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K Y B E R N E T I K A — VOLUME 3 9 ( 2 0 0 3 ) , NUMBER 6, P A G E S 7 3 9 - 7 5 2 

GOODNESS-OF-FIT TESTS BASED ON A>DIVERGENCE 

TERESA PEREZ AND JULIO A. PARDO 

In this paper a new family of statistics based on /^-divergence for testing goodness-
of-fit under composite null hypotheses are considered. The asymptotic distribution of this 
test is obtained when the unspecified parameters are estimated by maximum likelihood as 
well as minimum K<f>-divergence. 
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1. INTRODUCTION 

It is known that the problem of testing goodness-of-fit of statistical data with the 
hypothesis that the law of distribution of the observable random variable belongs to 
a given class of distributions, can be reduced by means of grouping observations to 
the analogous problem for a discrete distribution. This is possible when we group the 
model into m classes Ci, C2,...,Cm with corresponding probabilities 7Ti, 7T2,..., 7rm. In 
this case, the general goodness-of-fit problem reduces to testing a hypothesis about 
the parameter n = (71*1, 7T2,..., 7rm)* from a multinomial random variable X = (Xi, 
K2,..., XmY of parameters (n,7ir, 7r2,..., 7Tm)*, i.e., 

H0 : 7r = 7T0 = (Tro!, . . .^™)* e n 0 (1.1) 

where IIo C A m = {P = (pi , . . . ,pm) , Pi > 0 and Y^iLiPi = 1} ls the null model 
space of probability vectors. The null hypothesis may completely specify 7r, e.g., 
a simple hypothesis. Otherwise the null hypothesis is composite, specifying 7r as a 
function of a smaller number of unknown parameters which needs to be estimated 
from the experimental data. 

To solve these problems Cressie and Read [5] and Read and Cressie [15] pro­
posed a generalized statistic which they called the power divergence statistic. This 
family contains the Pearson's chi-square statistic, the loglikelihood ratio statistic, 
the Freeman Tukey statistic, and the modified likelihood ratio. Zografos et al 
[17] proposed to use a family of statistics based on the Csiszar divergence fam­
ily [6] to solve this problem under simple hypotheses and Morales et al [9] un­
der composite hypothesis. This family contains the power divergence statistic for 
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tp(x) = <px(x) = (A(A + l ) ) " 1 (x A + 1 - (A + l)x + A) , A e R, A ^ -1,0 and it is 
given for two probability distributions n\ and 7T2 by 

Dv(ҡuҡ2) = V т Г 2 i ^ ( ~ ) , 

for a convex function, <p : [0, oo) -> R U {oo} , where 0(p (0/0) — 0 and 0(p(p/0) = 
lim ((p(u)/u). 

n—>oo 

M. C. Pardo [10] consider for this proposal a family of statistic based on the R^ 
divergence introduced and studied by Rao [13], Burbea and Rao [4] and Burbea [3]. 
This family is defined, for two probability distributions TT\ and 7T2, as 

R^TTUTT,) = H* (^~^j ~ i ( H * ( 7 n ) + H(j>(n2)) 

where H^ (n) is the </>-entropy introduced by Burbea and Rao [4] so that H^ (n) = 
— Y^iL\ v̂71"*) w-^h 0 : (0, co) -> i? being convex function. Some interesting proper­
ties of the ^-entropies can be seen in Vajda and Vasek [16]. 

If any case we can observe that implicitly or explicitly the goodness-of-fit tests are 
based on distances, dissimilarities, or simply divergences. For this reason, we can use 
measures of divergences different from the (^-divergences and the /^-divergences. 

There is an important family of divergences, the ^-divergence, introduced and 
studied by Burbea and Rao [4]. This family is define for two probability distributions 
7Ti and 7T2 as 

-fi-VOri,̂ ) = Yl^u _7r2ž) 
ż = l 

Ф(nц) Ф(lГ2i) 

Kli 7T2i 

where 0 is a convex function defined in an interval I not containing the origin. The 
convexity of the K<f,-divergence is obtained if the following property holds 

[4>"(Pi)-<HV"(Pi)\ x W(ki) -PW"(Qi)] - [<p'(Pi) + <p'(qi)]2 > 0, x = l,2,...,m. 

An important family of ^-divergences, studied in Burbea and Rao [4], is ob­
tained if we consider the function 

{ x los! x if r — 1 

( r - 1 ) l(xT—x) i f r E ( l , 2 ] 
In this case the K^T-divergence is convex if r G [1,2]. 

On the basis of the ^-divergence between the observed proportions X/n and the 
hypothec proportions 7r0, one can introduce a statistic for the goodness-of-fit problem 
which will be denoted by K^X/n,7r0). Under the simple hypothesis, Perez and 

Pardo [11] established, for 7r0 = (1/m,..., 1/mf that f. . ' with ip(x) = 
(p (1/m) 

(j)(x)/x is asymptotically chi-square distributed with m — 1 degrees of freedom. 



Goodness-of-fit Tests Based on K^-divergence 741 

In the next section we obtain the asymptotic distribution formula of the statistic 
nK(j)(X/n^7r) under composite hypotheses. Here it is possible to estimate n by the 
maximum likelihood method but we propose to use the minimum A^-divergence 
estimate, analyzed by Perez and Pardo [12], defined as n = argminI^(X/n,7r) . 

2. ASYMPTOTIC DISTRIBUTION OF ^-DIVERGENCE STATISTICS 

Let X = (.Ki, ...,Xm) be a random vector with multinomial distribution Mm(n,7r) 
and consider the null hypotheses 

Ho : * = /(<?) € n 0 C Am (2.1) 

where n 0 = {/(i?) : 6 € O0} with/(t?) = (/i(rf) / m (0 ) ) ' andtf = ( t f i , ^ - A ) < € 
0o C Rs is an unknown parameters vector. To solve this goodness of fit problem 
it is necessary to choose an estimate ir G n 0 so that it is as close as possible to 
X/n and we assume that the model is correct, i.e., exist a value d* G ©o with 
/(i/*) = 7r* G n 0 , where n* is the true value of the multinomial probability. The 
most commonly way of finding the value of TT is the maximum likelihood method, 
that it is equivalent to minimize over d G O0 C Rs the Kullback divergence given 
by 

D(X/n,f(ů)) = J2Xi/n\og-/ 
.=1 M 

Xijn 
(dY 

In general, we can choose as estimator of i9 the value d verifying 

D(X/n,f0))= inf D(X/n,f{d)) 
tfeOo 

where D is a given divergence measure. Depending on the chosen divergence mea­
sure, different estimators are obtained. On one hand, if 

i=l Ш) 

then the corresponding i? is the well-known minimum x 2 estimator, studied in this 
context by Fryer and Robertson [8]. On the other hand, if we consider the K$-
divergence, the corresponding d will be called the minimum ^-divergence estima­
tor. 

The following definition was given in Perez and Pardo [12]. 

Definition 2.1. The minimum ^-divergence estimator of d* is any i?^ G Go (the 

closure of ©o) such that 7T0 = f(ti(j>) and 

Kt(X/n,f(d*)) = inf R>(X/n,/(<?)). 
vEOo 
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So the minimum I^-divergence estimator is $$ = a rgmini f^Kyn, / ($)) . 

As it can be seen in Perez and Pardo [12] in order to assure that d^ exists and 
is consistent for d* it suffices, under (2.1) to satisfy regularity conditions of Birch 
[1]. Moreover, if ip is a convex function and <p(x) = 4>(x)/x is concave, we have the 
following properties 

(1) i i 

fy = 0* + (A^AD^A^ (/V(*-)) * (X/n - 7T*) + op(n-) (2.2) 

(2) The asymptotic distribution of yfn ($0 — d* j is 

N(0AADAD)-1At
D(Dvl{n.))-^Dn.-n*n*t)(Dv,(n.))-

hAD(At
DAD)-1) (2.3) 

/ df>($*)\ 
with AD = (ADij), ADij = [ Qfl) ^ ' ( O * * = l , . . ,m; j = l , . . . ,s , 
where -D(Cli...jCm) = diag(ci, ...,cm) for any (ci,. . . ,cm) G Mm. 

If we want to use the statistic K^X/n,^^)) for testing (2.1) we need to know its 
asymptotic distribution under the null hypotheses so that we can construct a critical 
region. 

Theorem 2.1. If 0 is a convex function, tp(x) = <f)(x)x is concave and ti^ G Iln 
is the minimum ^-divergence estimator of TT* = /($*) then, under the regularity 
conditions of Birch [1], W* = y/n(X/n — n^) converges in distribution to a multi­
variate normal random vector W* as n -» oo, with mean vector 0 and covariance 
matrix 

Econ = 

= (D„. -TT 'TT* ' - (Dn. -TT'TT**) Ll-L (Dn. -it***1) +L (DK. - T T V * 4 ) L<) (2.4) 

where 

L = (D^(».))"§ AD(ADAD)-XAD (Dv ' (**)H (--5) 

with 

A _(_fi_n\,,^ 
Amj- \~dd-)*{i) 

Proo f . Prom Birch's conditions we get 

f(h)-f(^={^1)(h-^)+op(n^) 
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since j ^ - d* jj = Op^-*) by (2.3). Consequently by (2.2) 

f(h) ~ W ) = ( ^ j p ) ( ^ D ^ D ) - 1 ^ (IV(jr.)) * (X/n - TT*) + ̂ (n-*) = 

= (o v , ( . . ) ) - "A D (Ai ,A D ) - 1 A t
D (Z) ¥ , , ( 7 r . ) ) " (X/n-7r*) + o p ( n - ^ . 

We can write 

( f / r / ) = ( l ) W n - 0 + M n - i ) (M) 

with L defined in (2.5) and I the identity m xm matrix. As y/n(X/n — 7r*) has an 
asymptotic normal distribution with mean zero and covariance matrix D^* — 7r*7r**, 
we get 

( X/n - n* \ L f ( D„. - 7r*7r** (Dw . - 7r*7r*<) L« \ \ 
V n \ 7 r 0 - 7 r * J r^io1 \'\L(Dir.-n*7r*t) L (LV - TTTT*4) L* ) ) 

Using multinomial normal distributions properties we get that the asymptotic dis­
tribution of the vector 

y/n (X/n — 7T*) — \/n (ic^ — 7T*) = \fn (X/n — 710 ) 

is normal with mean zero and covariance matrix En(i?*) defined in (2.4). 

Theorem 2.2. If 0^, 4>B are convex functions and <PA(X) = (J>A(X)/X, (PB(X) = 
<J)B(X)/X are concave, then 

пКфА(Х/п,жфв) A j>(tf*)Z? 
п.—Voo -——-» 

i=l 

where £i(i/*) are the nonzero eigenvalues of D ^ ^ E T ^ i ? * ) , with ££>(i9*) defined in 
(2.4), r = rank(£/?(rd*)D(p> (7r*)E£)(i?*)) and Z; are independent standard normal 
variables. 

P roo f . Define 

F(x) = (X - 7Ti0£ 
Hx) H^B) 

X 7Г. гøß 

Taylor series expansion of F(Xi/n) around 7r^B yields 

\ 2 

F(Xi/n) = F(*i4B)+n*i*B)iXi/n-*i*B)+F'\*i*B)iXi/n / ^ +oP(n~l) = 

= 4>'(n^B)(Xi/n - 7r^B)2 + o p(n _ 1) , 
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so that 
771 

K^X/n.ir^g) = ^(Xi/n ~ ^ B ) V ( ^ > B ) + op(n~l). 
2 = 1 

Therefore 

nK^(X/n^B) = W^D^AfoB)W^+op(l) 

where Wn = y/n(X/n - TT 0 B) and ^ ( ^ B ) = diag ((pf

A(7r1(/)B), ...,<p'A(itm4,B)). 
Since 7t(f)B is the minimum ^-divergence estimate, it is consistent in the sense 

n<f>B = 7r* + op(l) (see Perez and Pardo [12]). This implies that 

nK^A(X/n,^B) = WnD^A^B)Wn + op(l) ^ W*'D^^W* 

where W* = y/n(X/n - TT*) . 
From Theorem 2.1, we know that W* has the multivariate normal distribution 

with mean vector 0 and covariance matrix £jr>(?/*) defined in [2.4]. So the distribu­
tion of W* 2?̂ ,/ (-*)W* is YH=i &($*)%? where &($*) are the nonzero eigenvalues 
of .Dy,/ (-*)ED($*), r = rank(SJD(i9*)I)y?/ (7 I.*)E JD(I9*)) and Zi are independent stan­
dard normal variables. • 

Corol lary 2.1. If 4>(x) = (j)i(x) = xlogx, then 

n—s>oo 

P r o o f . In Theorem 2.2 we have proved that 
r 

nK^X/n,^) A 2>(<nZ? 
n.—Von ' -» Ś = l 

where r = r a n k ( E D ^ * ) - ^ . ) - ! £ £ > ( $ * ) ) with ED(tf*) defined as in (2.4), Z. are in­
dependent standard normal variables and &($*) are the nonzero eigenvalues of T = 
D(jr.)-i (7-V - 7r*7r** - (£>». - 7r*7r*<) L* - L (Dn. - -K***1) + L (£>». - »-•**') L*). 

The eigenvalues of T are the same as the eigenvalues of 

T* = D^)_iD^.-n*n*t-(Dn.-ir*7r*t)Lt-

- L (Dn. - 7r*7r**) + L (D„. - TT'TT*1) - ^ D ^ - i = 

- V r i L ^ " ^ V r * + D (- . r» L ^ " , r V ) I V i -
Since TT*1 = y/n**D, , 1 , we have 

(IT*) 2 ' 

S = D, ,_i ( 2 V - * * * * ' ) I>, . i = 
(7T*) 2 V / (TT*) 2 

= 2), ^iDn*D, , . 1 - 2 3 , i7r*7r**23 + N_i = 2 - v ^ v ^ * 7 . 
(7T*) 2 * (TT*) 2 (TT*) 2 ( T T * ) 2 
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and 

B = D, гL(Dҡ. -7r*7гłť)/J 1 = Vr* 
D. ,-LLD, I 

(**) 2 ( т * ) 2 

д 
(**) 2 

* _ * t ..iXíтrV D ч i = 
7Г*) 2 V У (тГ*) 5 

D{ҡ,riLD{ҡ,)Í2(I-Vҡ^Vҡ^) = SK 

with 

к D. 
Or-)" 

.LD. i = 
(тr*)2 

= D(ir.ri (D(„.)./-) A D ( i U o ) _ 1 4 (IV)'/2) D(_.} J = 

Hence 

T* = S - AD(ADAD)-1 ADS-

- SAD(ADAD)-XAD + AD(ADAD)-1ADSAD(ADAD)-1AD = 

= (I-V^V^*1)-AD(At

DAD)-1Ai

D(I-y/^y/^i)-

- (I-V^V^*1)AD(At

DAD)-1At

D + 

+ AD{ADAD)-1AD{I - V^^*1)AD(At

DAD)-1AD. 

As it is verified that Vn^Ao = 0 we get 

T* = I - V W T T ^ - AD(ADAD)-1AD. 

Now we are going to prove that T* is idempotent 

(T*) 2 = I-y/^y/^-AD{A1

DAD)-1 A'D-

- \/^\/^ + \/^\/^ -
- AD{At

DAD)-1AtD + AD{AtDAD)-1At

Dy/^V^ + 

+ AD{At

DAD)-1At

DAD{At

DAD)-1At

D. 

As AD{At

DAD)-1At

Dy/^y/7r*1 = 0 and Vn^y/K* = 1, we get 

(T*) 2 = / - \ j W ^ - ^ ( - ^ D ) " 1 - ^ = T*. 

Since T* is idempotent, its eigenvalues are either 0 or 1. The number of nonzero 
eigenvalues is equal to 

Trace(T*) = Trace (/) - Trace (y/iFVir*1) - Trace {AD{At

DAD)~1At

D) = 

= m - 1 - Trace (AD^A^AD)"1 Al

D) = m - 1 - s, 

since {Al

DAD)~lAl

DAD = Lxs- • 

Now we consider the maximum likelihood estimate, ff instead of the minimum 
/^-divergence. In the next theorem we calculate the asymptotic distribution of 
nK^X/n.Tx). 
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T h e o r e m 2.3. a) Under Birch's regularity conditions, if n G n 0 is the maximum 
likelihood estimate of 7r* = /(#*), then 

Wn = MX/n - it) 

converges in distribution to a multivariate normal vector W* as n -> oo, with mean 
vector 0 and covariance matrix 

SLOT) = Dn. - TT'TT** - (D(n.y/2) AL(ALAL)-lAL (D(n.)1/2) (2.7) 

/ o r / Q * \ \ 

where AL is an m x s matrix so that (AL)IJ = ( — ^ — - ) (TT*) -2 . 

b) Let 0 be a convex function and (f(x) = (j)(x)/x concave. Then 
V 

L nKф(X/n,ҡ) A тanzt 
n—>oo -í----/ 
n — ł o o 

ѓ = l 

where r = rank(EL(^*)o¥,,(w.)Ez,(t?*)) with E L ( I T ) defined as in (2.7), Z< are 
independent standard normal variables and £.are the nonzero eigenvalues of 

DV>-) (D-. -7TV** - (£>(,.)!/-) ^ ( ^ A L j - M J ; (D(W.)1/-)) 

c) For <j) = <f>T with r = 1, the statistic 

n ^ . ( X / n , 7 r ) - j * Xm-.- i -
n—>oo 

P r o o f . Using the asymptotic normality of the BAN estimate fr, it is straightfor­
ward to parallel the results given for the minimum if^-divergence estimate. 

a) See Theorem 14.8-4 of Bishop et al [2], pp. 511. 

b) In the same way as in Theorem 2.2 we write 

nK^(X/n,7r) = Tn(Xi/n-ni)
2ip\ni) = W'n

tD^in)Wn+op(l)-^W'tDlfi,(lT.)W' 

since TT = 7r* + op(l) because the maximum likelihood estimate is BAN. By a) we 
know that the asymptotic distribution of W* is normal multivariate with mean 
vector 0 and covariance matrix E L ( # * ) . 

So the distribution of W* D^^^W* is equal to Y^i=i 6 ( ^ * ) ^ where r is given 
by r = rank(EL('^*)-Dv?'(7r*)EL(^*)), where Z{ are independent standard normal 
variables and &(i?*) are the nonzero eigenvalues of 

IV(,r.) (D«. -it***1 - (D„.)± AL(ALAL)-lAL(D^) . 

c) It is straightforward from Corollary 2.1, since the maximum likelihood estimate 
equals the minimum ^-divergence estimate when (f> = </>T, with r = 1. • 
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3. APPLICATIONS TO TESTING COMPOSITE NULL HYPOTHESES 

Using Theorems 2.2 and 2.3 for large n and significance level a, we reject the null 
hyphotesis given in (2.1) if nK^^X/n,^) > ta where ta satisfies the condition 

supP[ J2Zi(ti)Z?>ta ) <a 

for independent standard normal variables Z;, r = rank(2(^)29^^^^£(tf)), and 
nonzero eigenvalues &(i?) of D^(w*y.E(tf), where E(i?) = E D W if 7r = i r ^ , is 
the minimum /^-divergence estimate or E(tf) = £ L ( $ ) , if 7r = TX is the maximum 
likelihood estimate. 

From a practical point of view we have two ways to carry out the test: 

a) Given d fixed we can find the value ta(d) verifying 

P [Y,ti(0)ZÍ>ta{ů)) <a 
^ І = l 

and then we can compute ta = sup £a(i9). 
i?ee0 

b) Given a value of the statistic we can calculate for each d 

p{ů) = P [J2^)Zf > пКфА{Х/п,п) 
кi=l 

and if supp(i?) < a the we have evidence to reject the null hypothesis. 
tfee0 

In the above theorems we have obtained the asymptotic distribution of all mem­
ber of the statistic family K^, under composite null hypotheses, which has been 
necessary to built the corresponding test. Now we calculate the asymptotic distri­
bution of nK<pA(X/n,/fr(f)B) when null hypotheses is not true so that it will allow us 
to determinate the asymptotic power of this tests. 

Theorem 3.1. Let 7ir = K^1) be the point in which we want to determinate the 
power. Assume that there exists 7r* = /($*) such that ir(f)B —> 7r*, 

(<T = argmjntf, (/(tf1),/(<?)), W1) # / ( * * ) ) 

and that under alternative hypotheses 

V n ( W n , ^ B ) - ( 7 r i , 7 r * ) ) A N(0,S) 
n—>oo 

with E = [ *l ---12 ) for Hni = Dni - 7ri7rJ, S 2 i = £12 and for one unknown 
\ 2-21 -^22 / 

matrix E22 which depends on the model under consideration. Then 
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with CT2(TTI) = Ti'S^iTi + T^22T2 + 2 ^ 1 2 ^ 2 where 

7i = M O'.M = (**£&) 
r - r*- S \t /*2 - (dK<p(P'l)\ 

P r o o f . Expanding in a Taylor's series K(f)A(X/n,n(pB) around 

(7Ti,7T*) = (7rn,7Ti2...,7rim,7rJ,7r2...,7rm) 

we have 
m 

K^X/n,^) = ^ ( T T I . T T * ) + ~ 3 {t\ (Xi/n - nu) + t\ (ni(t,B - < ) ) + o p ( n _ 1 ) 
i-l 

where *} = f d-^A\ and t? = ( * * £ < M > ) 

Denoting Tx = (*},...,*m)' a n d r 2 = (t?,-.,*^)*, we get 

K(fiA(X/n,7r(f)B) = K(pA(ir1,7r*) + 7\ (Xi/n-7TU) + T2 (TT^ -TT*) + op(n~1). 

So the asymptotic distribution of the random variables 

y/n (K^ (X/n, 7t(pB) - K^A (TTI , TT*)) 

and 
V^ (T[ (Xi/n - TTii) + F2 (*<i>B ~ TT*)) 

is the same. As 

v"( (X/n > 7r^) - (7r i ,7 r*) ) A iV(O.E) 
n—>oo 

with 

£ = ( ~~7ri ~~12 ^ 
V ---2i S22 y 

we have that 

V " (r.1 (Xi/n - TTH) + r i (TT^ - TT*)) - ^ iV(0,T1 'E7riTi+T;E22T2 + 2 ^ X 1 2 ^ ) . 
\ / n—>oo 

Prom Theorem 3.1, the asymptotic power in 7Ti is given by 

/MirO = P„AnKtA(X/n,^B) > ta) = 1 - FN(0tl) ( ' « " ^ ^ ' " > ) ) 

where >̂ a is the critical value such that 

s u p P ( £ & ( 0 ) Z ? > * J < a . 
tfee0 v ѓ = l 

Besides as ^ ( ^ i ) — r 1, the contrast is consistent in Praser sense [7]. 
n—>oo 



Goodness-of-ht Tests Based on K<p-divergence 749 

Remark 3.1. In order to apply the above test, we have to calculate a probability 
of a linear combination of chi-squared distributions. These probabilities can be 
computed using the methods given by Rao and Scott [14]. These authors suggest to 
consider the following approximate distributions of Y^i=i &(0*)Z?, 

i ) f O n * ? where £ = £ ^ &(0*)/r. 

ii) C(#*)xl where ^(tf*) = max{6(**),- . . ,&(**)}. 

iii) £(*•)(! + X2)xl where „ = ^ and A* = £ ( 6 ( ^ ^ f ) ) 2 . 

4. NUMERICAL EXAMPLE 

We consider a genetic problem in which each individual only can have one of six 
different genotypes and we want to test the probability of all of them. We collected 
information from 600 individuals and we classified them according to its genotype 
so that we build 6 classes. 

We test the following hypotheses 

Ho : 7T = / ( 0 ) = 

= (0?, 0*, (1 - 0i - 02)2 , 2tM2• 201(1 - 01 ~ 02), 202(1 - 01 - 02))* (4.1) 

where 0X > 0, 02 > 0 and 0i + 02 < 1, 

Table 1 shows the observed frequencies in each class 

Table 1. 

Genotype 
Observed Frequencies 

1 2 - 3 4 5 6 
30 90 94 98 89 199 

Firstly we have to estimate two parameters using the minimum i^-divergence 
method. In order to test the hypotheses (4.1) we are going to use the statistic 

nK(p2(X/n,7r(p2) = y^2/n(Xi/n - 7Ti)2 with (j)2 = x2 -
1 = 1 

(* ~ \ l 

and 002 = (01,02) are those values which minimize 

6 

nK^X/n,*) = J > (X./n - f(d))2 . 
І = l 

Then the minimum ^-divergence estimates are 0i = 0.197, 0 2 = 0.402, the 
probability vector 7i>2 = (0.038, 0.16, 0.16, 0.158, 0.158, 0.322)* and the statistic 
takes the value 0.288. 
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In order to determinate the size a critical region it is necessary to calculate the 
critical value to, such that 

P[J2^)Zf>tQ)=a. 
v » = l 

Particularizing in Theorem 2.2 for 0 = c/>2 we obtain that &(i/*) are the nonzero 
eigenvalues of 

I (£>-. - 7T*7T*' - (Dn* - 7r*7T*<) Ll - L (Dn* - 7T*7r*<) + L (Dn* - 7r*7r*') Ll) I 

with L = IAD(A1
DAD)~1 ADI, AD is an m x s matrix such that 

^ = (^p) for * = -.-~.6; ; = -.-. 
Replacing n* with TT^2 we get 

(Dt42 -n^n^ - (D*,a - T T ^ J L ' - L (£>*,a - T T ^ J + L (D*^ - T T ^ J L') = 

/ 0.046 0.022 0.022 -0.019 -0.019 -0.048 \ 
0.022 0.068 0.039 -0.042 0.020 -0.075 
0.022 0.039 0.069 0.019 -0.054 -0.077 

-0.019 -0.042 0.019 0.075 -0.053 0.024 
-0.019 0.020 -0.054 -0.053 0.075 0.024 

\ -0.048 -0.075 -0.077 0.024 0.024 0.117 / 

and the eigenvalues are 

£i(t9*a) = 0.0400; £2(t^2) = 0.248; &(ty a) = -0.0075; &(0*2) = 0.1635; & 0 U '-

0.0057; &0V2) =0.00014. 

r 
Prom Remark 3.1 it follows that the distribution of ~~ £i(Q*)Zf can be approxi-

t=i 
mated by 

i) The distribution of £(tf02)x2 where f(ifya) = £ [ = 1 6 ( ^ 2 ) / ^ 

ii) The 

£(0, a) = 0.075; xe.o.05 = 12-6; ^ J x e . o . o s = 0-945. 

distribution of f (^ 2 )Xr where <fOV2) = max |fiOV.)> ->£r(#02)} 

«Г(0*a) = 0.248; xІ.o.05 = 12-6; í(^a)Xв,o.0Б 

r 

max 

2 = 3.12. 

- ^ r 
iii) The distribution of f (ify2)(l + A2)x£ where */ = 2 

1 + A 

and 

. - г (Çi(óф2)-Wф2))2 
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A2 = 1.665; v = 2.25; X2,o.o5 = 5.99; |(^2)(1 + \2)xl = 1-27. 

Besides we have computed 6 samples with sample sizes equal to 1000, from a xl 

distribution and multiplying each one by the corresponding eigenvalues, we obtained 
the critical value of size a = 0.05 for ] C L i &0^2.)Xi> being equal to 1.2711. 

If we compare these values with the statistic nK^X/n^^) — 0.288, in all 
cases we get the same conclusion, there is no statistic evidence to reject the null 
hypotheses . 
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