nyctb 27#1 (mod n) u 27%# —1 (mod n). ITOTOM CyIEeCTBYET CaMONONOIHUTENbHBIH BEPLINHHO--
TPaH3UTHBHBIA rpad ¢ n BepuUIMHAMHU.

Teopema 4. CyliecTByeT CaMOROMONHUTENbHbIN BEPLIMHHO-TPAH3UTHBHBINA rpad ¢ MHOXECTBOM
BEPLIMH MOLIHOCTH R,.

Teopema 5. CylecTByeT caMOJONOJHUTENbHBIA BEPLINHHO-TPAH3UTHBHBIA rpad ¢ MHOXECTBOM
BEPLLUMH MOLIHOCTH KOHTHHYYyMa.
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