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NOTES ON THE EVOLUTION
OF FEATURE SELECTION METHODOLOGY

PETR SoMOL, JANA NOVOVICOVA AND PAVEL PUDIL

The paper gives an overview of feature selection techniques in statistical pattern recog-
nition with particular emphasis on methods developed within the Institute of Information
Theory and Automation research team throughout recent years. Besides discussing the
advances in methodology since times of Perez’s pioneering work the paper attempts to
put the methods into a taxonomical framework. The methods discussed include the latest
variants of the optimal algorithms, enhanced sub-optimal techniques and the simultaneous
semi-parametric probability density function modelling and feature space selection method.
Some related issues are illustrated on real data by means of the Feature Selection Toolbox
software.

Keywords: feature selection, branch & bound, sequential search, mixture model
AMS Subject Classification: 62H30, 62G05, 683T10

1. INTRODUCTION

The application of pattern recognition (PR) and machine learning (ML) in the real-
world domain often encounters data problems caused by the high dimensionality of
the input space. Dimensionality reduction refers to the task of finding low dimen-
sional representations for high-dimensional data. More formally, given a set of n
real D-dimensional vectors {x1,...,%,}, T; € RP, we define dimensionality reduc-
tion as the task of finding a set of corresponding low-dimensional representatives
{yy,--,Y,}, y; € RY that preserve the similarity structure in the input data as
well as possible. Dimensionality reduction (DR) is an important step in data pre-
processing in PR and ML applications. It is sometimes the case that such tasks as
classification or approximation of the data represented by so called feature vectors,
can be carried out in the reduced space more accurately than in the original space.

There are two main ways of doing DR depending on the resulting features: DR
by feature selection (FS) and DR by feature extraction (FE). FS approach does
not attempt to generate new features, but to try to select the “best” ones from the
original set of features. FE approach defines a new feature vector space in which each
new feature is obtained by combinations or transformations of the original features.
FS leads to savings in measurements cost since some of the features are discarded
and the selected features retain their original physical interpretation. In addition,
the retained features may be important for understanding the physical process that
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generates the feature vectors. On the other hand, transformed features generated by
feature extraction may provide a better discriminative ability than the best subset
of given features, but these new features may not have a clear physical meaning.

We are honored to acknowledge that the pioneer research in this direction was
carried out already as far back as in 1967 by Albert Perez and his co-workers. In
the framework of a broader research project “Decision processes” (in medical care)
they started to investigate problems of DR. At that time they used the term “reduc-
tion of symptom complex”. Perez has shown that an intuitive reduction can lead
to substantial loss of information and proposed to use mathematical methods and
computers to optimize the solution. The theoretical background was formed mainly
by Perez’s own theoretical results like a-information values. As a result he and his
co-workers developed several variants of algorithm TIBIS (Theory of Information in
Blological Systems). The algorithms used either the forward (including) strategy or
the backward (eliminating) strategy. The first series of PC codes was implemented
in years 1967—1971 on MINSK 22 mainframe, in 1972—1973 a more advanced and
sophisticated version was implemented on IBM 370 in Fortran [40]. Obviously, the
implementation was restricted by hardware limitation of those early years, however,
for its time it was a remarkable achievement. All the algorithms yielded subsets of
symptoms from original symptom complex — thus in the present terminology carried
out FS. TIBIS software was used in several medical fields, e.g., [7, 40, 41]. Further
development of information theoretic approaches to FS was published in [42].

This paper is limited to the FS approach to DR. We introduce concepts and
algorithms of FS that represent some of the key advances in the field since the
sixties. To emphasise the continuity with Perez’s work we focus mainly on the
contribution of the Institute of Information Theory and Automation (UTIA) research
team. Nevertheless, general trends in F'S research are discussed and some guidelines
are provided regarding the applicability of various FS concepts.

2. FEATURE SUBSET SELECTION

Let Xp be the set that comprises all the D original features, and X the set of all
possible subsets of size d, where d represents the desired number of features. Let X
be a subset of Xp, with d features. J(X) is a function that determines how good
the subset X is, by a certain criterion. Without any loss of generality, let us assume
that a higher value of J indicates a better feature subset. The problem of feature
selection is defined by searching the subset X4 C Xp of d features, that satisfies:

J(Xa) = max J(X) . (1)

An optimal subset is always relative to a certain evaluation criterion (i.e., an opti-
mal subset chosen using one evaluation function may not be the same as that using
another evaluation function). It is searched for in a process consisting usually of
these four steps: subset generation, subset evaluation, stopping criterion, and re-
sult validation [14]. Selection strategies and evaluation criteria are two dominating
factors in designing a feature selection algorithm. For overview of various related
problem aspects see, e.g., Liu and Yu [14].
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2.1. Categorization of feature selection methods

Different methods have been developed and used for feature subset selection in PR
and ML, using different search strategies and evaluation functions. The basic ap-
proach to subset generation is to build up a subset of required number of features
starting with the empty set and successively add features (forward search), or to
start with a full set and remove features successively (backward search), or to start
with both ends and add and remove features simultaneously (bi-directional search)
to optimize a chosen evaluation function. Search may also start with a randomly
selected subset. Alternatively, feature selection may be an inherent part of complex
classification approaches (e.g., of mixture-based discrimination, see Section 5).

2.1.1. Categorization with respect to search strategies

To balance the trade-off of result optimality and computational efficiency, different
search strategies such as exhaustive, complete, heuristic, and random search have
been studied to generate candidate feature subsets for evaluation.

Exhaustive Search. An exhaustive approach to FS problem requires examining
all possible subsets of size d < D of the set Xp and selecting the subset with the
largest value of J. Although the exhaustive search guarantees the optimality of the
solution according to the evaluation criterion used, it is computationally prohibitive
for problems of high dimensionality.

Complete Search. The alternative to exhaustive search is the Branch & Bound
(B&B) algorithm, proposed first in [20], and ancestor algorithms based on a similar
principle. All B&B algorithms rely on the monotonicity property of the F'S criterion:
given two subsets of the feature set Xp, A and B, if A C B, then J(A) < J(B).
By a straightforward application of this property many feature subset evaluations
may be omitted. Therefore these algorithms guarantee to select an optimal feature
subset of size d without involving explicit evaluation of all the possible combinations
of d features. This assumption precludes the use of the error rate as the criterion
in the classification problem. This is an important drawback as the error rate can
be considered superior to other criteria [11, 28]. The time complexity is exponential
in terms of data dimensionality, therefore the B&B algorithm is still prohibitive in
terms of computation requirements for several recent applications, particularly those
in data mining and document classification involving hundreds to tens of thousands
of features. Since searching for an optimal subset requires prohibitive computation,
many sub-optimal search methods have been proposed, namely heuristic (also known
as sequential) and random searching methods.

Heuristic Search. A number of heuristic (non-exhaustive) selection methods have
been proposed which essentially trade-off the guarantee of optimality of the se-
lected subset for computational complexity. This category includes, e.g., Best Indi-
vidual Features, Sequential Forward and Backward Selection, Plus-I-Take Away-r,
their generalized versions, Genetic algorithms, and particularly the Floating and
Oscillating Search. A comprehensive method list can be found, e.g., in books
[3, 5, 10, 37, 35]. A comparative taxonomy can be found, e.g., in [4, 9] or [12].
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The time complexity of these methods is quadratic or less in terms of data dimen-
sionality.

Random Search. It starts with a feature set containing all randomly selected
features, add or remove features randomly selected one at a time and stop after
a given number of iterations. The time complexity can be linear to the number
of iterations. Various heuristic methods attempt to take use of the random search
principle, hoping to avoid local extremes in the search space.

2.1.2. Categorization with respect to selection criteria

Based on the selection criterion choice, feature selection methods may roughly be
divided into three types: the filter [2, 39], the wrapper [11] and the hybrid [1, 27].

Filter methods are based on performance evaluation functions calculated directly
from the training data such as distance, information, dependency, and consistency,
and select feature subsets without involving any learning algorithm.

Wrapper approach requires one predetermined learning algorithm and uses its
performance as the evaluation criterion. It attempts to find features better suited to
the learning algorithm aiming to improve its performance. In the wrapper category,
classifier error rate is used for classification and cluster goodness for clustering.
Generally, the wrapper method achieves better performance than the filter method,
but tends to be more computationally expensive than the filter approach. Also, the
wrappers yield feature subsets optimized for the given learning algorithm only — the
same subset may thus be bad in another context.

Hybrid approach combines the advantages of both approaches. Hybrid algorithms
have recently been proposed to deal with high dimensional data. In these algorithms,
first, a goodness measure of feature subsets based on data characteristics is used to
choose best subsets for a given cardinality, and then, cross validation is exploited
to decide a final best subset across different cardinalities. These algorithms mainly
focus on combining filter and wrapper algorithms to achieve best possible perfor-
mance with a particular learning algorithm with the time complexity comparable to
that of the filter algorithms.

Filters as all other FS methods may be of local or global type, depending on
whether the task (e.g., classification) is performed locally for each individual class
or globally under all classes.

3. ADVANCED BRANCH & BOUND TYPE ALGORITHMS

In the field of complete search we have proposed some of the currently best-performing
methods. First, let us briefly summarize the essential Branch & Bound princi-
ple [3, 5]. The algorithm constructs a search tree where the root represents the
set of all D features, Xp, and leaves represent target subsets of d features. While
tracking the tree down to leaves the algorithm successively removes single features
from the current set of “candidates” (X}, in kth level). In leaves the algorithm ver-
ifies/updates the information about the till-now best subset of d features and the
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corresponding criterion value — denoted the bound. Anytime a criterion value in
some internal node is found to be lower than the current bound, due to the required
monotonicity property of the adopted criterion function the whole sub-tree may be
cut-off and many computations may be omitted without affecting the optimality of
result. Note that it is possible to impose additional restrictions on the bound value in
form of a pre-specified limit to transform B&B to faster but no longer optimal search.

3.1. Fast Branch & Bound

B&B algorithms do not guarantee to be always faster than exhaustive search. This
is because not only target subsets of d features, but also some of their supersets are
evaluated; the problem may then follow from insufficient number of sub-tree cut-offs.
Several techniques can reduce this problem.

The Fast Branch & Bound (FBB) [32] algorithm aims to reduce considerably
the number of criterion evaluations in internal search tree nodes. For each feature it
collects prediction information in form of averaged difference between criterion values
before and after the feature removal. This information is later used for prediction
of criterion values in internal tree nodes instead of their true computation.

If the predicted value remains significantly higher than the current bound, it may
be expected that even the true value would not be lower, and the corresponding
sub-tree can not be cut-off. In this situation the algorithm continues to construct
the consecutive tree level. However, if the predicted value is equal or lower than the
bound (and therefore there is a chance that the true value is lower than the bound),
the true criterion value must be computed. Only if true criterion values are lower
than the bound, sub-trees may be cut-off. Note that this scheme does not affect the
optimality of obtained results. The idea is illustrated in Figure 1.

example criterion estimated prediction information
_2
szﬁJrzi [4,] 15 J4,] 27 [4,] 39 J4,[ 51 [4,] 61 [4,] wa |
10 a .
Xi€X @® - computed value ® - predicted value
J(1,2,3,4,5,6)=24.6
- k=0
- - 7 =
_ - ~ -
- d /updateA4
k=1
® J(1,2,56)=15.6 k=2

N\
®.J(1,5.6)=12.9 k=3

/updateAl
®.J4,6)=10.4<X* k=4
(1,6) (2,6) (3,6) no bound set bound

update X*=J(5,6)=11.4

Fig. 1.Example of a “Fast Branch & Bound” problem solution; d = 2 features are to be
selected from a set of D = 5 features. Dashed arrows show the way of tracking the tree.
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3.2. Other Branch & Bound acceleration ideas

Many improvements of the B&B idea can be combined. One of the earliest consists
in optimizing the order of feature removals in the search tree to enable faster bound
increase and more effective branch cutting in late search stages. This modification,
known as IBB (Improved Branch & Bound) [3, 5] is now part of FBB. Similarly, all
B&B algorithms should construct the “minimum solution tree” [38].

Although FBB can be expected to be the fastest among all B&B algorithms, it
exhibits some drawbacks: it cannot be used with recursive criterion forms and there
is no theoretical guarantee that extensive prediction failures won’t hinder the overall
speed, despite the fact that such faulty behavior has not been observed with real
data. The B&B with Partial Prediction (BBPP) [32] constitutes the less effective
but robust alternative, capable of optimizing recursively computed critera.

Among other recent B&B related ideas the “trading space for speed” approach
[8] deserves attention as an alternative that may operate exceptionally fast under
certain circumstances. The idea of prediction is further investigated in [33, 36].

3.3. Experimental results of optimal search methods

When compared to simpler B&B algorithms the predictive algorithms spend ad-
ditional time for maintaining the prediction mechanism. However, this additional
time shows to be negligible when compared to considerable time savings following
from omitted criterion computations. Here we show representative results on 30-
dimensional mammogram data from Wisconsin Diagnostic Breast Center (2 classes
— 357 benign and 212 malignant samples, see UCI repository [19]). We used Bhat-
tacharyya distance as the criterion function. The results are collected in Figure 2.

Graph of Search Time (min.) Graph of the number of true criterion evaluations
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Fig. 2. Optimal subset search methods performance when maximizing Bhattacharyya
distance on 30-dimensional data (Wisconsin Diagnostic Breast Center).

3.4. Summary of optimal methods

The only optimal subset search method usable with non-monotonic criteria is the
exhaustive (full) search. However, because of exponential nature of the search prob-
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lem, alternative methods are often needed. Our several recent improvements of the
B&B idea especially in the form of prediction based FBB and BBPP resulted in a
speed-up factor of 10 to 100 over the simplest B&B form, depending on particular
data and criterion used.

It should be stressed that despite all advances the optimal methods are exponen-
tial in nature. If there is no particular need to request the global optimum of results,
sub-optimal search methods offer greater flexibility and acceptable speed even for
high-dimensional problems, while the solutions found are not necessarily much worse
than the optimum. Note, that the optimality is with respect to the chosen criterion.
Criterion choice may affect the final system performance more than the possibly
slight difference between the optimal global and local type of feature selection.

4. HEURISTIC SEARCH

The simplest yet widely used sequential forward (or backward) selection methods
[3], SFS (SBS), can be viewed as analogy to Perez’s methods realized in TIBIS (see
Section 1). They iteratively add (remove) one feature at a time so as to maximize the
intermediate criterion value until the required dimensionality is achieved. Among
the more interesting recent approaches the following two families of methods can
be pointed out for general applicability and performance reasons, namely sequential
floating search methods [23, 29] and oscillating search methods [30], both developed
within Institute of Information Theory and Automation.

Earlier sequential methods suffered from the so-called nesting of feature subsets
which significantly deteriorated the performance. The first attempt to overcome
this problem was to employ either the Plus-l-Take Away-r [denoted (I,7)] or its
generalized form [3] which involve successive augmentation and depletion process.
Similar idea in an extended and refined form constitutes the basis of floating search.

4.1. Sequential floating search

The sequential forward floating selection procedure consists of applying after each
forward step a number of backward steps as long as the resulting subsets are better
than previously evaluated ones at that level. Consequently, there are no backward
steps at all if intermediate result at actual level (of corresponding dimensionality)
cannot be improved. The same applies for the backward version of the procedure.
Both algorithms allow a “self-controlled backtracking” so they can eventually find
good solutions by adjusting the trade-off between forward and backward steps dy-
namically. In a certain way, they compute only what they need without any param-
eter setting.

Before describing the floating algorithm formally, the following definitions have
to be introduced.

Let Xy = {x4,,..., 2} be the set of k features selected from the original set
of D possible features, Xp = {x; | i = 1,...,D}, where {i1,...,i;} is a subset of
{1,...,D}. Then Xp \ Xy, = {xj,,...,2;,_,} is the set of features not yet selected,
{j1,---,Jp—k} is the complement of {i1,...,ix} in {1,...,D}. We say that the
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feature x;, from the set X} is the best (worst) feature in the set Xy, if
TGN L ) = min T (o) (000 (o1,0) = e JO6 ().

We say that the feature z;, from the set Xp \ Xy is the best (worst) feature with
respect to the set Xy if

J(XpU{z;,}) = max J(XpU{z;,}) (J(XkU{%‘jp})Z min J(XkU{l’jq}))

1,....,D—k

4.1.1. Sequential forward floating search — formal algorithm description

SFF'S procedure is basically a bottom-up search procedure which adds (includes) new
features by means of applying the basic sequential forward selection (SFS) procedure
starting from the current feature set, followed by a series of successive conditional
removing (exclusion) of the worst feature in the newly updated set provided a further
improvement can be made to the previous sets.

SFFS can be described algorithmically as follows: Suppose k features have al-
ready been selected from the complete set of features Xp to form set X with the
corresponding value J(X}) of the criterion J. In addition, the values of J; = J(X;)
for all so-far best found sets of size : = 1,...,k — 1 are known and stored.

Step 1: (Initialization) The algorithm is initialized by setting k = 0 and X, = (),
and the SFS method is used until a feature set of size 2 is obtained.

Step 2: (Inclusion) Using the basic SFS method, select from the set of available
features, Xp \ Xj the best feature with respect to the set Xy, say 27, and add it to
the current set X} to form new feature set Xy 1; i.e.,

v i=arg max  J(XpU{z}), Xk :=XpU{zT}
z€Xp\ Xk

Step 3: (Conditional exclusion) Find the worst feature z~ in the set X4, i.e.,

7 =arg max J(Xgi1\{z}).
k+1

zeX

If the feature 2~ is the same as x, set Jr11 = J(Xg+1), k = k+1 and go to Step 2;
otherwise remove this feature from Xy, to form a new feature set X, i.e.,

Xp = Xpar \ {7}

Note that now J(X,) > J(X3) = Ji. If k = 2, then set X3 = X, and J; = J(X})
and go to Step 2, otherwise go to Step 4.

Step 4: (Continuation of conditional exclusion) Continue removing the features
from the set X, to form reduced sets X, _; while

J(Xp 1) > Jp-1.

Set k =k — 1 or k = 2; then continue with Step 2.
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Note that the backward algorithm version (SBFS) can be defined analogously.
Floating search algorithms can be considered the universal tools not only outper-
forming all predecessors, but also keeping advantages not met by more sophisticated
algorithms. They find good solutions in all problem dimensions in one run. The
overall search speed is high enough for most of ordinary problems.

4.1.2. Adaptive floating search

As the floating search algorithms have been found successful and generally accepted
to be an efficient universal tool, their idea was further investigated. The so-called
Adaptive Floating Search (AFS) has been proposed in [29]. The AFS algorithms
are able to outperform the classical floating algorithms in certain cases, but at a
cost of considerable increase of search time and the necessity to deal with unclear
parameters. Our experience shows that AFS is usually inferior to newer algorithms,
which we focus on in the following.

4.1.3. Hybrid floating search

Recently we have defined a flexible hybrid version of floating search methods [34]
for feature selection. The main benefit of the proposed floating search hybridiza-
tion is the possibility to deal flexibly with the quality-of-result vs. computational
time trade-off and to enable wrapper based feature selection in problems of higher
dimensionality than before. We have shown that it is possible to trade significant
reduction of search time for often negligible decrease of the classification accuracy.

4.2. Oscillating search

The recent Oscillating Search (OS) [30] can be considered a “higher level” procedure,
that takes use of other feature selection methods as sub-procedures in its own search.
The concept is highly flexible and enables modifications for different purposes. It
has shown to be very powerful and capable of over-performing standard sequential
procedures, including Floating Search. Unlike other methods, the OS is based on
repeated modification of the current subset X, of d features. In this sense the OS
is independent on the predominant search direction. This is achieved by alternat-
ing so-called down- and up-swings. Both swings attempt to improve the current
set X4 by replacing some of the features by better ones. The down-swing first re-
moves, then adds back, while the up-swing first adds, then removes. Two successive
opposite swings form an oscillation cycle. The OS can thus be looked upon as a
controlled sequence of oscillation cycles. The value of o (denoted oscillation cycle
depth) determines the number of features to be replaced in one swing. o is increased
after unsuccessful oscillation cycles and reset to 1 after each X4 improvement.

The algorithm terminates when o exceeds the user-specified limit A, or it may
be left to reach the limits (full or empty set of features).

Every OS algorithm requires some initial set of d features. The initial set may be
obtained randomly or in any other way, e. g., using some of the traditional sequential
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selection procedures. Furthermore, almost any feature selection procedure can be
used in up- and down-swings to accomplish the replacements of feature o-tuples.
Therefore, for the sake of generality in the following descriptions let us denote the
adding / removing of a feature o-tuple by ADD(0) / REMOVE(o).

4.2.1. Oscillating search — formal algorithm description

Step 1: (Initialization) By means of any feature selection procedure (or randomly)
determine the initial set X4 of d features. Let ¢ = 0. Let o = 1.

Step 2: (Down-swing) By means of REMOVE(0) remove such o-tuple from X, to
get new set Xg_, so that J(X4_,) is maximal. By means of ADD(o0) add such
o-tuple from Xp \ Xy, to X4—, to get new set X:i so that J(X:i) is maximal. If
J(X)) > J(Xa), let Xq = X:i, ¢ =0, 0=1 and go to Step 4.

Step 3: (Last swing has not improved the solution) Let ¢ = c+ 1. If ¢ = 2, then nor
the last up- nor down-swing led to a better solution. Extend the search by letting
o=o0+1. If o > A, stop the algorithm, otherwise let ¢ = 0.

Step 4: (Up-swing) By means of ADD(0) add such o-tuple from Xp\ X4 to X4 to get
new set X4, so that J(X41,) is maximal. By means of REMOVE(0) remove such
o-tuple from X4, to get new set X so that J(X) is maximal. If J(X) > J(X4),
let X4 = X;, c=0,0=1 and go to Step 2.

Step 5: (Last swing has not improved the solution) Let ¢ = c+ 1. If ¢ = 2, then nor
the last up- nor down-swing led to a better solution. Extend the search by letting
o=o0+1. If o > A, stop the algorithm, otherwise let ¢ = 0 and go to Step 2.

4.2.2. Oscillating search properties

The generality of the OS search concept allows to adjust the search for better speed
or better accuracy (lower A and simpler ADD /REMOVE vs. higher A and more
complex ADD /REMOVE). In this sense let us denote sequential OS the simplest
possible OS version which uses a sequence of SFS steps in place of ADD() and a
sequence od SBS steps in place of REMOVE(). As opposed to all sequential search
procedures, OS does not waste time evaluating subsets of cardinalities too different
from the target one. The fastest improvement of the target subset may be expected
in initial phases of the algorithm, because of the low initial cycle depth. Later, when
the current feature subset evolves closer to optimum, low-depth cycles fail to improve
and therefore the algorithm broadens the search (by letting o = 0+ 1). Though this
improves the chance to get closer to optimum, the trade-off between finding a better
solution and computational time becomes more apparent. Consequently, the OS
tends to improve the solution most considerably during the fastest initial search
stages. This behavior is advantageous, because it gives the option of stopping the
search after a while without serious result-degrading consequences. Let us summarize
the key OS advantages:

(i) OS may be looked upon as a universal tuning mechanism, being able to improve
solutions obtained in another way.
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(ii) The randomly initialized OS is very fast, in case of very high-dimensional
problems may become the only applicable procedure. E.g., in document analysis for
search of the best 1000 words out of a vocabulary of 50 000 even the simple SFS
may show to be too slow.

(iii) Because the OS processes subsets of target cardinality from the very begin-
ning, it may find solutions even in cases, where the sequential procedures fail due to
numerical problems.

(iv) Because the solution improves gradually after each oscillation cycle, with
the most notable improvements at the beginning, it is possible to terminate the
algorithm prematurely after a specified amount of time to obtain a usable solution.
The OS is thus suitable for use in real-time systems.

(v) In some cases the sequential search methods tend to uniformly get caught in
certain local extremes. Running the OS from several different random initial points
gives better chances to avoid that local extreme.

4.3. Experimental results of sub-optimal search methods

All described sequential search methods have been tested on a large number of dif-
ferent problems. Here we demonstrate their performance on 2-class, 30-dimensional
mammogram data (see Section 3.3). The graphs in Figure 3 show the OS ability
to outperform other methods even in the simplest sequential OS form (here with
A = d in one randomly initialized run). The ASFFS behavior is well illustrated here
showing better performance than SFFS at a cost of uncontrollably increased time.
SEFFS and SFS need one run only to get all solutions. SFFS performance is always
better than that of SFS.

Number of selected features (d)

Z 100 oo 5
© A sequential OS(A=D)
é 99 ) vn ° Eas randomly init.
S osf T -8 ASFFS(3,2)
= £
& o E,
@ o6l sequential OS(A=D) o 2
8 randomly init. £
S g5 A—A ASFFS(3,2) F
11 ~
8 o4r X*—kK SFFS
©
&— SFS
Og17 10
13 5 7 9 1113 15 17 19 21 23 25 27 29 1.3 5 7 9 1113 15 17 19 21 23 25 27 29

Number of selected features (d)

Fig. 3. Comparison of sub-optimal methods on classification problem.

4.4. Recommendations for practitioners

Concerning our current experience, we can give the following recommendations.
Floating Search can be considered the tool of the first choice. It is reasonably fast
and yields generally very good results in all dimensions at once, often succeeding
in finding the global optimum. The Oscillating Search becomes better choice when-
ever: 1) the highest quality of solution must be achieved but optimal methods are
not applicable, or 2) a reasonable solution is to be found as quickly as possible,
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or 3) numerical problems hinder the use of sequential methods, or 4) extreme prob-
lem dimensionality prevents any use of sequential methods, or 5) the search is to
be performed in real-time systems. Especially when applied repeatedly with differ-
ent random starting points the Oscillating Search shows outstanding potential to
overcome local extremes in favor of global optimum.

It should be stressed that, as opposed to B&B, the Floating Search and Oscillating
Search methods are tolerant to deviations from monotonic behavior of feature selec-
tion criteria. It makes them particularly useful in conjunction with non-monotonic
FS criteria like the error rate of a classifier (cf. Wrappers [11]), which according to
a number of researchers seem to be the only legitimate criterion for feature subset
evaluation.

Note: Floating and Oscillating Search source codes in C can be downloaded from
http://ro.utia.cas.cz/dem.html.

5. MIXTURE BASED FEATURE SELECTION FOR CLASSIFICATION

All previous approaches depend on criteria that can not be evaluated without certain
assumptions about the data (e. g., standard criteria are often available for Gaussian
distribution only). If nothing is known about the data, or multi-modal or otherwise
complex distribution can be expected, the mixture-based modelling may be a better
choice.

Following the statistical approach to pattern recognition, we assume that a pat-
tern represented by a feature vector & = (x1,...,2p)T in D-dimensional feature
space is to be classified into one of a finite set of C' different classes {wy,...,wc}.
A pattern = belonging to class w; is viewed as an observation of a random vector
drawn randomly according to the known class conditional probability density func-
tion (pdf) p(x|w;) and the respective a priori probability P(w;). We can say, that
a tested pattern @ can be optimally classified using Bayes classification rule based
on the knowledge of P(c;)p(x|w,) for each class w; as follows:
assign x to class wy if

Plw: )
wl = arg max M
j=1,....C p(x)

c
,1ef1,...,CY p@) =) Pw)pxlw;), (2)
j=1
where p(x) is unconditional pdf of .

In practice, there appear situations, where the class conditional pdf is unknown
and only a training set of labeled patterns is available. Finding a proper pdf estimate
has a crucial impact to successful classification. Often simple models, such as a single
Gaussian distribution, can effectively represent patterns but a more general model,
such as a finite mixture model, must be used to approximate more complex pdfs;
arbitrarily complex pdfs can be approximated using finite mixture models. For
details on mixture models see e. g., [18].

In our papers [21, 24, 25], we proposed a mixture based classification with global
feature selection by casting it as an estimation problem, thus avoiding any combi-
natorial search. Instead of selecting a subset of features, we estimate a set of binary
quantities, one for each feature. This estimation is carried out by an Expectation-
Maximization (EM) algorithm derived for the task.
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5.1. Finite mixture model

It is said that D-dimensional random vector x follows in class w; a finite mixture
distribution with M; components if its pdf can be written as

p(x|w;) = Z o o (x]69) (3)
where o, is the mizing probability for the mth mixture component within the class
wj, (ad, >0,m=1,.. ZM ol =1), 03 is the set of parameters defining the
mth component, and {91, . 03\4 o, on } is the complete set of parameters

specifying the mixture model (3). ThlS model assumes that each mixture component
has a multivariate distribution with its own parameters.

A simplification of the model (3) consists of assuming that given the mixture
component label, the features are conditionally statistically independent. In this
case the jth class conditional pdf can be rewritten as

plxlw;) = ZaJHfme , (4)

where f(z; \0 is the pdf of the feature x; in the mth mixture component within the
class wj; Gfm is the set of parameters of the component m corresponding to feature
x;. Therefore, the class conditional densities are modeled as a mixture of independent

probabilistic models. This model has been considered e. g., by McLachlan in [17].

HLZ)

5.2. Mixture model with feature significancy

In this section we introduce the concept of feature significancy for the mixture struc-
ture of the class conditional probability density function.

Assume now that some features are not significant for the mixture structure of
the pdf defined in (4), in the following sense: if feature x; is not significant, then
its distribution is common to all mixture components. It means that any specific
univariate function f(z;|6? .) in the model (4) is substituted by the “background”
density, denoted by fo(z;]00;), whenever the feature z; is not significant. Let ® =
(é1,.-.,0p) € {0,1}P be a set of binary parameters, such that ¢; = 1 if the feature
x; is significant and ¢; = 0, otherwise. In this way the binary parameters ¢; can
be looked upon as control variables due to that the complexity and the structure
of the mixture (4) can be controlled by means of that parameters. Then the class
conditional pdf defined in (4) can be rewritten as

M; D
p(x|ay, 05,00, @) = Z a, H[fo(l‘i\90i)1_¢if($i|9;¢)¢t] (5)
m=1 =1

aj:(a{,...7a§v[j), Qj:(ei,...79%4j), 90:(901,...,90D)7 (I):((]51,...7¢D).

The novel characteristic of the mixture model defined in (5) are the control vari-
ables ¢;. When ¢; = 1, it means that the feature z; is significant and should be
modeled by the individual mixture components. If ¢; = 0, the feature x; is useless
and should be represented by a common component.
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5.3. Feature significancy measures for classification

In order to optimize the accuracy of the Bayes classification rule (2), the EM algo-
rithm is used to find the unknown parameters {«;,6;, 60, },
j=1,...,C of the model (5) under the following assumptions:

e the training set of labeled samples is available;

e the univariate density functions f and fy belong to the family of univariate
Gaussian densities;

o density function fo is common to all the classes w;, j=1,...,C.

The criterion we use for measuring the error resulting from approximating the true
probability density function p(x|w;) by p(x|a;,0;,600,®) for all j = 1,...,C is a
mixture, in the true proportions P(w1),. .., P(wc), of the Kullback—Leibler distances
between the true and the postulated class conditional pdf of .

Given the approximations of class conditional pdf’s it can be easily seen that
the “background” pdf fy may be reduced in the inequality in the Bayes plug-in
classification rule and we may classify the tested pattern x into one of C' classes
according to only d features z;,,...,x;,, where d is the required number of the
selected features and {i,...,44} is the permutation of {1,...,D}. We call this
classifier in the reduced feature space the pseudo-Bayes classifier.

The proposed model (5) is suitable especially if the underlying distributions of
some or all given classes are multi-modal or they conceal the existence of sub-
populations. It allows to develop two FS methods: ‘approximation’ method deter-
mines those features which produce a set of approximations to the class probability
density functions which is best in the sense of minimizing the mixture of Kullback—
Leibler distances; ‘divergence’ method identifies those features that are most useful,
in the sense of maximizing the the mixture of Kullback J-divergence, in describing
differences between two possible classes.

Our approach to FS has the following features:

e it yields the feature subset of required size, optimizing the used criterion,
without involving any search procedure;

e it provides a pseudo-Bayes plug-in classification rule employing the selected
features.

Law et al. [13] (and references therein), Graham and Miller [6] have been inspired
by the main idea of our approach to F'S. They proposed a solution to the F'S problem
in unsupervised learning.

6. FEATURE SELECTION TOOLBOX

The Feature Selection Toolbox (FST) software [31] has been serving as a platform
for data testing, feature selection, approximation-based modelling of data, classifi-
cation and mostly testing newly developed methods. It is used basically for pattern
recognition purposes. However, we used it for solving decision making problems in
economics and in other application fields as well.
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A rather simple user interface was constructed upon a strong functional kernel.
Most of results are generated in the form of textual protocol into the Console window.
Numerical results may be collected in tables and used for generating graphs. Data
may be displayed in a 2D projection.

6.1. Mixture-based feature selection for classification task example

We used the following real data-sets:

— 2-class, 15-dimensional speech data representing words “yes” and “no” obtained

from the British Telecom; classes are separable with great difficulty.

— 2-class, 30-dimensional mammogram data (see Section 3.3).

Using the FST we compared the performance of gaussian classifier to the pseudo-
Bayes classifier, defined especially for use with multimodal data, and defined in
relation to “approximation” and “divergence” methods (c.f. Section 5). Table 1 il-
lustrates the potential of the approximation model based classifiers. However, it also
illustrates the necessity of experimenting to find a suitable number of components
(the issue is discussed, e. g., in Sardo [26]).

Table 1. Error rates [%] of different classifiers with different parameters. The ‘gauss’
column holds results of a gaussian classifier. Other columns hold results obtained using
the ‘approximation’ method (in this case the ‘divergence’ method yielded the same
results). (Note: 5¢c means 5 components of mixture, etc.)

approx. | approx. | approx. | approx.
gauss lc 5c 10c 20c
speech (random init.) | 8.39 21.61 7.58 9.19 9.03
data (dogs & rabbits init.) - 21.61 7.42 6.45 8.39
mammo (random init.) | 5.96 5.26 5.26 5.96 4.56
data (dogs & rabbits init.) - 5.26 5.26 5.96 5.96

The results were computed on the full set of features. In case of the “approx-
imation” and “divergence” methods the algorithms were initialized randomly (1st
row) by means of the “dogs & rabbits” cluster analysis (McKenzie et al. [16])
pre-processor (2nd row). Classifiers were trained on the first half of the dataset and
tested on the second half.

Table 1 demonstrates the potential of mixture approximation methods — with
5 mixture components (see column approx.5c) for the “speech” data and 1, 5 or
20 components for the “mammo” data. The underlying data structure has been
modeled precisely enough to achieve better classification rate when compared to the
gaussian classifier. Second row for each data contains approximation and divergence
method results after preliminary initialization by means of the “dogs and rabbits”
clustering method.

7. CONCLUSIONS AND FUTURE WORK

The current state of art in feature selection based dimensionality reduction for mod-
eling and decision problems of classification type have been over-viewed. A number
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of recent feature subset search strategies have been reviewed and compared with
emphasis put on methods developed within the Institute of Information Theory and
Automation. Recent developments of B&B based algorithms for optimal search led
to considerable improvements of the speed of search. Nevertheless, the principal
exponential nature of optimal search remains and will remain one of key factors mo-
tivating the development of sub-optimal strategies. Among the family of sequential
search algorithms the Floating and Oscillating search methods deserve particular
attention. Two alternative feature selection methods based on mixture modelling
have been presented. They are suitable for cases, when no a priori information on
underlying probability structures is known. Among the most recent developments
the hybrid FS methods deserve particular attention. This is reflected in our current
field of interest [34]. In the future we intend to “hybridize” other search methods in a
similar way and to investigate in detail the hybrid behavior of different combinations
of various probabilistic measures and learning methods.

Many of recent feature selection methods have been implemented in Feature Se-
lection Toolbox. The software has been used to demonstrate the differences between
different criteria and differently selected feature subsets. The importance of feature
selection for classification performance has been clearly shown as well.
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