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K Y B E R N E T I K A — VOLUME 40 ( 2004) , NUMBER 6, P A G E S 7 0 3 - 7 1 4 

EFFICIENCY OF SOME ALGORITHMS 
FOR PREDICTION IN FINITE STATIONARY 
TIME SERIES 

PAVEL RANOCHA 

Important characteristics of any algorithm are its complexity and speed of real cal­
culations. From this point of view we analyze some algorithms for prediction in finite 
stationary time series. First, we review results developed by Bondon [1] and then we derive 
complexities of Levinson and innovations algorithm. It is shown that time needed for real 
calculations of prediction is proportional to theoretical complexity of the algorithm. Some 
practical recommendations for selection of the best algorithm are given. 
Keywords: stationary time series, multistep prediction, Levinson's algorithm, innovations 

algorithm 

AMS Subject Classification: 60G25 

1. INTRODUCTION 

Let {Xn,n G N} be real-valued, (weakly) stationary process with zero mean and 
covariance function j(k) defined on probability space (fi,.4, P). Let L2(ft,.4, P) 
denote the Hilbert space with inner product (X,Y) = EXY. Let H{Xn,n G M} 
be the Hilbert subspace of L2 generated by variables Xn,n G M. If M = {/,... , n} , 
we simply write H{Xn,n G M) = H^n. We use the symbol P/,n for orthogonal 
projection operator onto H^n. Finally, assume that Hi,n C Hi,n+i for all n G N. 

It is well-known that if we write the optimal linear prediction of variable Xn+h 
based on the knowledge of X\,... , Xn in the form 

n 

Xn+h(n) = P\ynXn+h = / v
Qn,i^n-|-l-i, 

i= l 

then the prediction coefficients a£ = ( a j ^ , . . . , a ^ n ) T can be obtained by solving 
the system of linear equations 

r„a£=7n,/.> (1-1) 
where 

rn = h(i-j))lj=v 7„ , , = (7(n + / x - l ) , . . . , 7 W ) T . (1-2) 
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Mean square error is given by 

vn = E[Xn+h - Xn+h(n))2 = 7(0) - llhT-^nA. 

The main disadvantage of the direct method is its high numerical complexity. It 
is necessary to find the solution of the system, the dimension of which is n, where n 
is usually large. Moreover, if we get a new observation, we have to repeat the whole 
procedure. 

It is natural to ask whether it is possible to solve the described problem more 
efficiently. Probably, the first effective method derived for the construction of pre­
dictions with finite past was the Levinson algorithm (see [5]). It is based on the 
existence of relations between prediction coefficients recurrent with respect to num­
ber of observations which is equal to order of matrix Tn. Innovations algorithm, 
which was derived later (see e. g. [4]), works with the properties of projection opera­
tor and orthogonal decomposition but it does not use the assumption of stationarity. 
That is why its complexity is s.till very high (see below). 

The procedures using also recursion with respect to prediction step were deduced 
by Bondon in [1]. The author derived several methods enumerating prediction co­
efficients and mean square errors. (Similar relations for infinite time series were 
derived earlier, see e.g. [2].) Quite recently, Brockwell and Dahlhaus [3] deduced 
some recursive properties of orthogonal projections which lead to a variety of differ­
ent prediction algorithms (e.g. Durbin-Levinson, Burg and Whittle algorithms). 

For the calculation of their numerical complexity, Bondon supposed that multipli­
cations (divisions) are much more time demanding than summations (subtractions). 
No other operations occur. With the help of our programme implementation we 
show that these simplifying assumptions do not effect the results significantly and 
theoretical complexities computed on their basis may be used to compare the ef­
fectiveness of the rated procedures. We use the same programme to measure time 
needed for the calculations. In conclusion we deduce the numerical complexity of 
Levinson and innovations algorithm and find out that their efficiency is far beyond 
Bondon's methods. 

2. CLASSICAL METHODS 

Levinson's algorithm (see [5]), which we describe now, can be generally used for solv­
ing the system of linear equations with so called Toeplitz matrix. It is a square matrix 
with elements t{j, for which there exist real numbers u _ n + i , . . . , un, • • • , un-\ such 
that Uj = Ui-j, i,j = 1 , . . . ,n . It is obvious that the matrix (1.2) satisfies this 
condition. The system (1.1) can be written in the form 

M 

^2aM,nl(k-n) = Sk, fc = 0,1,...,M, 
n=0 

where Sk = j(M + h — fc). Its solution is given by 

ao,o = ---J-. (2.1) 
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M 
<*M+1 - £ CLM,kl(M + 1 - k) 

aAf+i.Af+i = _D (2.2) 

7 (0 ) - E ^ 7 ( A f + l-fc) 
k=0 

and 

GM+l,k = CLM,k - Ck aAf+ l ,M+l i fc = 0 , 1 , . . . , M . (2 .3) 

The constants C^f are computed from 

CS - $ } , (2-4) 

M 

^ = ^rr^ (2-5) 
7 ( 0 ) - £ OГ_17(лí-fc) 

fc=0 

and 

см=см_-1_смсм-^ к = 1Л,...,М. (2.6) 

The next method, which was derived later, was the innovations algorithm (see 
e.g. [4]). If we write the prediction in the form 

n + / i - l 

P\,nXn+h = ____, 0n+h-lj(Xn+h-i — -Xn+h-j), (2-7) 

j=h 

then the prediction coefficients 9nj are obtained from 

v0 = rc(l,l), 

0 n n _* = i;"1 [ K(n + 1, A: + 1) - _)T 0k,k-j0n,n-jVj , k = 0,1,.. . , n - 1, (2.8) 

and 

n - l 

v„ = /c(n + 1, n + 1) - £ en,n-iVj, (2.9) 
i=o 

where rc(£,s) = cov(X t ,X s) . Mean square error is computed using 

n + / i - l 

v* = K(n + h,n + h)- X ) ^ - i j ^ n + h - j - i . (2.10) 
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The main disadvantage of this procedure is its high numerical complexity (see 
further). On the other hand, it can be used more generally, namely when predicting 
in non-stationary processes. It can also be easily modified for the ARMA processes 
in order to reduce the number of operations being made during the computations 
(see [4]). 

3. BONDON'S PROCEDURES 

In this section we introduce several propositions and some very effective algorithms, 
which were derived by Bondon, [1]. 

Proposition 3.1. For any step h > 1 and any n > 1, 

h- i 
an,i = an+h-l,i+h-l + 2l-/ an+h-l jan,i > 2 = 1, • • • , n. (3.1) 

Proof. See [1], Proposition 3.1. 

Proposition 3.2. For any step h > 1 and any n > 1, 

an , = a 
/ i - i 

n,i — "n+l. i+l ^ "n+lД^n.tJ 
+ a*Z.,ai i = 1,... ,n 

and 

^ = ^ ; í + («níl,i) 2^-

(3.2) 

(3.3) 

Proof. See [1], Proposition 3.2. 

Proposition 3.3. For any step h > 1 and any n > 1, 

«o=7(0), 

and 

aí = 
n - l 

7 ( n + h - 1) - J ľ a n - i Л ( n + Һ-І-1) 
1 = 1 

Љ h љ л 

Ҝ - i ) " 1 , 

<Ч. = a„-i,. - o„,na„-i,„-i, i = 1, • • • ,n - 1, 

« « = « » - i - ( < » Г Ч - i -

(3-4) 

(3-5) 

(3.6) 

Proof. See [1], Proposition 4.1. D 
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The first method described (denoted by Ax) is based on Proposition 3.3 only. 
Another possibility (A2) consists of calculating al

ni for l < n < p + s - l from 
(3.4)-(3.6) and enumerating a£{ for 2 < h < s with the help of (3.1). The mean 
square errors i£, 2 < h < s can be obtained from 

vh = \\Xp+h - Pi,PXp+h\\
2 = 7(0) -J2<Mi + h-l). (3.7) 

i=l 

Proposition 3.4. For any step h > 1 and any n > 1, 

< i = < ^ l + GnAX-l . i " <nGn- l ,n - i , » = 1, . . • , U - 1 (3.8) 
and 

vh
n = vn'

1 + [(a^i1)2 - « „ ) a K _ i . (3-9) 

Proof. See [1], Proposition 4.2. • 

In the first step of A3 coefficients ani and errors vn, 1 < n < p are computed 
from (3.4) -(3.6). In the second stage we use the equalities (3.4), (3.8) and (3.9) to 
enumerate a£ { and v% for 2 < h < s. 

The next alternative (A±) is the procedure, in the first stage of which we calculate 
ani and vn for 1 < n < p + s — 1 according to (3.4) - (3.6). These values are used in 
the second stage, when we get ani and vn, 2 < h < s} p <n < p + s — h from (3.2) 
and (3.3). 

The next proposition shows a different approach for calculating prediction coef­
ficients based on the orthogonal decomposition of the space Hi,n. 

Proposition 3.5. For any step h > 1 and any n > 1, 
n 

Pl,nXn+h = J2cH(Xi ~ Phi-lXi) (3.10) 
i = l 

and 

where 

^ T W - Ë ^ Г A 1 - ! (3.11) 
i = l 

cЫ 
i-1 

7(n + h - i) - ^2 al-i,Mn + h-i + j) (vUГ1. (3.12) 

Proof. See [1], Remark 4.2. 

Proposition 3.5 is used to construct algorithm Ab. First, ani and vn for 1 < n < p 
are computed from (3.4)-(3.6). The coefficients a£fi and errors v$, 2 < h < s, are 
then be obtained according to (3.10)-(3.12). 
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4. COMPARISON OF EFFICIENCIES 

In this section we derive the complexity of both Bondon's and classical algorithms 
described above, namely innovations and Levinson, and compare them. 

When using A\, the number of multiplications and divisions needed for computa­
tion of all the prediction coefficients and mean square errors concerning Xp+\ (p ) , . . . , 
Xp+S{p) is summarized in Table 1. 

Table 1. The complexity of algorithm A\. 

Coefficients 
to be computed 

Used 
relation 

Number of 
multiplications 

Range of 
indices 

ah 

un,n 
< i 

< 

(3.4) 

(3.5) 

(3.6) 

n 

n - 1 

2 

n = 1 , . . . ,p, Һ = 1,. . . ,S 

n = 1,.. . ,p, Һ = 1,. . . ,S 

n = 1,.. . ,p, Һ = 1,. . . ,S 

The total complexity of A\ is 

1Vi = s Y^(2n + 1) = p2s + 2ps. 
n = l 

The numerical complexity of procedure A2 is shown in Table 2. 
The total complexity of the algorithm is 

/ V 2 = p 2 + | ( 5 s + 5 2 - 2 ) + s 2 - 3 . 

The difference between A\ and A2 is 

p/j N2-N\= p 2 ( l - s) + | ( s 2 + 5 - 2) + s2 - 3. 

We can see that the sign of the difference depends on the length of the series p and 
the maximum step s. 

The complexity of operations made when A3 is used can be found in Table 3. 
The total complexity of the procedure is equal to 

N3 = p 2 + p ( 3 s - l ) + 5 - 1 . 

Comparing it with the complexity of A\, we can see that 

1V1-/V3 = ( 5 - l ) ( p 2 - p - l ) > 0 , 

for any p > 1. We come to the same conclusion when we compare .A3 and A2 since 
for s > 1 we have 

N2-N3 = ^-{s - 1) + (s - 2){s + 1) > 0. 
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Table 2. The complexity of algorithm A2-

Coefficients Used Number of Range of 
to be computed гelation multiplications indices 

a n,n (3-4) n n = 1,.. . , p + S - 1, Һ = 1,. . . , s 

°n,i (3-5) n - 1 n = 1,.. . , p + S - 1, Һ = 1,. . . , s 

< (З.б) 2 n = 1, . . . , p + S - 2, Һ = 1,. . • ,s 

< i (з.i) p(h-l) /i = 2 , . . . , s 

v$ (3-7) V /г = 2 , . . . , s 

Table 3. The complexity of algorithm .A3. 

Coefficients Used Number of Range of 
to be computed relation multiplications indices 

°n,n (3-4) n n = 1, . . . ,p 

an,« (3-5) n - 1 n = 1, . . . ,p 

VІ 
n 

(3.6) 2 n = 1, . . . ,p 

a л - (3.8) 2 ( p - l ) /l = 2 , . . . , s 

Vp (3.9) 3 /l = 2 , . . . , s 

аh 
аp,p (3-4) P h = 2 , . . . , s 

The numerical complexity of the next method (_44) is summarized in Table 4. 
Its total complexity is 

s p+s-h 

N4 = (p + s - l)2 + 2(p + s - 1) + J2 E ( n + 2)-
/i=2 n=p 

Since 

we have 

s p+s-h -

5 3 5 3 (n + 2) = -(s 3 + Зps2 + Зs2 - Зps - 4s), 

N4=p2 + ^ps(s + 3) + ^(s - l)(s2 + 10s + 6). 

However, algorithm A4 is still less effective than A3, since for every s > 2, 

N. - Nз = (* - 1) \p(s - 2) + ^s(s + 10) > 0 . 
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Table 4. The complexity of algorithm .A4. 

Coefficients Used Number of Range of 
to be computed relation multiplications indices 

< „ (3.4) n П = 1,. .. ,p + 5 - 1 

<І (3.5) n - 1 П = 1,. .. ,p + 5 - 1 

vn (3.6) 2 П = 1,. .. ,p + 5 - 1 

< i (3.2) n n = p, . . . ,p + 5 — /l, Һ = 2, . . • , 5 

< (3.3) 2 n = p , . . . ,p + s — Л, /г = 2,.. • , 5 

Table 5. The complexity of algorithm A5. 

Coefficients Used Number of Range of 
to be computed relation multiplications indices 

< n (3.4) n n = 1, . . . ,p 

< i 
(3.5) n - 1 n = 1, . . . ,p 

Vn (3.6) 2 n = 1,... ,p 

PI,І-IXІ ĽLiø-i) 
cř (3.12) _ _ . < /г = 2 , . . . , s 

Ą (3.11) 2p /l = 2 , . . . , 5 

The number of operations made when using .A5 is shown in Table 5. 
The total complexity of this procedure is 

Since for every p > 2 

JW(f + i)+P(f-i). 

A ř , - A ř s = - ( p - 2 ) ( p + l ) + l > 0 , 

.A3 is still the most efficient method among those we mentioned. 
The number of multiplications made during the application of the innovations 

algorithm is summarized in Table 6. It is important to realize that coefficients 
0n,n-k and errors v^ do not need to be computed for all values of their indices [see 
(2.7) and (2.10), the lower bound is /i, not 1]. 
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Table 6. The complexity of innovations algorithm. 

Coefficients 
to be computed 

Used 
relation 

Numbeг of 
multiplications 

Range of 
indices 

n,n-k (2.8) 2к + l к = 0,. . . , min(p, n) — 1, 

n = 1,... , p + s - 1 

Vn 
(2.9) 2n 7 1 = 1 , . . . , p - 1 

P\УІ-\XІ ĽŁi(í-i) 
vh

v 
(2.10) 2p Һ = 1, . . . ,5 

The total complexity of the innovations algorithm is equal to 

P-\ p+s—1 min(p,n) — 1 

Nj= J2 £ (2* + i) + £ 2 n + ?(p-i) + 2Ps 

П = l k=0 П=\ 

= ^P 3 +P 2 (S + 1 ) + P Í 2 S - ^ J 

When deducing the complexity of the Levinson algorithm, it is essential to realize 
that the constants C^ (for any £, M) have to be calculated only once, since their 
values are identical for any step h. It results from the fact that they depend only 
on the elements of the matrix T which does not change when h differs. The total 
complexity of the method is summarized in Table 7. 

Table 7. The complexity of Levinson algorithm. 

Coefficients Used Numbeг of Range of 

to be computed гelation multiplications indices 

Oo° (2.4) ì 

°0 (2.5) 2M + 1 Aí = l , . . . , p - 1 

c? (2.6) 1 fc = l , . . . ,M,M = 1,... , p - l 

а°0 
(2.1) 1 h = 1,... ,s 

< (2-2) 2M + 1 M = 1,... ,p,h = l,.. • ,« 

*ľ (2.3) 1 k = 0,...,M-l,M = 1, 

h= 1,... ,s 

. . . ,p, 

v$ (3.7) P h = 1,... ,s 



712 P. RANOCHA 

The total complexity of the algorithm is equal to 

/VL = -p 2 (8 + l) + - p ( 7 5 - l ) + 8. 

Comparing innovations and Levinson algorithm with the so far best method ^3 we 
get 

Ni-N3= şP3+P s(P-l)-\ 8 + 1 > 0 

for every p > 2 and 

NL - N3 = l-p\2,s - 1) + l-ps + 1 > 0, 

respectively. 
We come to a conclusion that the algorithm denoted A% is the most effective 

among the methods described. On the contrary, the highest number of operations 
has to be done when applying the innovations algorithm. It is partially caused by 
its generality. As we noted above, it can be used when predicting in non-stationary 
time series. 

Table 8. The complexity of the algorithms for p = 50. 

Maximum step 

Algorithm 1 2 3 5 7 10 

Aг 2600 5 200 7800 13000 18 200 26000 

A2 
2 598 2 801 3056 3 722 4 596 6297 

A3 
2 600 2 751 2 902 3 204 3 506 3959 

A4 2 600 2 755 2 965 3 544 4375 6059 

Aъ 
3825 5 200 6575 9325 12075 16200 

Innovations 46800 49603 52511 58650 65233 75975 

Levinson 7651 11577 15 503 23355 31207 42985 

To make a better idea about theoretical complexity of described methods, we 
summarize the results for values p = 50 and p = 200 in Tables 8 and 9. It is obvious 
that the difference between the most efficient method .A3 and the classical algorithms 
is really large. 

For the practical application of described methods we chose a series from [2] 
(p. 525, series A, l l t h - 6 0 t h observation), which was identified as ARMA(1,1) with 
parameters <px = 0,92, tfi = -0,58 and a2 = 0,097. Solving the Yule-Walker 
system, we get 

( 0 , 1 7 for it = 0, 

I 0,1 x0,92 f c~ 1 for A;> 1. 

Numerical results are resumed in Table 10. 
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Table 9. The complexity of the algorithms for p = 200. 

Maximum step 

Algorithm 1 3 5 10 20 

Aг 40400 121200 202000 404000 808000 

A2 
40398 42 206 44822 54897 90197 

A3 
40400 41602 42804 45809 51819 

A, 40400 41815 44054 53309 87919 

A5 
60300 101300 142300 244800 449800 

Innovations 2 747200 2830011 2914450 3132 775 3601250 

Levinson 120601 242003 363405 666910 1273920 

Looking at Tables 8 and 10, we find out that the real and theoretical complexi­
ties of the algorithms are almost directly proportional. Furthermore, the computer 
used for testing (processor Intel Pentium 4, 1.8GHz, operational memory 256MB, 
programmed in Borland Pascal) was able to make approximately 1.5 to 2 million 
operations per second. Hence, if we do not have to compute thousands or more 
predictions, all algorithms give the desired results in real time. 

Table 10. Real time complexity of the algorithms for p = 50 in milliseconds. 

Maximum step 

Algorithm 1 2 3 5 7 10 

AІ 1,60 3,24 4,83 8,07 11,26 16,09 

A2 
1,65 1,76 1,92 2,37 2,92 3,96 

Aз 1,59 1,65 1,76 1,87 1,98 2,19 

A< 1,64 1,70 1,86 2,25 2,86 3,96 

A5 
2,03 2,91 3,79 5,49 7,14 9,45 

Innovations 23,60 24,70 26,30 29,10 32,40 37,30 

Levinson 4,61 7,03 9,39 14,28 19,17 26,42 

Diгect method 142,30 143,40 145,60 148,30 151,10 155,50 

During computations another advantage of algorithm A$ appeared, namely the 
numerical stability. While the results obtained by other methods showed some inac­
curacies, results given by A$ were quite precise. It could be caused by lower number 
of divisions and operations overall. 

(Received February 17, 2004.) 
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