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DESIGN OF ROBUST OUTPUT AFFINE 
QUADRATIC CONTROLLER1 

VOJTECH VESELÝ 

The paper addresses the problem robust output feedback controller design with guar­
anteed cost and affine quadratic stability for linear continuous time affine systems. The 
proposed design method leads to a non-iterative LMI based algorithm. A numerical exam­
ple is given to illustrate the design procedure. 

Keywords: robust control, parameter dependent Lyapunov function, affine quadratic sta­
bility, LMI approach 

AMS Subject Classification: 93D15 

1. I N T R O D U C T I O N 

Robustness has been recognized as a key issue in the analysis and design of control 
systems for the last two decades. During the last decades numerous papers deal­
ing with the design of static robust output feedback control schemes to stabilize 
uncertain systems have been published, Benton and Smith [1], Crusius and Trofino 
[3], Ghaoui and Balakrishnan [4], Geromel, De Souza, and Skelton [7], Gyurkovics 
and Takacs [9], Hejdis and et al [10], Henrion and et al [11], Rose and Jabbari [12], 
Kozakova [13], Li Yu and Jian Chu [15], Mehdi, Al Hamid and Perrin [16], Pakshin 
[18], Pogyeon and et al [19], Tuan and et al [21], Xu and Darouch [24], Yong Yan 
Cao and You Xian Sun [25]. Various approaches have been used to study the two 
aspects of the robust stabilization problem, namely conditions under which the lin­
ear system described in state space can be stabilized via output feedback and the 
respective procedure to obtain a stabilizing or robustly stabilizing control law. 

The necessary and sufficient conditions to stabilize the linear continuous time 
invariant system via static output feedback can be found in Kucera and De Souza 
[14] and in Vesely [22]. In the above and other papers, the authors basically conclude 
that despite the availability of many approaches and numerical algorithms the static 
output feedback problem is still open. 

Recently, it has been shown that an extremely wide array of robust controller 
design problems can be reduced to the problem of finding a feasible point under a 

xThe first version of this paper has been presented at IFAC 15th World Congress, Barcelona 
2002. 
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Biaffine Matrix Inequality (BMI) constraint. The BMI has been introduced in Goh, 
Safonov and Papavassilopoulos [8]. In this paper, the BMI problem of robust con­
troller design with output feedback is reduced to a LMI problem, Boyd, El Ghaoui, 
Feron and Balakrishnan [2]. The theory of Linear Matrix Inequalities has been used 
to design robust output feedback controllers in Benton and Smith [1], Crusius and 
Trofino [3], El Ghaoui and Balakrishnan [4], Henrion and et al [11], Li Yu and Jian 
Chu [15], Tuan, Apkarian, Hosoe and Tuy [21], Vesely [22]. Most of the above 
works present iterative algorithms in which a set of LMI problems are repeated until 
certain convergence criteria are met. The V-K iteration algorithm, proposed in El 
Ghaoui and Balakrishnan [4], is based on an alternative solution of two convex LMI 
optimization problems obtained by fixing the Lyapunov matrix or the gain controller 
matrix. This algorithm is guaranteed to converge, but not necessarily, to the global 
optimum of the problem depending on the starting conditions. 

In this paper, new necessary and sufficient conditions to stabilize continuous 
time systems via static output feedback have been used to design a robust affine 
controller. For guaranteed cost and affine system this leads to a non iterative LMI 
based algorithm. The design procedure guarantees with sufficient conditions the 
robust affine quadratic stability for closed loop systems. 

The paper is organized as follows. In Section 2 the problem formulation and 
some preliminary results are brought. The main results are given in Section 3. In 
Section 4 the obtained theoretical results are applied. 

We have used the standard notation. A real symmetric positive (negative) definite 
matrix is denoted by P > 0 (P < 0). Much of the notation and terminology follows 
the references of Kucera and De Souza [14], and Gahinet, Apkarian and Chilali [5]. 

2. PRELIMINARIES AND PROBLEM FORMULATION 

This paper is concerned with the class of uncertain linear systems that can be de­
scribed as 

x(t) = (Ac0 + Acle1 + ... + Ackek)x(t) 
= Ac(6)x(t) [ } 

where 9 = [01, . . . ,9k] G Rk is a vector of uncertain and possibly time varying real 
parameters. 

The system represented by(l) is a polytope of linear affine systems which can be 
described by a list of its vertices 

x(t) = Dcix(t), i= 1,2,...,_V (2) 

where N = 2k. 
The system represented by (2) is quadratically stable if and only if there is a 

Lyapunov matrix P > 0 such that 

DT
ciP + PDci < 0, i = l ,2 , . . . , /V. (3) 

A weakness of quadratic stability is that it guards against arbitrary fast parameter 
variations. As a result, this test tends to be conservative for constant or slow-varying 
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parameters 9. To reduce conservatism when (1) is affine in 9 and the parameters 
of system are time invariant, in Gahinet, Apkarian and Chilali [5], the parameter-
dependent Lyapunov functions P(9) has been used in the form 

P(0) = P0 + Pi01+... + PkOk. (4) 

Other types of parameter-dependent Lyapunov functions have been proposed in De 
Oliviera, Bernussou and Geromel [17] for the stability analysis of linear discrete time 
systems and for the analysis and the design of continuous time systems with affine 
type uncertainties in Henrion, Alzelier and Peaucelle [11] and in Takahashi, Ramos, 
and Peres [20]. 

We shall consider the following linear time invariant continuous time uncertain 
systems 

x(t) = A(9)x(t) + B(9)u(t) (5) 

y(t) = C(9)x(t), x(<S) = x0 

where x(t) G Rn is the plant state; u(t) G Rm is the control input; y(t) G Re is the 
output vector of system; A(9),B(9),C(9) are matrices of appropriate dimensions 
depending affinely on 9 

A(9)=A0 + A191 + ... + Ak9k 

B(9)=B0 + B191+... + Bk9k 

C(9)=C0 + C191 + ... + Ck9k. 

Note that, in order to keep the poly tope affine property, the matrix B(9) or C(9) 
must be precisely known. The following definition and theorem by Gahinet, Apkar­
ian and Chilali [5] will be heavily exploited in the next development. 

Definition 1. The linear system 

x(t) = Ac(9)x(t), x(0)=xo (6) 

is affine quadratically stable if there exist k + 1 symmetric matrices Po, P i , . . . , P k 

such that 
P(0)=Po + Pi01 + ... + Pk0k>0 (7) 

and 
áV(xtJ)_ = x{t)T ^AT{9)p{e) + P{9)Ac(0) + ^ ) x(t) < 0 (8) 

dt 

tor0 = [9lt...,9k]. 

Note that quadratic stability corresponds to the case Ei = . . . = Pk = 0 . Suffi­
cient affine quadratic stability conditions are given by the next theorem. 
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Theorem 1. (Gahinet, Apkarian and Chilali [5].) Consider the linear systems 
governed by (6), where Ac(9) depends affinely on the uncertain parameter vector 
0 = [#i, • • •, Ok] and 9i satisfies 

M ( 9 i , 9 i ) , he^Vi), for i = l ,2,. . . ,A; (9) 

where O^Oi^v^^Vi are known lower and upper bounds. Let T and A denote the set 
of IV = 2k vertices of the parameters box (9) and of the rate of variation box (9), 
respectively 

r = { ( 7 i , - - . , 7 f c ) : 7 i = f i < or 7 i = 9(} (10) 

A = {(Ai,...,Ajfc) : \i = v_i or A* = v{} 

and let _ _ 
£i +Q\ Q-k+ ^k 

m — 

denote the average value of the uncertain parameters vector. This system is affine 
quadratically stable if Ac(9m) is stable and there exist k + 1 symmetric matrices 
Po, P i , . . . , Pk such that P(6) > 0 satisfies 

L( 7 , A) = -4C(7)TP(7) + P(7).4C(7) + P(A) - Po < 0 (11) 

for all (7, A) G T x A and 
ATPi + PiAci > 0 (12) 

for i = 1,2,.. .,&. 
When (11) and (12) are met, a Lyapunov function for (6) and all trajectories 9(t) 
satisfying (9) is given by 

V(x,9) =xT(t)P(9)x(t). 

The following performance index is associated with the system (5) 

/•OO 

J= (x(t)TQx(t)+u(t)TRu(t))dt (13) 
Jo 

where Q = QT > 0, R = RT > 0 are matrices of compatible dimensions. 

The problem studied in this paper can be formulated as follows: 
For a continuous time system described by (5) design a static output feedback con­
troller with the gain matrix F and control algorithm 

u(t) = Fy(t) = FC(8)x(t) (14) 

so that the closed loop system 

x = (A(9) + B(0)FC(9))x(t) = Ac(9)x(t) (15) 

is affine quadratically stable with guaranteed cost. 
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Definition 2. Consider the system (5). If there exists a control law u* and a 
positive scalar J* such that closed loop system (15) is stable and the closed loop 
value cost function (13) satisfies J < J*, then J* is said to be the guaranteed cost 
and u* is said to be the guaranteed cost control law for system (5). 

3. THE MAIN RESULTS 

In this section we present a new procedure to design a static output feedback con­
troller for affine continuous time linear systems (5) which ensure the guaranteed cost 
and affine quadratic stability of closed loop system. The following theorem is one of 
the main results. 

Theorem 2. For system (5) and Lyapunov function V(0) = x(t)TP(9)x(t) > 0 
the following statements are equivalent: 

• There exist positive definite matrices Q and R that system (5) is static output 
feedback affine quadratic stabilizable (AQS) with guaranteed cost 

roo 
\ T n T i / x(t)T(Q + C(9)TFTRFC(9))x(t) dt < xTP(9)x0. (16) 

Jo 

• There exist k + 1 symmetric matrices P 0 , P i , . . . , Pk that P(6) > 0, positive 
definite matrices Q and P , and matrix F such that the following inequality 
holds 

(.4(0) + B(9)FC(6))TP(6) + P(9)(A(9) + B(9)FC(9)) + P(9) 

+Q + C(9)TFTRFC(9) < 0. (17) 

• There exist k + 1 symmetric matrices P 0 , P i , . . . , Pk that (7) holds, positive 
definite matrices Q and P , and matrix F such that the following inequality 
holds 

A(9)TP(9) + P(9)A(9) - P(9)B(9)R~l 

B(0)TP(9) + P(9) + Q + G(9)TR~1G(9) < 0 (18) 

where 
G(9) = B(9)TP(9) + RFC(9). 

• There exist k + 1 symmetric matrices P 0 , P i , . . . , Pk that (7) holds, positive 
definite matrices Q and P , and matrix F such that the following inequality 
holds 

A(9)TP(9) + P(9)A(9) - P(9)B(9)R-lB(0)TP(9) + P(9) +Q<0 (19) 

G(9)<j)(9)-lG(9)T - P < 0 (20) 

where 
<j>(9) = A(9)TP(9) + P(9)A(9) 

-P(9)B(9)R~1B(9)TP(9) + P(9) + Q. 
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The proof of this theorem goes the same way as in [22, 23]. • 

Because of Theorem 1, inequalities (17), (18) and (19), (20) are negative in the 
box (10) if they take negative values at the vertices of (10); that is if they are 
negative for all 7 in the vertex set T given by (10) and inequality (12) holds for all 
i = 1,2,.. . , k. In the vertex set (10) define the polytope system in the form 

{{DUE1,H1),...,\DN,EN,HN)} (21) 

where N = 2k and 

D\ =A0 + A\61 + ... + Ak9k 

E\ =Bo + B1ei + ... + Bk0k (22) 

H\ = Co + C\9_1 + . . . + Ck9_k. 
In (21) each vertex is calculated for the k variables 0;,z = 1,2,...,A: alternatively 
taken at maximum and minimum values. For poly topic system inequality (19) could 
not be solved within LMI therefore let us introduce the inverse Lyapunov matrix 
S(9) as in Gahinet, Nemirovski, Laub and Chilali [6]. 

S(0) = P(9)~l =S0 + S\0\ +... + Sk6k. (23) 

Note that equality (23) holds for all vertices (7, A) G T x A. For the new variable 
S(6), equations (11), (12) and (19) read as follows 

L( 7 , A) = 5(7)A(7)T + A(7)S(j) - (S(\) - 50) < 0 (24) 

SiAT + AciSi > 0, t = l , 2 , . . . , k (25) 

and 
5 (7 )A(7) r + ^4(7)5(7) - B(1)R~lB(1)

T 

-(5(A) - 50) + 5(7)Q5(7) < 0. (26) 

For reducing the conservatism of the AQS test [5] nonnegative matrices Mi > 0, 
i = 1,2,. . . , k are added to (26) and (25) as follows 

5(7)A(7)T + ^4(7)5(7) - B^R^B^f 

k 

-(S(\) - So) + 5(7)Q5(7) + 1> 2 M. < 0 (27) 
1 = 1 

and 
SiAji + AciSi + Mi > 0 , i = 1,2,...,*;. (28) 

The resulting test is generally less conservative for (27) and (28). However, this 
improvement is at the expense of higher computational needs since the number of 
optimization variables is increased in the new LMI problem (27), (28). Combining 
the results of (19), (27), (28) and (20) the following algorithm for computation of 
a robust output feedback controller with guaranteed affine quadratic stability has 
been proposed. 
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Algori thm. 

Step 1. Find the solution of (27) at all vertices (7, A) G T x A with respect to the 
variables So, S\,..., S^, M\, M 2 , . . . , Mk from the following LMI inequalities 

N(7,A) 5(7)Q V.(7) 
<?5(7) -Q 0 

vf(7) 0 -д- 1 
< 0 (29) 

where 

N(7, Л) = 5 ( 7 ) D j + DІS(J) - EiR~lEj - (S(X) - 5 0) + ^ ]Mj 

VІ(J) = (Ej + RE„Яi5(7))Гñ-1 

for i = 1,2, ...,N 
Kj = SjAj + AjSj + Mj>0 

Mj > PlI, 5(7) > P2I, Sj < p3I, j = l,2,...,k 

(30) 

where I is identity matrix with corresponding dimensions and p\,p2,P3 are 
some nonnegative constants. For the first iterative procedure Fv = 0. 

Step 2. Calculate the value of the inverse Lyapunov matrix Sni and Pni, i = 
1,2,.. . , IV at all vertices of 7 G T. 

Step 3. Compute the value of Riccati equation at all vertices of (7, A) G T x A. 

4>i(X) = DjPni + PniDi - PniEiR-'EjPni + (P(X) - P0) + Q. (31) 

Step 4. Compute the gain matrix F from the following LMI inequalities 

< 0 (32) 

i = 1,2,... ,JV and A G A 

Kj + SjCjFTBj + BjFCjSj > 0 (33) 

for j = 1,2,. . . , A;. 

—R Ei Pni + RFHi 
(EjPni + RFHi)T fofr) 

If the solutions are feasible for designer then stop, else Fv = F and go to Step 1. 
Usually, the repeated procedure generates less conservative results than first one. 
The convergence of the above special iterative procedure has not been proven yet, 
however if the argument of [4] that V-K iterative procedure is guaranteed to converge 
is taken into account we can conclude that the proposed algorithm is guaranteed to 
converge too, but not necessarily to the global optimum of the problem depending 
on starting conditions. 
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Note that for example 5(7) in (23) reads for i = 1 as follows 

5 ( 7 ) = S0 + Si£i + S 2 £ 2 + . . . . 

If the LMI problems (29) - (33) are feasible, the resulting gain matrix F guarantees 
the affine quadratic stability and simultaneously ensures the guaranteed cost (16) 
for the closed loop system (15). 

4. EXAMPLES 

In this example we consider the linear model of two cooperating DC motors. The 
problem is to design two PI controllers for a laboratory MIMO system which will 
guarantee affine quadratic stability of a closed loop uncertain system. The system 
model is given by (5) with a time invariant matrix affine type uncertain structure, 
where 

A0 

Aг 

A2 = 

0 --0.2148 0 0 0 0 0 0 0 0 
1 -1.014 0 0 0 0 0 0 0 0 
0 0 0 -0.2605 0 0 0 0 0 0 
0 0 1 -0.9107 0 0 0 0 0 0 
0 0 0 0 0 -0.1639 0 0 0 0 
0 0 0 0 1 -0.8137 0 0 0 0 
0 0 0 0 0 0 0 -0.2279 0 0 
0 0 0 0 0 0 1 -0.8251 0 0 
0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 

0 -0.025 0 0 0 0 0 0 0 0 
0 -0.1395 0 0 0 0 0 0 0 0 
0 0 0 -0.0938 0 0 0 0 0 0 
0 0 0 -0.2911 0 0 0 0 0 0 
0 0 0 0 0 0.0188 0 0 0 0 
0 0 0 0 0 0.0208 0 0 0 0 
0 0 0 0 0 0 0 -0.0333 0 0 
0 0 0 0 0 0 0 -0.1173 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

' 0 0.0125 0 0 0 0 0 0 0 0 ' 
0 0.0594 0 0 0 0 0 0 0 0 

0 0 0 0.0116 0 0 0 0 0 0 
0 0 0 0.0308 0 0 0 0 0 0 
0 0 0 0 0 --0.0188 0 0 0 0 

0 0 0 0 0 --0.0156 0 0 0 0 

0 0 

0 0.0208 0 0 
0 -0.0333 0 0 

0 0 
0 0 
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Bn = 

B2 = 

0.3148 0 
0.0478 0 

0 -0.1028 
0 -0.0091 

-0 .0841 0 
-0 .0287 0 

0 0.3676 
0 0.2448 
0 0 
0 0 

' -0.0094 0 
0.0151 0 

0 0.0019 
0 -0.003 

-0.0121 0 
-0 .03 0 

0 -0.064 
0 0.0189 
0 0 
0 0 

в, = 

cr = 

0.0625 0 
-0.0798 0 

0 - 0.0462 
0 - 0.0449 

0.0016 0 
0.0072 0 

0 0.077 
0 -0.005 
0 0 
0 0 

" 0 0 0 0 " 
1 0 0 0 
0 0 0 0 
1 0 0 0 
0 0 0 0 
0 1 0 0 
0 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

The number of polytope systems are equal to 4 and the polytope vertices are com­
puted for two variables 9\, 92 alternatively taken at their maximum 6\ and minimum 
0^i = 1,2. The decentralized control structure for the two PI controllers can be 
obtained by the choice of the static output feedback gain matrix F structure. It is 
given as follows 

" / u 0 /is 0 
0 / 2 2 0 / 2 4 

ғ = 
The results of calculation of a static output feedback gain matrix F for quadratically 
and affine quadratically stable system for different Q = qI,R = rl, |#i | = \02\ = 1 
and pi,i = 1,2,3 are summarized in the following table. 

JV r p\ pi pъ quad aff.quad 
1 1.5 1 1.5 ] L 0.166 -0.1342 -0.0954 
2 5 1 1.5 ] L 0.166 +0.307 -0.1277* 
3 10 1 1.5 ] L 0.166 -0.081 -0.1922** 
4 20 1 1.5 ] l 0.166 +1.11 -0.1148 
5 Ю"4 1 1.5 ] [ 0.166 -0.0164 +0.0011 
6 10"4 1 ю - 4 ] L 0.166 -0.0164 -0.0136 
7 0.1 1 1.5 ] L 0.166 -0.1383 -0.0386 
8 0.1 1 ю - 4 ] L 0.166 -0.1383 -0.1133 
9 0.1 1 0 ] L 0.166 -0.1383 -0.1449 
10 0.1 1 0 ] L 0 -0.1383 -0.1448 
11 Ю"6 1 0 ] L 0.166 -0.0015 -0.0015 
12 Ю"6 0.1 0 L 0.166 -0.0134 -0.0178 

where quad and aff quad denote the max (real (eigenvalue)) of the closed loop system 
for quadratic or affine quadratic stability, respectively. The solutions are feasible for 
11 and 12 cases. For other cases the closed loop system is quadratically or affine 
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quadratically stable but the minimal value of cost is not guaranteed, 
output feedback gain matrix for cases * and ** are given as follow 

The static 

ғ* 

ғ** = 

-0.3582 
0 

-1.0708 
0 

0 
-0.7927 

0 
-2.6952 

-0.376 
0 

-0.6317 
0 

0 
-0.7535 

0 
-1.671 

The second example has been borrowed from [1] to demonstrate the design of affine 
quadratic controller. It is known that the presented system is static output feedback 
stabilizable. Let (A,J3,C) in (5) be defined as 

A = 

-0.036 0.0271 0.0188 -0.4555 
0.0482 -1.010 0.0024 -4.0208 
0.1002 <7i(*) -0.707 q2(t) 

0 0 1 0 

B = 

0.4422 0.1761 
93(0 -7.59222 

-5.520 4.490 
0 0 

C =[0 1 0 0 ] 

with parameters bounds -0.6319 < qx(t) < 1.3681,1.22 < q2(t) < 1.420, and 
2.7446 < q^(t) < 4.3446. Find a stabilizing output feedback matrix F. The 
nominal model of (A0,B0) is given by the above matrices when we substitute for 
the entries _40(3,2) = 0.3681, A0(3,4) = 1.32 and £0(2,1) = 3.5446. The struc­
tured model uncertainty (5) (Ai,A2,Bi) are matrices with the following entries 
Ai(3,2) = 1,-A2(3,4) = 0.1 and £ i ( 2 , l ) = 0.8 with Q{ e ( -1 ,1) , i = 1,2. Other 
entries of the above uncertain matrices are equal to zero. The number of polytope 
systems are equal to 4. 
The nominal model is unstable with eigenvalues: 

eig {-2.0516, 0.2529 ± 0.3247i, -0.2078}. 

For the first "iterative" procedure, Fv = 0, the closed-loop eigenvalues of 4 polytope 
systems are as follows 

eig CL{0.6885, 0.5726, 0.0713 ± 1.1077Í, -4.0422}. 

Closed-loop system is not stable. After using the iterative procedure the closed-loop 
eigenvalues of 4 polytope systems are as follows 

ez#CL{-0.04504± 0.35551, -0.1472 ± 0.43041, -0.1896 ±0.4636i, . . . , -688.527}. 

The eigenvalues of closed-loop system for the case ||#i|| = ||02|| = 0 are equal as 
follows 

e^CL{-0 .1668± 0.44321, -0.403, -660.91} 
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and output feedback gain matr ix 

ғ = 
34.51 

103.03 

Hence, the affine quadrat ic stability conditions are met the closed-loop system is 
affine quadratically stable. Because, the available solution in the above design LMI 
procedure is only may be feasible but are not strictly (best value of t = 5 .17310 - 4 ) 
the cost minimal value (14) is not guaranteed. For the above example we obtain the 
value of cost as follows 

/•OO 

= / (*(*) 
J0 

T Z7VT r>TPri\ „(4.\\ A* s- QQ Q O £ £ Q l l ~ _ l | 2 J = / (x(ty (Q + C1 F1 RFC) x{ť)) át < 33.82663 | | x 0 | | 

5. CONCLUSIONS 

In this paper, we have proposed a new procedure for robust o u t p u t feedback con­
troller design for linear systems with affine and possible t ime varying parameter 
uncertainty. T h e feasible solution of the o u t p u t feedback controller with sufficient 
conditions guarantee the affine quadrat ic stability and guaranteed cost. T h e design 
procedure is based on new necessary and sufficient conditions for output feedback 
stabilizability of linear systems and a non-iterative LMI based algorithm. A valu­
able feature of the robust controller design procedure is t h a t quantitat ive information 
about the ra te of parameter variation is readily incorporated t o reduce conservatism 
in the t ime varying case. 
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