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SELF-REPRODUCING PUSHDOWN TRANSDUCERS 

A L E X A N D E R M E D U N A A N D L U B O Š L O R E N C 

After a translation of an input string, x, to an output string, r/, a self-reproducing 
pushdown transducer can make a self-reproducing step during which it moves y to its input 
tape and translates it again. In this self-reproducing way, it can repeat the translation n-
times for any n > 1. This paper demonstrates that every recursively enumerable language 
can be characterized by the domain of the translation obtained from a self-reproducing 
pushdown transducer that repeats its translation no more than three times. 

Keywords: pushdown transducer, self-reproducing pushdown transduction, recursively enu­
merable languages 

AMS Subject Classification: 68Q45 

1. I N T R O D U C T I O N 

In this paper, we introduce and discuss a self-reproducing pushdown transducer, 
which represents a na tu ra l modified version of an ordinary pushdown transducer. 
After a t ranslat ion of an input string, x, to an output string, y, a self-reproducing 
pushdown transducer can make a self-reproducing step during v/hich it moves y to 
its input t ape and t ransla tes it again. In this self-reproducing way, it can repeat 
the translation n-t imes, for n > 1. This paper demonstrates tha t every recursively 
enumerable language can be characterized by the domain of the translation obtained 
from a self-reproducing pushdown transducer tha t repeats its translation no more 
than three times. 

This characterization is of some interest because it does not hold in terms of 
ordinary pushdown transducers . Indeed, the domain obtained from any ordinary 
pushdown transducer is a context-free language (see [1]). 

2. PRELIMINARIES 

This paper assumes t h a t the reader is familiar with the theory of automata and 
formal languages (see [3, 6]). 

For a set Q, Card(Q) denotes the cardinality of Q. For an alphabet V, V* 
represents the free monoid generated by V under the operation of concatenation. 
The identity of V* is denoted by e. Set V+ = V* - {e}; algebraically, V + is thus the 
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free semigroup generated by V under the operation of concatenation. For w e V*, 
\w\ denotes the length of w. For every i e { 0 , 1 , . . . , \w\}, Suffix(w, i) denotes w's 
suffix of length i; analogously, Prefix (w, i) denotes M'S prefix of length i. 

A queue grammar (see [2]) is a six-tuple, Q = (V,T,W,F,s,P), where V and W 
are alphabets satisfying VnW = 0, T CV, F CW, s e (V - T)(W - F), and 
P C (V x (W - F)) x (V* x W) is a finite relation such that for every a e V there 
exists an element (a, b, x, c) e P. If u, v e V* W such that u = arb; v = rxc\ a eV\ 
r,x e V*; b,c e W; and (a, b,x,c) e P, then u => v [(a,b,x,c)] in G or, simply 
u => v. In the standard manner, extend => to =>n, where n > 0; then based on =>n 

define =>+ and =>*. The language of Q, L(Q), is defined as L(Q) = {w eT* : s =>* 
wf where f e F}. 

A left-extended queue grammar (see [5]) is similar to an ordinary queue grammar 
except that it records the members of V used when it works. Formally, a left-extended 
queue grammar is a six-tuple, Q = (V, T, W, F, s, P) where V, T, W, F and s have the 
same meaning as in a queue grammar. P C"(V x (W — F)) x (V* x W) is a finite 
relation (as opposed to an ordinary queue grammar, this definition does not require 
that for every a G V, there exists an element (a, b, x, c) e P). Furthermore, assume 
that # £ V U W. If u,v e V*{#}V*W so that u = w#arb; v = wa#rxc\ aeV\ 
r,x,w e V*; b,c e W; and (a, b, x,c) e P, then u => v [(a, b, x,c)] in G or, simply 
u => v. In the standard manner, extend => to' =>n, where n > 0, =>+, and =>*. The 
language of Q, L(Q), is defined as L(Q) = {v e T* : # s =>* w#vf for some w e 
V* and / e F}. 

3. DEFINITIONS 

A self-reproducing pushdown transducer is a 8-tuple M = (Q,T,Y,,Q,R,s,S,O), 
where Q is a finite set of states, T is a total alphabet such that Q C\T = 0, S C T | 
is an input alphabet, Q C T is an output alphabet, R is a finite set of translation | 
rules of the form u\qw —» U2PV with u\, U2, w,v eT* and q,p e Q, s G Q is the start 
state, S eT is the start pushdown symbol, O C Q is the set of self-reproducing states. 
A configuration of M is any string of the form %zqy%x, where x,y,z G T*, q G Q, 
and $ is a special bounding symbol (% £ Q ij r ) . If ?/igw —+ t^Pf e R, y = 
%hu\qwz%t, and x = S/ii^PzSta, where h,u\,U2,w,t,v,z G T*, r/,p G Q, then M | 
makes a translation step from y to x in M, symbolically written as y t=> x [u\qw —> | 
W2pf] or, simply y t1^ ^ in M. If y = %hq%t, and x = %hqt%, where t,h eT*, q e O, 
then M makes a self-reproducing step from y to x in M, symbolically written as 
y r=> x. Write y => x if y t=^ ^ or y r=> x. In the standard manner, extend => 
to =>n, where n > 0; then, based on =>n, define =>+ and =>*. Let w,v e T*; M \ 
translates w to v if SSstuS =>* %q%v in M. The translation obtained from M, T(M), \ 
is defined as T(M) = {(w,v) : $Ssw$ =>* %q%v with tu G £*, v G ST, <? G Q}. Set 
£>omain(T(M)) = {ti;: (w,x) G T(M)} and Range(T(M)) = {x : (w,x) G T(M)}. 
Let n be a nonnegative integer; if during every translation M makes no more than n 
self-reproducing steps, then M is an n-self-reproducing pushdown transducer. Two 
self-reproducing transducers are equivalent if they both define the same translation, j 

In the literature, there often exists a requirement that a pushdown transducer, I 
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M = (Q, r , E, ft, R, 5, S, O), replaces no more than one symbol on its pushdown and 
reads no more than one symbol during every move. As stated next, we can always 
turn any self-reproducing pushdown transducer to an equivalent self-reproducing 
pushdown transducer that satisfies this requirement. 

Theorem 1. Let M be a self-reproducing pushdown transducer. Then, there is 
an equivalent self-reproducing pushdown transducer, N = (Q, T, E, ft, R, 8, S, O), in 
which every translation rule, u\qw —> u2pv G R, where u\,u2l w,v G T* and q,p G Q, 
satisfies \u\\ < 1 and \w\ < 1. 

P r o o f . (Sketch) Consider every rule u\qw —> u2pv in M with \u\\ > 2 or 
\w\>2.N simulates a move made according to this rule as follows. First, N leaves 
q for a new state and makes \w\ consecutive moves during which it reads w symbol 
by symbol so that after these moves, it has w recorded in a new state, (qw). Prom 
this new state, it makes |ui | consecutive moves during which it pops u\ symbol by 
symbol from the pushdown so that after these moves, it has both u\ and w recorded 
in another new state, (u\qw). To complete this simulation, it performs a move 
according to (u\qw) —> u2pv. Otherwise, N works as M. A detailed version of this 
proof is left to the reader. • 

4. RESULTS 

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L. 

P r o o f . Recall that every recursively enumerable language is generated by queue 
grammar (see [2]). Clearly, for every queue grammar, there exists an equivalent 
left-extended queue grammar. Thus, this lemma holds. • 

Lemma 2. Let Qf be an left-extended queue grammar. Then there exists a left-
extended queue grammar, Q = (V,T,W,F,s,R), such that L(Qr) = L(Q),W = 
I U Y U { 1 } , where X, Y, {1} are pairwise disjoint, and every (a,6,x,c) G R satisfies 
either a eV-T, beX, xe(V-T)\ c G I U { 1 } or a G V-T, bGyu{l}, x G 
T*, c€.Y. Q generates every h G L(Q) in this way 

#a0q0 

=* a0#x0q\ [ (a0 , go, ^o, <1i)] 
=> a0a\#x\q2 [(a\,q\,z\,q2)} 

=> a0a\... ak#xkqk+i [(ak> Qk, *k, qfc+i)] 
=> a0ai... akak+i#Xk+iyiqk+2 [(ak+i, Qk+uyu Qk+2)} 

--> a o a i . . . akak+i • • • ak+m-iT^k+m-i^i • • • ym-iQk+m 
[(ak+m-l,Qk+m-l,ym-l,Qk+m)\ 

=-> a 0 a i . . • akak+i...ak+m#yi • • • Vm^+m+i [(ak+m,Qk+m,ym,Qk+m+i)} 
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where fc,ra>l, a{eV-T for i = 0,...,k + m, Xje(V-T)* for j = l,..., fc+ra-1, 
s = a0q0, ajXj = Xj-iZj for j = 1 , . . . , k, ai... a^x^ = z0...Zk, ak+i... ak+m = 
Xk, go,9i,..-9ib+m G J V - F and gfc+m+i G F, zu...,zk G ( V - T ) * , y i , . . . , y m G 
T*, h = yiy2...ym-iym, gk+i = 1. 

P r o o f . See Lemma 1 in [4]. • 

Lemma 3. Let Q be a left-extended queue grammar satisfying the properties given 
in Lemma 2. Then, there exists a 2-self-reproducing pushdown transducer, M, such 
that Domain(T(M)) = L(Q) and Range(T(M)) = {e}. 

P r o o f . Let G = (V,T,W,F,s,P) be a left-extended queue grammar satisfying 
the properties given in Lemma 2. Without any loss of generality, assume that 
{0,1} H (VU W) = 0 . For some positive integer, n, define an injection, t, from P to 
({0 , l} n — {l}n) so that t is an injective homomorphism when its domain is extended 
to (VW)*; after this extension, t thus represents an injective homomorphism from 
(VW)* to ({0, l } n —{l}n)*; a proof that such an injection necessarily exists is simple 
and left to the reader. Based on t, define the substitution, v, from V to ({0, l } n — 
{l}n) so that for every a G V, v(a) = {t(p) : p G P, p = (a,b,x,c) for some x G 
V*; b,c€ W}. Extend the domain of v to V*. Furthermore, define the substitution, 
/i, from W to ({0, l } n - {l}n) so that for every q G W, /j,(q) = {t(p) : p G P, p = 
(a, b, x, c) for some a G V, x G V*; b,ce W}. Extend the domain of fi to W*. • 

Construction 1. Construction of M. Introduce the self-reproducing pushdown 
transducer 

M = (Q, T U {0,1, S}, T, 0 , R, z, S, O) 

where Q = {o,f,z} U {(p, i) : p G W and i G {1,2}}, O = {o,f}, and R is con­
structed by performing the following steps 1 through 6. 

1. if a0q0 = s, where a G V — T and q G W — F, 
then add Sz —> uS(q0, l)w to R, for all w G fi(q0) and all u G ^(ao); 

2. if (a,q,y,p) e P, where a G V - T, p,g G VV - F , and y G ( V - T ) * , 
then add S(q, 1) —* uS^p, l)w to i?, for all w G /x(p) and n G 1/(2/); 

3. for every q G IV - F , add S(q, 1) -> 5(r/, 2) to R; 

4. if (a,q,y,p) G P , where o G ^ - T , p,q G IV - F , and y G T*, 
then add ^(r/, 2)?/ —* 5(p, 2)w to i?, for all w G /x(p); 

5. if (a,q,y,p) G P , where o G F - T , qeW-F, y G T*, and p G F , 
then add ^(g, 2)y - • SoS to R; 

6. add o0 -+ Oo, ol -+ lo, oS -> c, 0c -* cO, lc -> cl, 5c -> / , 0/0 -> / , 
1/1 -4 / to R. 

For brevity, the following proofs omits some obvious details, which the reader can 
easily fill in. The next claim describes how M accepts each string from L(M). 
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Claim 1. M accepts every h G L(M) in this way 

$-S;zyiy2...ym-iym$ 

=> $5o(?o, i>yiy2... ym-iym$*o 

=> $5i(?i, i)yiy2... ym-iym$^i 

=> $5k(?k, i )y iy2 •..ym-iymUk 
=> $5k (<7k, 2 ) y i y 2 . . . ym-iym$tk 

=> $ 5 k ( ? k + i , 2 ) y i y 2 . . .ym-iym$*k+i 
=> $5k(<Ik+2,2)2/2.. • ym-iy m $*k+2 

.=*• $9k( k+m, 2)ym$tk+, 
t=Ф $дkSo$tk+mS 

r=Ф $gkSotk+mS$ 
t = Ф l $gкStk+moS$ 

.=*• $gkStk+mc$ 
t=ФŁ $щSc$vi 

.=*• $Щf$Vl 

r==> $uфi$ 
=Ф $u2fv2$ 

=Ф ^u^fv^î 
=Ф $/$ 

in M, where fc,m > 1; 9o,9i,... ,gk+m G VV-F; y i , . . . ,y m G T*; ^ G /x(<Io<?i • • • Qi) 
for i = 0, l,...,fc + m; 5./ G ^ ( d 0 d i . . .dj) with d i , . . . , ^ - G (V - T)* for 
j = 0 , 1 , . . . , fc; d0di ...dk = a 0 a i . . . afc+m where a i , . . . , afc+m G V - T , d0 = a 0, 
and 8 = a0q0; 9k = £k+m (notice that i/(a0ai. . .a*.+m) = /i(</o<7i • • .?fc+m)); 
Vi G Prefix(ii(q0qi...qk+m), |/-*(?o?i ...?*+m)| - * ) for t = l , . . . , t> with 1; = 
K?o?i---9ib+m)|; Uj G Suffix(i/(a0ai...ajb+m), | i / (a 0ai . . .a f c + m) | - j ) for j = 
1, . . . , w with tu = | i / (a 0 a i . . . a f c+m) |; /i = j/ii/2 • • • ym-iym> 

P r o o f of t h e C l a i m . Examine steps 1 through 6 of the construction of R. 
Notice that during every successful computation, M uses the rules introduced in 
step i before it uses the rules introduced in step i + 1, for i = 1 , . . . ,5 . Thus, in 
greater detail, every successful computation $Szh$ =>* $/$ can be expressed as 

$S'zyiy2...ym-iym$ 
=> $5o(<?o, i )y iy2 . . . ym-iym$*o 
=> $yi(91, i )y iy2 • • • ym-iym$*i 

=> $9k(qk, i ) y i y 2 . . . ym-iy m $*k 
=> $yk(9k. 2 ) y i y 2 . . . y m - i y m $ t k 
=> $5k (9k+i» 2 )y iy2. . .ym-iym$*k+i 
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=> $gk(qk+2,2)y2y3---ym-iym$tk+2 
=> $9k(qk+3, 2)1/32/4 . . . ym-iym$tk+3 

t=> $gk(qk+m, 2)ym$tk+m 

t=> $gkSo$tk+mS 
=>* $/$ 

where k,m > 1; h = yxy2.. -ym-iym, q0,qi,... ,qk+m G W - F ; j / i , . . . , y m G 
T*; ^ G n(q0qi... <7i) for i = 0 , 1 , . . . , fc + m; £/ G iv(d0rfi... d?) with 
di,...,dj G (V — T)* for j = 0,1,.. . ,fc; d0d\...dk = a0a\...ak+m where 
a i , . . . ,ak+m €V — T, d0 = ao, and 5 = aotfo-

During $gkSo$tk+mS ==>* $/$ only the rules of 6 are used. Recall these rules: 
oO -> Oo, ol -> lo, oS -> c, 0c -> cO, lc -> cl, 5c -> / , 0/0 -> / , 1/1 -> / . 
Observe that to obtain $/$ from $gkSo$tk+mS by using these rules, M performs 
$gkSo$tk+mS =>* $/$ as follows 

$gkSo$tk+mS 
r-=> $gkSotk+mS$ 
t=>L $gkStk+moS$ 
t-=> $gkStk+mc$ 
t=>L $uiSc$v1 

t =* $ U i / $ V i 

r=» $ U i / V i $ 

=» $W2 /^2$ 

=» $uxufvzu$ 
=> $/$ 

in M, where yfc = ^+m5 Vi G PreRx(ii(q0qi... <Zk+m), Mtfogi - • • 9Jb+m)| -<) for * = 
1 , . . . , v with v = |/x(9o9i • - • 9*+m)|; **i G Su.ffix(i/(a0ai... ak+m), W(a0ai... ak+m)\ 
—j) for j = 1 , . . . , w with w = \v(a0a\... a*.+m)|. This computation implies gk = 
tk+m- As a result, the claim holds. D 

Let M accepts h G L(M) in the way described in the above claim. Examine 
the construction of R to see that at this point P contains (a0,q0,z0,qi)y..., 
(ak,qk, Zk, qk+i), (ak+i,qk+i,yi, qk+2), • • •, (ak+m-i,qk+m-i,ym-i,qk+m), (ak+m, 
qk+m, ym, qk+m+i), where 2 1 , . . . , Zk G (V — T)*, so G makes the generation of h in 
the way described in Lemma 2. Thus /i G I>(G). Consequently, L(M) C L(G). 

Let G generates /i G I/(G) in the way described in Lemma 2. Then, M accepts h 
in the way described in the above claim, so L(G) C L(M); a detailed proof of this 
inclusion is left to the reader. 

As L(M) C L(G) and L(G) C L(Af), L(G) = L(M). 
From the above Claim, it follows that M is a 2-self-reproducing pushdown trans­

ducer. Thus, Lemma 3 holds. • 
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T h e o r e m 2. For every recursively enumerable language, L, there exists a 2-
self-reproducing pushdown transducer, M , such tha t Domain(T(M)) = L and 
Range(T(M)) = { e } . 

P r o o f . This theorem follows from Lemmas 1,2 and 3. • 

(Received August 27, 2004.) 
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