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K Y B E R N E T I K A — V O L U M E 3 7 ( 2 0 0 1 ) , NUMBER 4, P A G E S 3 9 7 - 4 2 6 

THE ALGEBRAIC STRUCTURE 
OF DELAY-DIFFERENTIAL SYSTEMS: 
A BEHAVIORAL PERSPECTIVE 

H E I D E G L U E S I N G - L U E R S S E N , PAOLO VETTORI AND SANDRO ZAMPIERI 

This paper presents a survey on the recent contributions to linear time-invariant delay-
differential systems in the behavioral approach. In this survey both systems with com­
mensurate and with noncommensurate delays will be considered. The emphasis lies on 
the investigation of the relationship between various systems descriptions. While this can 
be understood in a completely algebraic setting for systems with commensurate delays, 
this is not the case for systems with noncommensurate delays. In the study of this class 
of systems functional analytic methods need to be introduced and general convolutional 
equations have to be incorporated. Whenever it is possible, the results will be linked to 
the relevant control theoretic notions. 

1. INTRODUCTION 

Delay systems is a classical topic in the control literature due to the well-known fact 
that the presence of delays makes the controller synthesis more difficult. In recent 
years, the theory of delay systems has attracted new attention. This is mainly 
caused by the fact that the low cost of data transmission makes centralized control 
strategies more convenient. Indeed, in many practical situations it is now possible 
to control many remotely positioned coupled plants by means of a unique controller. 
The use of communication lines usually causes the presence of not negligible delays 
in the system. 

Since delay systems are infinite-dimensional systems, they are usually treated 
with functional analytic methods, in particular by use of the theory of semigroups. 
These methods are well-suited for the qualitative analysis of a system, in particular 
for stability considerations. This analytical theory, however, will not be the topic of 
this paper and we refer the reader to the vast literature. 

In this survey we want to present the state-of-the-art of the behavioral approach 
to linear time-invariant delay-differential systems. This approach is well-suited for 
the investigation of general structural control theoretic properties like controllabil­
ity, input/output-structures, causality etc. For the class of linear time-invariant 
continuous-time systems described by ordinary differential equations (in the sequel 
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simply called purely differential systems) the behavioral approach has been worked 
out in great detail and proved very successful, see [31]. For linear time-invariant 
multidimensional systems the behavioral theory is developing thanks to the funda­
mental paper [28]. According to the behavioral approach, a system is defined as a 
triple £ = (T, W, z3), where T is the time set, W is the alphabet where the signals 
take on their values, and B is a subset of the space of all signals W := VVT, which 
specifies what signals can occur in the given system. This subset is called the behav­
ior of the system; it is the core of the description, since it defines the dynamics by 
fixing what signals are allowed and what signals are forbidden. In a continuous-time 
linear time-invariant system we have T = E, W = Rq, and B is a linear subspace 
of the signal space W, which is invariant with respect to the forward shift operator. 
From a conceptual point of view, the difference between the classical approach and 
the behavioral approach to systems theory is that in the latter one a system is purely 
defined as the set of its possible trajectories, and not as an operator. However, in 
order to launch a mathematical control theory, one assumes that the behavior is 
actually given as the solution space of a system of equations. Hence we have an 
operator R : W -» V, with some space V, such that 

B = keri?, = {we W\R(w) = 0}. 

The describing operator R is called a kernel representation of B. In the behavioral 
theory the control theoretic properties of a system are defined purely in terms of 
its trajectories, that is via the set B. Naturally, the mathematical theory aims at 
characterizing these properties in terms of kernel representations. At this point it 
becomes obvious that it is mandatory for the behavioral approach to understand the 
relationship between operators R and behaviors B. Precisely, which operators give 
rise to the same behavior? In addition to kernel representations, one might have (or 
want) a description of the system as, say, the image of an operator R : V —> W 

B = imi?, = {w e W | 3 v e V : w = R(v)}. 

This is called an image representation and its existence is connected with the con­
trollability of the system. Another representation which is a generalization of both 
the previous ones is the following 

x3 = 7i1-1(imi?2) = {weW\3v eV: Rx(w) = R2(v)} 

where R\ : W —> U and R2 :V —fU are two given operators. Such a description is 
called a latent variable representation; it does not only involve the so-called manifest 
variable w of the system (whose trajectories make up the behavior), but also a so-
called latent variable v, which is just an auxiliary part of the systems description and 
whose evolution itself is not relevant for the behavior. Such auxiliary variables might 
arise directly in the modeling of the system; more importantly, they appear when 
two systems are interconnected, say in a feedback-loop or in a series interconnec­
tion. An important issue in the behavioral approach is the so-called latent variable 
elimination, which concerns the possibility of obtaining a kernel representation from 
a latent variable representation. The importance of latent variable representations 
and of latent variable elimination is widely discussed in [31]. 
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In the behavioral approach to delay-differential systems all the operators arising 
above are delay-differential operators acting on suitable function spaces. In this sur­
vey we shall mainly address the "preliminary" questions raised above: uniqueness of 
kernel representations, existence of image representations, and latent variable elim­
ination. At the moment the relationship between the various systems descriptions 
is not completely understood for delay-differential systems. Only partial results 
arc available. Whenever possible, we will also link the systems descriptions to the 
corresponding control theoretic concepts. As it will turn out, a particular class of 
delay systems deserves special attention, that is the case where the delays are com­
mensurate. In this case the set of associated operators turns out to carry a nice 
algebraic structure showing completely how to pass from one systems description to 
another. How this can be used for the investigation of control theoretic questions 
will be illustrated by addressing the issue of interconnecting systems. 

2. MATHEMATICAL PRELIMINARIES 

In this section we shall provide some mathematical notations and preliminary results 
which will be used in the sequel. For the purpose of this survey, it suffices to 
restrict to behaviors with signals which are smooth functions, i.e. contained in 
£ := C°°(E, C). Notice that, as mentioned in the introduction, we consider behaviors 
defined over the full time axis R. An algebraic theory for systems defined on M+ is 
yet unknown and seems unlike harder. With some additional work it is also possible 
to extend the theory to be presented here to certain larger function spaces (see [35, 
Sec. 7]). 

Several operator algebras on £ will play an important role in the behavioral 
theory of delay systems. We shall introduce these various algebras by starting fiom 
the smallest one, that is the one which is most closely related to the type of delay 
systems under investigation. It turns out that this algebra is not rich enough for 
an algebraic theory; motivated by some simple considerations, we shall show how 
a certain larger algebra naturally arises in this context. This is contained in the 
algebra of compact support distributions; the latter one will also be helpful for the 
behavioral theory of systems with delays. 

Let the space £ be equipped with the topology of uniform convergence in all 
derivatives on all compact sets; this turns £ into a Frechet space. We shall see 
later on that topological arguments will play a role only for the case of systems 
with noncommensurate delays. For the commensurate case algebraic arguments will 
suffice, so that in that case £ can simply be regarded as a module over the ring of 
delay-differential operators to be introduced next. Let us begin by introducing the 
shift-operators at0, tn £ R, defined as 

K/)(*) = /('-'o) 

for any function / G £. The real number to is also called the delay. Notice that 
the operator at0 can be defined also over the vector valued functions in £q and 
that it induces a linear bijective map. Then the delay-differential operators under 
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consideration are of the form 

IV M IV M 

£—>£, / - > E E f t i / ( i ) ( - ^ = E . L ^ ^ ( ' ' (2-x) 
2=0 j = l i—Q jrr.1 

where IV, M G N, pij G R are constant coefficients, and tj > 0 are the delays. 
It is standard to rewrite the operator given in (2.1) as follows. Consider the free 

Z-module t\ Z + . . . + £ M Z C R and let { r i , . . . , r^ } C R+. be a basis of this module. 
For each i/ = ( i / i , . . , , i/*) € Z* the composition a" := a

v\ o . . . o <j£* describes the 
delay operator 

K / ) ( i ) = ( < o . . . o a ^ / ) ( i ) = / h - ^ l / j r J J , t e a 

Together with the ordinary differential operator D = -^ these delays form the 
operator algebra 

7̂  := RiA^cr-1] := R p , ^ , . . . .^-flr"1, ... ,o-"1]. 

Notice that 7?. is a commutative subring of Endc(£), the ring of all endomorphisms 
on £, and therefore £ is an 7^-module. Furthermore, the linear independence of 
T\,... , Tfc over Z implies that R[.D, a] :— R[.D, crT l , . . . , aTk] is a polynomial ring in 
k + 1 algebraically independent operators. By construction, each operator of the 
type (2.1) corresponds to an element a(D,a) G 71 and can be written as 

Iv 

a(D,a)f:=Y,Y,a"Di(jl/f> <2'2) 
i=0 uezk 

finite 

where a^ G R are constant coefficients. In the case k — 1, we call these operators 
delay-differential operators with commensurate delays; otherwise we say that the 
delay-differential operator contains noncommensurate delays. The following result 
of Ehrenpreis will be crucial for the algebraic setting. 

Proposition 2.1. [9, p. 697] Each nonzero operator a(D,a) G 71 is surjective 
on £. 

As we shall see in the sequel, even though the operator algebra 71 is general 
enough to define delay systems in the behavioral approach, it does not suffice to 
develop an algebraic theory. Therefore we need to introduce a larger algebra. In 
order to do so, we associate with each delay-differential operator a(D,a) G 71 its 
characteristic function, that is, we consider the mapping 

a{D, a) F—> a(8, e" T l S , . . . , e"rfc5) =: a*(8), (2.3) 

where s is a complex variable. This yields an isomorphism of rings 

71^ TV : = R [ 5 , e " r i 5 , . . . , e" T f c S , e r i S , . . . ,e r fcS]. 
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Hence 1Z* is a ring having transcendence degree k + 1 over E and being contained 
in II(C), the ring of entire functions. The importance of the characteristic function 
a* G H(C) rests on its capability to detect the exponential monomials in the solution 
space 

kera(D,a) := {/ G £ \ a(D,a)f = 0}. 

Indeed, for each A G C and k G No we have 

tkext e keva(D,a) <{=-> " * ^ , + 1 G H(C), (2.4) 

where the right hand side simply says that A is a zero of a* of multiplicity at least 
k + 1. The equivalence (2.4) immediately implies 

kerb(D,a) C kera(F>,<r) =-> ^ - G tf(C) (2.5) 

for each a,b e 1Z. In fact, the converse is true as well and can be deduced from 
spectral synthesis (see [33, Thm. 5]), but will also follow from our considerations 
(sec Theorem 2.2(b) below). 

Consider now the set 

H := {^ | a, b e K, b # 0, £ € H(C)}, (2.6) 

which is a subring of the abstract quotient field R(D,a) of the polynomial ring 
E[F),r/]. Using a result from harmonic analysis, one deduces that H is an operator 
algebra contained in Endc(£) and containing 1Z. We summarize these facts in 

T h e o r e m 2.2. The ring 7i can be described as follows. 

(a) 7t = {^ \a G 1Z, cf> G R[ZJ]\{0}, £ G H(C)}. 

(b) n = I f G R(JD,<7) a, beTZ, kerb(D,a) C kera(F),c/)}. 

(c) Let a, b G 7^, b 7-= 0, and ab"1 G 'H. Then the mapping 

£ —r £, / i—r a(D,a)g, where b(D,a)g = f 

is well-defined, C-linear, and depends only on the quotient ab~{ (and not on 
its specific fractional representation via a and b). Denoting this map simply by 
| :£—»£, the ring 7i becomes a commutative subring of Endc(£). This turns £ 
into an K-module. We call the operators ab~l G % delay-differential operators, 
too. 

Part (a) is a result about exponential polynomials in harmonic analysis and has 
been proven in [2]. A slightly simpler proof can be found in [14, Thm. 5.8]. Part (b) 
can be deduced from (a) by some algebraic arguments along with the obvious fact 
that a*((j)*)~l G H(C) iff ker </>(£>) C kera(D,a) whenever <f) G R[D] and aeU\ see 
also [14]. Part (c) is a simple consequence of (b) and follows by standard calculations; 
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see [12, Rem. 2.8] or [14, Sec 3]. Notice that the function g does always exist thanks 
to Proposition 2.1. 

The operator algebra H has been introduced first for the commensurate case in 
[12], where it also has been thoroughly studied with respect to its algebraic proper­
ties. In completely different shapes and for different purposes it has also appeared 
in earlier work in [29] and [19]. For the noncommensurate case the algebra 7t has 
been considered first in [14, 26] as well as in [38]. 

The topological arguments needed for the noncommensurate case will make it 
necessary to take also the full algebra of convolution operators defined on £ into 
consideration. Let V be the vector-space of complex-valued distributions on the 
space V := {/ G £ \ s u p p / is compact}, endowed with the usual inductive limit 
topology. Here supp denotes the support of a function or distribution. Furthermore, 
let V'c := {T G V \ suppT compact}. We shall identify the distributions in V'c with 
£', that is, with their extension to distributions on £\ see [34, Thm. 24.2]. Recall 
that each distribution T G £' induces a convolution operator / »-> T * / and thus 
a continuous map from £ to £. In particular, £' is (up to isomorphism) contained 
in Endc(£). Finally, denote by 5a the kth derivative of the Dirac-distribution at 
a G M [41, pp. 124-129]. In this setting, differentiation (resp. forward-shift by Tj time 
units) corresponds to convolution with SQ ' (resp. 5Tj). Precisely, for a(D,a) G 1Z 

and / G £ we have a(D,a)f = a(5$ ,5Tl,... ,5Tk) * / G £. Hence 71 is (up to 
isomorphism) a subring of the domain £'. This observation has already been made 
in [18], wThere it was utilized for a transfer function approach to delay-differential 
systems. 

According to a Paley-Wiener Theorem (see [3, pp. 27-28]), one can embed £' into 
H(C). Indeed, the Laplace transform £:£'—> H(C) which maps T G £' onto 

CT : C—+C, S H (T,e-S) 

induces an isomorphism from £' onto the Paley-Wiener algebra 

A:= {f eH(C)\3A, B,C>0 V s G C : | / ( S ) | < A(l + \s\)Dec\Re^}. (2.7) 

It is not hard to verify [37, Thm. 4.35] that f̂  G A for all f G rt. Using furthermore 
the identity a* = £(a(og ',5Tl,... , oVfc)) for a G 71, which is standard in distribu­
tion theory, one obtains that 7i is (up to the isomorphism f H-> £ _ 1 ( p r ) G £') a 
subalgebra of £' and the map f G Endc(£) defined in Theorem 2.2(c) coincides 
with the associated convolution operator; cf. [11, Thm. 2.8] for the commensurate 
case. For any h = f G 7i we will define h* := f̂ , which coincides with the Laplace 
transform of the compact support distribution associated with h. We will use the 
same notation also for matrices with entries in 7i. Notice that the topology on £ 
induces a topology on its dual £' which in turn leads to a topology on A. 

In the sequel we shall identify the various objects in the way described above. 
Hence we arrive at the following embeddings of commutative domains 

71 C n C A C H(C) and A C Endc(£). 
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Since £ and A are both .y4-modules, every matrix R G Apxq induces two canonical 
maps, namely 

R : £q —» £p and R : Aq —+ Ap\ 

both of them will be important in the sequel. For ease of notation we shall denote 
both maps simply by R. The specific meaning will always be clear from the context. 
However, we shall use the notation 

ker^ RC£q, \m£R C £p and kcr* R C Aq, \mAR C Ap (2.8) 

for their respective kernels and images. For matrices R with entries in H we similarly 
define kcr-ft R and im^ R. Notice that unimodular matrices, i. e. matrices from the 
group Glp(A) = {V G Apxp | det V is a unit in .4} or from Glp(H), act bijectivcly 
on £p. Consequently, kcr^ UR = kcr^ R. whenever U is unimodular. From the 
inclusion H C R(D)[a,a~l] it is clear that the units of H are given by the group 
Hx := {aal \ a G M\{0}, / G Zk}. It needs slightly more effort to show that 
Ax := {acXs | a G C\{0}, A G C} are the units of A] see [38, Lem. 2.5]. 

Finally wc introduce the notion of orthogonal subspaces. Given two spaces B C £q 

and JVC Aq, we let 

BL := {a G Aq | V w G B : aTw = 0} and M^ := {w G £q \ V a G M : aTw = 0}. 

This induces a 1; 
invariant subspa 
have [34, p. 388] 

This induces a lattice antihomomorphism with respect to inclusion. For any shift 
invariant subspace B C £q one has BLL = B. Moreover, for every R G Apxq we 

(ker^ R)1- = im^ IT, (im^R)1- = kevA i?T, 
(2.9) 

(kerA R)1- = im^iT, (imsR)1- = ker^ R1. 

3. THE ALGEBRAIC SETTING FOR DELAY-DIFFERENTIAL SYSTEMS 

Now we are ready to define the dynamical systems or behaviors to be investigated 
in this paper. The definition of a behavior below is, of course, adapted to our 
investigation of linear, time-invariant systems with smooth trajectories only. 

Definition 3 .1 . A behavior with q external variables is a linear, shift invariant 
subspace of £q. We call a behavior B C £q a delay-differential behavior (resp. a 
convolutional behavior) if it is of the form B = ker^ R, where R is a matrix inHlxq 

(resp. Alxq) for some / G N. We will also use the name system in place of behavior. 

Several remarks are in order. 

Remark 3.2. 
(1) By definition a delay-differential or a convolutional behavior does always admit 

a kernel representation. Actually, the matrix R is said to be a kernel represen­
tation of B. 
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(2) Convolutional behaviors by themselves are not quite the issue of this survey. 
However, for a detailed understanding of systems with noncommensurate delays 
it will be necessary to investigate general convolutional behaviors, too. 

(3) The reason for defining delay-differential behaviors via matrices with entries in 
7i instead of in 71 can be found in equation (2.5). This implication (which is 
actually an equivalence, see Theorem 2.2 (b)) shows that systems with kernel 
representations over 7i will naturally enter each behavioral approach for delay-
differential systems. Indeed, the most basic problem for a behavioral theory 
which needs to be solved is the uniqueness of kernel representations. More 
precisely, given two U x g-matrices R\ and R2 with entries in 7£, we need to 
understand algebraically whether ker,ri?i = ker^i?2- Turning this question 
around it will be important to understand which transformations on R\ do 
not change its solution space kcr^ R\. Only slightly more general is the task 
of finding algebraic characterizations for the inclusion ker^ R\ C ker^ R2. For 
purely differential systems, that is, Ri G R[.D]'' xr /, i = 1,2, this is nicely given 
as ker^i?! C kerf R2 iff R2 = XRX for some X G R[D]hxh [31, Sec 3.6]. In 
other words, in order to compare two purely differential behaviors, it is enough 
to compare the submodules of R[D]q generated by the rows of R\ and R2, which 
is a purely algebraic condition. Now, equation (2.5) shows that the result is not 
true when R[D] is replaced by 71. As a trivial example, note that for instance 
ker^ D C ker^ (or — 1), but £lg:-L $.71. As a consequence, if one aims at an 
operator algebra which is closed uncler kernel inclusion in the above sense, then 
one is forced to take also the quotients occurring in (2.5) into consideration, that 
is, the operators in 7i. Notice that part (b) of Theorem 2.2 can be written as 
ker 6(JD, a) C ker a(D, a) iff a = xb for some x G H . This fact can be generalized 
to operators a, b G 7i and even to matrices as follows. 

P ropos i t ion 3.3. Let Ri G 7iPiXq, i = 1,2, be two matrices and let rk7t!i = p\. 
Then 

ker^ Rx C ker5 R2 «=> Ri = XRX for some X G 7iP2 Xpi. 

Sufficiency of R2 = XR\ is of course obvious and valid even without the rank 
condition on Ri. The necessity can be found in [14, Sec. 4]. It is deduced by some 
fairly standard algebraic arguments from Theorem 2.2 together with the following 
generalization of the surjectivity result 2.1: 

for each A G 7inxm one has: rk_4 = n ^=> im£A = £n. (3.1) 

For a general theory of systems described by delay-differential equations it is im­
portant to know as to how restrictive the rank condition on Ri is in the proposition 
above. Notice that it is not at all clear whether a behavior does always admit a 
representation ker^ R with a full row rank matrix R. At this point the theories for 
the commensurate and the noncommensurate case diverge. In the commensurate 
case the ring 7i enjoys some strong algebraic properties (it turns out to be a Bezout 
domain) with the consequence that the proposition above holds true even without 
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any rank condition on R\. This will be shown in Section 5. The algebraic results 
presented therein have far-reaching consequences for systems described by delay-
differential equations with commensurate delays. In essence, a behavioral theory 
quite parallel to the case of purely differential systems can be developed. On the 
other hand, for systems with noncommensurate delays Proposition 3.3 fails in gen­
eral without the rank condition on R\. In algebraic terms, the difference to the 
commensurate case is due to the lack of the Bezout property. However, in order to 
get some information about kernel inclusions in the general case, one has to resort 
to analytic arguments. While operators with commensurate delays do always have 
a closed range, this is not true for the general case. The closedness is exactly the 
requirement to be imposed on Ri in order that the equivalence above remains valid. 
However, in this case the matrix X connecting Ri and R2 will have entries in A 
even though Ri and R2 have entries in V. or even in H. For this reason it is natural 
to formulate the result right away for convolutional behaviors. 

T h e o r e m 3.4. Let Ri G AliXq, i = 1,2, be two matrices and assume that im^iJi 
is a closed subset of 8lx. Then 

ť 2 X / i ker£ Ri C ker^ R2 <=> R2 = XRX for some X G Al2 

P r o o f . "<£=" is obvious and clearly holds without the closedness condition. Con­
versely, the inclusion of the kernels may be restated as i?2(ker^i?i) = {0}, i.e., 
every row of R2 is in (ker^ Ri)-1. However, im^i?! is closed if and only if i m ^ i ? ^ 
is closed [21, Prop. 21.9] and therefore (kers Ri)~ = im^i?iT by use of (2.9). Thus 
every row of R2 belongs to im^i?iT , which establishes the matrix X G Al2Xtl. -~ 

In [35, Thm. 4.1] it has been shown that the closedness of im^i?! is necessary 
for the equivalence to be valid for arbitrary operators R2. The following example 
illustrates that the previous theorem is the best which can be obtained for any given 
pair i?i, i?2-

Example 3.5. Let 

Ri 
l - < 7 ! 

Є R2, R2 = [D] Є Tl. 

Notice that if r is irrational, then the two entries of R\ 
\-e~s 

1 - e~тs have s = 0 

as the unique common zero. Therefore, by the spectral analysis theorem of [33], the 
solution space ker^ Ri is given by the constant functions and therefore it coincides 
with ker^i?2- However, there is no matrix X G H2xl such that R2 = XRi, since 
it can be shown that there are no x\,x2 eH satisfying the Bezout equation x\(l — 
e~s) + x2(l — e~TS) = s. To see this it is enough to consider the representations of 
the elements in 7i suggested by Theorem 2.2 part (a) and to observe that in the ring 
lR(s)[e~5,e~ r s] the ideal generated by 1 — e~s and 1 — e~TS can not be the whole 
ring. If r is irrational, then it can be shown that the previous Bezout equation is 
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solvable over A —and this case corresponds exactly to the case when im^Iti is a 
closed subset of £2— if and only if r is a Liouville number [25]. Notice that, since 
II(C) is a Bezout domain, the equation is always solvable with xi, x2 G II(C). 

Our main result of this section shows that the last statement of the previous 
example remains valid in a very general context. It provides a characterization of 
kernel inclusions for arbitrary convolutional operators. One should bear in mind, 
however, that general entire functions do not correspond to operators on £. Hence 
the matrix X appearing in the theorem below has no operational meaning so that 
even the direction "<=" is not trivial. 

Theorem 3.6. Let Ri G AliXq, i = 1,2, be two matrices. Then 

ker,c I?i C kcr^ R2 <=> R2 = XRX for some matrix X G H(C)h xh. 

P r o o f . The proof requires several steps. 

1) We firstly provide the according result for kernels consisting of 'polynomial-
exponentials' only. Let 

?>£:= X>(í)eAi í 

. i = i 

n Є N, ÄІ Є C, and pi(t) Є C[í] 

Restricting the kernels of Ri to V£q the statement above has been established in [24, 
p. 278], thus 

ker^ Iii n V£q C ker^ R2 n V£q <=> there exists X G II(C)/2 x / l 

(3.2) 
such that XR\ = R2. 

2) In order to obtain the equivalence for kernels in £q, we need the following de­
scription of closed shift invariant subspaces of £q: 

B = B n V£q for each closed shift invariant subspace B C £q. (3.3) 

This extends the famous result of Schwartz [33] about shift invariant subspaces in 
£ to the vector case. For the proof of "C" of (3.3) we will employ an analogous 
result which has been established in the case of continuous functions in [30]. To this 
end, we introduce the following notation: let ~7~° and —>° denote the closure and 
the convergence in the space C := C(R, C) of continuous functions, equipped with 
its usual Frechet topology (uniform convergence on all compact sets). Recall that 
without any index we refer to the topology and convergence on £. 
We shall first prove the following inclusions: 

BCB =B nV£q CBHV£q =BDV£q . (3.4) 

Since B is a shift invariant and closed subspace in the topology of C, the first identity 
is just the result proven in [30]. The last equality follows from the simple fact that 
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X C X C X for each set X C £. The proof of the remaining inclusion relies on 
elementary properties of the compact supported smooth functions p G £>, which, as 
explained in Section 2, can be identified with their Laplace transforms p(s) G A. 
Let w G B n V£q. Then there exists a sequence wn G B such that wn ->° w. It 
is easy to check that for any p G V, p(s)wn converges to p(s)w with respect to the 
topology of £\ this property of V is usually called regularization. 
Now, given any a(s) G B1-, one has a(s)T(p(s)wn) = p(s)a(s)Tiun = 0, i.e. p(s)iun G 
BL± — B = B. This means that p(s)w G B = B, too. Since w G V£q', a simple 
calculation shows that also p(s)w G F^7 and therefore p(s)uv G /5 fl F^7. 
Taking an approximate identity {pk} (see [5, IV.21]), i. e. such that Pk(s) —r 1 in the 
topology of A, we get pk(s)w -> w, thus w G BnV£q. Hence 25° n P ^ 7 C BnV£q 

and (3.4) follows. 
It remains to prove (3.3). To this end let w G B. By (3.4) there is a sequence 

wn G BnV£q such that wn —>° IU. For every p eV we have p(s)wn -» p(t$)n; by the 
rcgularization property and, as before, p(s)wn G BnV£q. Thus p(s)uv €Bj\V£^ 
and, taking an approximate identity {/?&}, we get pk(s)w -> IU, hence w € B nV£q. 

3) Now we are ready to prove Theorem 3.6. Since ker^ Rj, i = 1,2, are closed shift 
invariant subspaces of £q, Equation (3.3) yields ker,r Ri = ker^ Ri n V£q. This shows 
that kerf Iii C ker^ R2 if and only if ker^ Ri nV£q C ker^ R2nV£q which, by (3.2), 
proves the theorem. • 

3.1. Latent variable elimination 

In the context of convolutional behaviors (or of delay-differential behaviors) a latent 
variable representation of a behavior B C £qi is defined to be a description of the 
form 

B = {w G £qi | Riw = R2v for some v G £q2}, (3.5) 

where Ri G Alxqi (or Ri G T~Llxqi), i = 1,2. Systems descriptions of this type often 
arise after interconnecting two systems. In the setting of this survey the following 
question arises naturally: is B in (3.5) a convolutional (or delay-differential) behavior 
in the sense of Definition 3.1, or, in other words, does B admit a kernel representation 
B = kerf RI 

Since an image representation of 5 , i. e. a representation of the type B = inif M, 
for some matrix M, is a particular form of a latent variable representation (3.5), in 
this case latent variable elimination can be seen as a way of passing from an image 
to a kernel representation. 

While it is known that latent variable elimination can always be achieved for 
purely differential systems over £ [31, Thm. 6.2.6], this remains an open problem for 
general convolutional systems. Only the following partial result is available. 

Theorem 3.7. [39] Consider the behavior B in (3.5) and suppose that vkR2(s) = 
p2 for all 8 G C, where p2 is the rank of R2. Then there exists some matrix Y G Atxqi 

(resp. Htxqi) such that B = ker^ y , hence B is a convolutional behavior. 
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As is shown in [39], the rank condition on R2 is equivalent to observability of 
the latent variable representation, that is to say that R\w = I^i and R\W = 
R2V2 implies v\ = V2> Thus, the theorem implies that for a behavior B which 
admits an observable latent variable representation, the closure B admits a kernel 
representation. 

Finally, we want to address the fact that the latent variable elimination problem 
for delay-differential systems defined by (3.5) is closely related to the following-
conjecture. 

Shapiro's Conjecture, (see [36]) For every p, q G 7£ there exists r G 7£ such that 
{A G C I p*(A) = q*(\) = 0} = {A G C I r*(A) = 0}. 

While the conjecture is open in this generality, there exist additional sufficient 
conditions for the statement to be true (see [8]). Using essentially the same proof 
as for Theorem 3.7 one can show that, if Conjecture 3.8 is true, then the closure of 
every behavior B defined by (3.5) admits a kernel representation. 

3.2. Controllability of delay—differential sys tems 

In this section we shall investigate controllability for delay-differential behaviors. 
We shall start by introducing the most fundamental notions of control theory, that 
are the concepts of inputs and outputs. In behavioral theory, an input of a system 
B C £q is a maximal subset w^,... ,Wim of the external variables {w\,... ,vjq} 
which can be set freely. Precisely, the map B —> £m which projects a trajectory 
w = (w\,... , iuqY G B onto the components w^,... , Wim, has to be surjective and 
no bigger subset with this property must exist; see [31, Def. 3.3.2]. In case an input 
exists, the collection of the remaining p := q — m external variables is called the 
output of B and B is said to be an input/output (i/o-) behavior. It is convenient to 
assume that, in case an i/o-partition exists, the external variables w = (w\,... , wq)

T 

are reordered in such a way that w = (uT,2/T)T where u G £m forms the input and 
y G £p forms the output. The following theorem provides a simple characterization 
for the existence of an i/o-partition. For systems with commensurate delays a 
proof can be found in [11, Thm. 4.2.3], while for the noncommensurate case see [38, 
Theorem 3.8]. 

Theorem 3.9. A delay-differential behavior B C £m+P with external variables 
w = (wT,yT)T defines an i/o-behavior with input u e £m and output y G £p if and 
only if B = keve [P, -Q] for some P G Ulxm and Q G Ulxp, where p = rk [P, - Q ] = 
rkQ. In this case, there exists a matrix H G R(D,a)pxm such that QH = P 
and it is called the formal transfer function of B. As a consequence, each delay-
differential behavior admits an i/o-partition (where the extreme case of m = 0 
inputs is included). 

The extreme case of behaviors with no inputs can be characterized in terms of 
the trajectories of the behavior in an alternative way. In order to do so, we need the 
notation w]^^^] for the restriction of the function w, defined on R, to the closed 
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left half line (—oo,0]. Then one has just like for purely differential behaviors [31, 
Thm. 3.2.5] the following characterization. 

Proposition 3.10. A delay-differential behavior B C £q has no inputs if and only 
if for every w G B the condition w|(_oo,o] = 0 implies w = 0. A behavior with this 
property is said to be autonomous. 

Again, for systems with commensurate delays a proof is given in [11, Prop. 4.2.7]. 
For the general case this can be seen as a consequence of Titchmarsh-Lions theorem 
on supports of distributions [24, p. 277]. 

The above simply says that in an autonomous behavior the future of a trajectory 
is completely determined by its past. At this point one should recall that behaviors 
B C £q are by definition shift invariant, that is o-to(B) = B for all t0 G M. Therefore 
the time instant t0 = 0 occurring in the definition of ^(-oo.o] ls just a matter of 
choice and has no specific meaning by itself. 

We now turn to another central notion of control theory, that is controllability. In 
behavioral theory, controllability can be defined purely in terms of the trajectories 
of the behavior and independently of any systems description. It expresses the 
capability of the system to steer each of its trajectories into every other within finite 
time. Put another way, controllability describes the possibility to combine any past 
of the behavior with any desired (far) future of the behavior. This can be made 
precise in the following way. 

Definition 3.11. [31, Def. 5.2.2] 
(a) For w: w' G £q and to E E define the concatenation of w and w' at time T as 

the function WATW' : R —> Cq given by 

(wATw') (t) := w(t) tor t<T and (wATwf) (t) — w'(t) for t>T. 

(b) A behavior B C £q is called controllable if for all w, w' G B there exists T > 0 
and a function c : [0,T) -» Cq such that WA0CATO~TW' G B. 

Again, due to shift invariance of the behaviors under consideration, the particular 
time instants T > t0 :-= 0 for the concatenation in (b) can be replaced by any other 
choices. Notice that the requirement WA0CATO~TW' G B implies in particular that 
the concatenation is smooth. Since GTW'(T) = w'(0), the concatenation switches 
exactly from w(0) to ^ '(0) but allows for some finite time T > 0 in order to make 
the switching smooth and the trajectory be contained in B. 

A variety of different characterizations for controllability are known for purely 
differential systems [31]. In trying to extend these results, we arrive at the following. 

Theorem 3.12. Let B = ker^ it, where R G Hlxq has rank p. Consider the 
following properties. 

(a) rk iT(s) = p f o r all 8 G C, 

(b) B = B f) Vq, where, again, V is the space of all functions in £ with compact 
support and ~ denotes the closure with respect to the topology of £, 
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(c) B = imjT for some T G Hqxiq~p), 

(d) Aq/B1- is a torsion free ^4-module, 

(e) Let R = [P, - Q ] , where Q G Hlxp has rank p = rkQ = r k P , and let II G 
R(D,a)pxm be such that QII = P . If P = [ P , r Q ] G Hpx(rn+p) is such 
that p = rkQ and QII = P , then £? C ker^ [P, — Q]. In other words, B is a 
subbehavior of each behavior having the same formal transfer function. 

(f) B is controllable, 

(g) B has an image representation, that is, B = im^T for some T G Hqx^q~p), 

(h) P has a generalized inverse over H, that is, there exists a matrix G G Hqxl 

such that P G P = P . 

Then the properties (a), (b), (c), (d), (e) are all equivalent and (a)<=(f)<=(g)<=(h). 
Moreover, (a)=4>(f). 

P r o o f . The implications (a)<(=>(b)<=>(c)<=(f)<=(g)<=(h) have already been estab­
lished in [38, 39]. The fact that (a)^(f) will be shown by an example in Section 4. 
It remains to prove (c)<£>(d)<^>(e). 
(c) => (d): If a G *4\{0} and x G Aq are such that ax G BL, then we have axTTv = 0 
for all v G £q~p. This implies that ax^T = 0, and, since A is a domain, a;TT = 0. 
Thus x G (imeT)L = B±. 
(d) => (e): Let T be the field of fractions of A. The full row rank of the matri­
ces QT and QT implies imjrPT -= im^P T . In order to show that ker^ P C ker^P 
it suffices to establish im^P T C im^P T = BL, see (2.9). Let x G im^P T . From 
imjrPT = imjrPT one deduces that there exists a G -4\{0} and y £ Ap such that 
axT = yTR. This implies that ax G BL and from (d) we get x G B1-. 
(e) => (c): Let T G Hqx{q~p) be any full column rank matrix such that RT = 0. 
Then it is clear that ker^ P D im^T and the converse inclusion remains to be 
proven. Let x G ker^T T C Aq. By the rank conditions on P and T we can 
deduce the existence of some a G «4\{0} such that ax G i m ^ P 7 C B1-. This implies 
ker^ axT D ker^ P and thus by Theorem 3.6 there exists a vector h G H(C)1 such 
that axT = / iTP. Partition x = (xiT,X2T)T, where x\ G ^4 7 - p and X2 G *4P and 

define P = [P,Q] := [ P
T

 Q
T1 • Notice that axiT = a/iTP = ahTQH = ax2

TH, 
[X l 2^2 J 

which yields xT = x2H. This shows that P satisfies the hypothesis of condition 
(e) and hence ker^ P C ker^ P C ker^rc7, implying x G BL. Hence we derived 
ker.4 TT C BL and taking orthogonals leads to ker^ P C im^T as desired. • 

The fact that the conditions of the previous theorem are not all equivalent sug­
gests to call a behavior B C £q satisfying B = B n Tw a weakly controllable behav­
ior. Moreover, we define the weakly controllable subbehavior of a given behavior 
B = ker^ P , where P G Hpxq, as the space 

Bc:=Br\V«. 

The weakly controllable subbehavior Bc of B is a (closed) behavior in the sense 
of Definition 3.1. However, it is not known whether Bc is a delay-differential or 
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convolutional behavior, precisely, whether Bc admits a kernel representation. We 
can prove, however, that the weakly controllable subbehavior of a delay-differential 
behavior always admits a dense image representation like the one introduced in the 
previous theorem. 

Proposition 3.13. Let B = kcr^ It, where R G Wlxq has rank p and let Bc be 
its weakly controllable subbehavior. Then there exists a full column rank matrix 
M enqx(q-P) SUch that 

Bc = inrcM. 

Furthermore, B' C Bc for every weakly controllable behavior B' contained in B. 

P r o o f . Let M G U^^-v) be any matrix of full column rank such that RM = 0. 
Define Bcs := B fl Vq. It is clear that imDM C Bcs. By continuity of the operator 
M we can argue that im^-M C imDM. Using V — £ this implies im^M C imL)M C 
Bcs = Bc and it remains to prove the other inclusion. To this aim we shall show 

(im£M)L C Bi, (3.6) 

from which Bc C im^M follows by taking orthogonals. As for (3.6), let a G 
(imsM)1-. Then for each v G £q~p we have a1'Mv = 0 showing that a 7 M = 0. 
The rank condition on M ensures that there exist a G ̂ 4\{0} and b G A1 such that 
aaT = bTit. Pick now w G Bcs. Then aa^w = }~Rw = 0. Using the identifications 
of Section 2, we have Bcs ^VqC(£')q-^Aq, thus afw is an element of the domain 
A and the identity aa^w = 0 implies a^w = 0. This shows that a G B^s and thus 
(3.6) is proved. The last assertion of the proposition is now straightforward. • 

The following theorem shows that any delay-differential behavior can be de­
composed as the sum of its weakly controllable subbehavior and an autonomous 
subbehavior. 

Theorem 3.14. Consider a behavior B = ker^ R, where R G 7ilxq and let Bc be 
its weakly controllable subbehavior. Assume that R = [P, Q] where Q G Hlxp has 
rank p = rk R. Then 

B = BC + Ba, 

where Ba is the autonomous subbehavior defined as Ba := < (0 y)T y G ker^ Q > = 

= k e r ^ [ u Q }' 

P r o o f . Only "C" requires proof. To this end, put m := q — p and let M G /H^xm 

be a full column rank matrix satisfying the assertion of Proposition 3.13. Partition 

M2 ' 
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where Mi G 7imxm and M2 G Hpxm. The rank conditions imposed on M and Q 
imply that M\ is nonsingular and thus is surjective as operator from £m to £ m , 
see (3.1). 
Now, let w = (uT,?/T)T G B. Pick it G £ m such that it = Miv and put y := M2v. 
Then w = w\ + (u> — w\), where 

Wi := ( .' ) € imrM C .3C and ÍÍ; — tíh = I . I € keiv 
VÍ// " vy - v 

i o 
0 Q 

since it(uv — w\) = Rw — Rw\ = 0 . • 

We close this section with a list of open problems. 

O p e n prob lems 

(1) The main open problem concerns the latent variable elimination, whose general 
solution is connected with Shapiro's conjecture. 

(2) Another open problem which can be shown to be related to Shapiro's conjecture 
concerns the equivalence of kernel representations. We conjecture that every 
delay-differential behavior admits a kernel representation with a full row rank 
matrix. 

(3) In the context of controllability analysis we know that conditions (a) and (f) 
of Theorem 3.12 are not equivalent but we do not know yet whether (f), (g), 
and (h) are equivalent. In other words, we have no algebraic characterization 
of controllable behaviors. 

(4) For a certain class of behaviors we know that all the conditions of Theorem 3.12 
are equivalent (see [38, 15]). This class includes systems in state space form. 
It would be important to continue this investigation and to understand how 
pathological are the behaviors for which this equivalence does not hold. 

(5) The theory of behavioral control by interconnection is completely open for 
delay-differential systems with noncommensurate delays. 

4. A COUNTEREXAMPLE 

In this section we present an example of a delay-differential behavior satisfying 
condition (a) of Theorem 3.12 but which is not controllable and hence violates con­
dition (f) of that theorem. 

Let r G R+ be a Liouville number, that is, a transcendental number satisfying 
the following condition [27, p. 91]: for every positive integer K G N there exist an 
infinite number of pairs (n,d) G N2 such that \dr-n\ < d~K. Consider the matrices 

R = [a, b] G ? t l x 2 , M = [-6, a]T G U2x\ where a = ~ Z ^ , b=l-ale'H. 

(4.1) 

The behavior serving as an example is given by B := ker^ R. Since r is an irrational 
number B is a delay-differential behavior with two noncommensurate delays. Ob­
serve that the characteristic functions a*(s) = (1 — e~sr)/s and b*(s) = 1 — e~s G A 
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have no common zeros, and therefore condition (a) of Theorem 3.12 is satisfied. 
Furthermore, the proof of the equivalence of (a) and (c) of that theorem yields 

B = kQrsR = imeM. (4.2) 

We shall construct a function w G ker^ R such that there is no trajectory steering 
from zero to w in finite time, and thus the behavior is not controllable. This also 
proves that B does not admit an image representation since, by Theorem 3.12 that 
would imply controllability (for a more direct proof in a similar case sec [38]). 

The specific property of the delay r is essential for the proof. We will start with 
some preparation. By the Liouville property it is possible to find a strictly increasing 
sequence dk G N \ {0} such that 

V k G N \ {0} 3 nk G N : \dkr - nk\ < dl
k~

2k. (4.3) 

The monotonicity of dk allows us to define another monotonic sequence: 

*1 if/ = 0; 

k iil = dk] 

[c/_x ifZ^dfcVfceN. 

Note that also c/ is divergent and moreover 

cdh = k. (4.4) 

We will construct a function w : R -» R2 having the following structure: 

c t = < 

- C D -w=Q,xe£. (4.5) 

The condition w G ker^ R is equivalent to say that x G ker^ b, which by definition 
of b means that x is periodic with period one. It is known that every sufficiently 
regular 1-periodic function can be written as a Fourier series [10, p. 4G] 

x(t) = Yxi(t) = YUieJ2nU> where Ul= [ x(t)e~j2nltdt. (4.6) 
lez iez -*0 

Moreover [10, p.42], any series x(t) = Y^ieLuie^U w ^ ui € ^ defines a function 
x G £ if and only if lim/^oo ln\ut\ = 0 for all n G N. We have x G C°°(IR, E) if and 
only if u-i = ui for each / G Z. Let us define a real-valued function x by choosing 
the coefficients ui = uZj in such a way that 

h | = r c ' V / E N . (4.7) 

Then ln\ui\ = lnl~Cl = ln~Cl -> 0 since c/ is increasing and thus the exponent is 
negative for sufficiently big /. As a consequence, x G £ and the function w in (4.5) 
belongs actually to B = ker^ R. 
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We wish to show now that the behavior B in (4.2) is not controllable, that is, 
B does not satisfy Theorem 3.12(f). We proceed by contradiction. Then there 
exists some T > 0 and some function c : [0,T) -» C2 such that the trajectory w := 
0AOCAT(VTW) is in B. By possibly shifting the trajectory w in forward direction, we 
can assume T G N and the periodicity of x implies w = OAQCATW. Denoting the two 
components of c by ci and c2, we have w = (uq, W2)T, where 

?Hi := OAOCIATO, W2 = W21 + ^22 with W21 = OAQ^ATO and W22 = OATX. 

Notice that w\ and W21 have compact support and thus can be regarded as elements 
of £'. Using the identifications of Section 2 (that is, identifying distributions with 
compact support with their Laplace transform), we have wi(s), W2i(s) G A. Fur­
thermore, it is easy to check that r/_Tbuv22 = OAnzAiO. Hence this function is in £', 
too, and its Laplace transform is given by X E A where 

X(s) = f 
Jo 

x(t)є-sldt. 

Since w G ker^ /?, = ker^ [a, 6] we have Rw = awi + bw^i + ^ 2 2 = 0, which after 
Laplace transformation can be rewritten as 

a*(s)wi(s) +b*(s)w2i(s) = -e~sTX(s). 

By rearranging the equation, this yields 

a*(s)f(s) + b*(s)g(s) = X(s), (4.8) 

for some f,geA. 
We want to evaluate equation (4.8)' at s = j2ndk. First note that b*(j2nl) = 0 and 

that, by (4.6), X(j2nl) = ut for every / G Z. Therefore, since from (4.7) and (4.4) it 
follows that \udk\ = d^Cdk = d^k , we get 

\a*(j27rdk)\\f(j27rdk)\=d-k. (4.9) 

The growth condition (4.7) implies for / G A the existence of A, B > 0 such that 
\f(jy)\ — -4(1 + \y\)B for all j / G i Moreover, by definition of a and (4.3), we get 

• */- 2 <ni - l l - e ~ i 2 ^ f c T l _ \e-indkT\\eindkT -e-indkT\ _\sinirdkT\ 
\j2ndk\ 2ndk 7rdk 

_ | s in7r(d f c r-n f c ) < \^(dkr - nk)\ < d-2k 

7rdk " 7rc4 ~ fc 

Now, upon using (4.9) we obtain the contradiction 

1 = dk\a*(j27rdk)\\f(j27rdk)\ < d^kA(l + 2ndk)
B - A(2Tt)BdB~k -> 0, for k -+ oo, 

since B is a fixed constant depending only on /. This shows that the behavior 
B = ker^ R is not controllable and hence that we have found a delay-differential 
behavior satisfying (a) but not (f) of Theorem 3.12. 
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5. DELAY-DIFFERENTIAL SYSTEMS WITH COMMENSURATE DELAYS 

In this section we shall concentrate on the case where only commensurate delays 
occur in the delay-differential operator (2.1) or (2.2). Hence a := aTl is the forward 
shift of length T\ > 0, which after suitable rescaling of the time axis can be assumed 
to be T\ = 1. Thus, throughout this section E[D,cr] is a bivariate polynomial ring 
and, according to Theorem 2.2(a), the operator algebra to be considered in this 
context is given by 

U = { ^ - | a 6 E[D,a], I G N0, <t> G E[L>], £ G H(C)}. 

In Section 5.1 we shall present some of the algebraic properties of H. It will turn 
out that H enjoys properties which let its matrices behave almost like matrices 
over Euclidean domains like, say, over R[D]. This will lead to a refinement of the 
results about general delay-differential behaviors presented in Section 3. Indeed, we 
will derive a correspondence between delay-differential behaviors and their kernel 
representations which is quite similar to the one for purely differential systems. In 
Section 5.2. we shall see how this machinery can be used to obtain the equivalence 
of all the properties connected to controllability in Theorem 3.12. Finally, we will 
address the issue of interconnection of delay-differential systems with commensurate 
delays. 

5.1. A Galois—correspondence between systems and operators 

The specific algebraic feature of the commensurate case is that % C E(D)[cr, a~l] 
where 

E(D)[CJ,CJ- 1] = | - ^ - | a G E [ D , c / ] , Z G N 0 , <j) G E[D] | 

is a univariate Laurent polynomial ring over a field and thus a Euclidean domain. 
Hence one can perform long division within E(D)[cr,cr~1]. Furthermore, for each 
aa~l(j)~l G E(D)[cj,cr~1], the meromorphic function a*(</>*)-1 has only finitely many 
poles in the complex plane (this is also true in the noncommensurate case). A 
careful combination of these two facts allows one to perform certain calculations 
of E(.D)[cr,a~l] even within the subring H. In other words, one calculates in 
E(D)[cr, cr -1] and at the same time controls the possibly arising poles. As a re­
sult one obtains the following strong algebraic properties of Ti. 

Theorem 5.1. 
(a) % is a Bezout domain, that is, each two elements a, 6 G W have a greatest 

common divisor d G W, which is unique up to units in U and can be expressed 
as a linear combination d = xa + yb with suitable coefficients x, y G T~L. 

(b) Each matrix is left equivalent to an upper triangular matrix. Precisely, for each 
matrix R G Upxq there exists a matrix U G Glp(H) such that UR is upper 
triangular. 



416 H. GLUESING-LUERSSEN, P. VETTORI AND S. ZAMPIERI 

(c) H is an elementary divisor domain, that is by definition, for each matrix R G 
Hpxq with rank p there exist V G Glp(U) and W G Glq(Ti) such that 

VRW = dmgpxq(ru... ,rp) 

where the symbol diag p x q (r \ , . . . , rp) means a px q matrix having r\,... , rp as 
the first p elements on the diagonal and all the other entries equal to zero. The 
elements r\,... , rp G Ti are the invariant factors of R. Hence they are unique 
up to units in Ti and r» divides Ti+i in Ti for i = 1 , . . . ,/? — 1. In other words, 
matrices over Ti admit a Smith-form. 

(d) Let A G Tinxq and B G Timxq be two matrices of full row rank. Let rk [Ar,BT] = 
r. Then A and B have a greatest common divisor D G 1-LrXq, denoted by 
D = gcrd(A,B), which has full row rank, is unique up to left equivalence, and 
can be expressed as a linear combination D = XA + YB for some matrices X 
and Y with entries in Ti. 
Moreover, A and B have a least common left multiple M G 7^(n+m-r)x</ of full 
row rank which is unique up to left equivalence and denoted by M = lclm(A, B). 
In case r = n + m, the matrix M is the empty matrix. 

Part (a) has been proven in [12, Prop. 3.1, Thm. 3.2]. In special cases, basically, 
if the factors are coprime and one of the factors is monic in s, a Bezout identity has 
been earlier derived in a fairly different setting, see [29, Sec 4] and [19, (3.2),(4.14)]. 
In [4, Prop. 7.8] a Bezout identity 1 = $Z?=i fjOj has been obtained for exponential 
polynomials fj G C[s,e2S] with coefficients Qj in the corresponding Paley-Wiener 
algebra. The parts (b) and (d) are valid for every commutative Bezout domain. 
Part (c) follows from a certain factorization property in Ti called adequateness [12, 
Lem. 3.4]. It is a classical result of ring theory [16, 20] that each adequate commu­
tative Bezout domain is an elementary divisor domain. It is also worth mentioning 
that it is still an open conjecture whether even every commutative Bezout domain 
is an elementary divisor domain, see [7, p.492, ex. 7] and [23]. 

R e m a r k 5.2. 
(1) The properties above imply that matrices over Ti behave almost like matrices 

over a Euclidean domain. In particular, from (c) it follows that it! G Tipxq has 
a right inverse T G Tiqxp if and only if [Ip,0] is a Smith-form of R and this in 
turn is equivalent to R being completable to a unimodular matrix [i2T,ST]T G 
Glq(Ti). All this is equivalent to the property rk R*(s) = p for all s G C. 
Furthermore, using a Smith-form one observes that each full row rank matrix 
R G TipXq can be factored as R = BRC where B G Upxp is nonsingular (i. e. 
det B 7-- 0) and Rc G Upxq is right invertible over U. 

(2) It should be mentioned that T-L is not a principal ideal domain since it contains 
ideals which are not finitely generated. In other words, T-L is not factorial and 
not Noetherian [12, Prop. 3.1] 

(3) Part (a) and hence the other assertions fail in the noncommensurate case [14, 
Exa. 5.13]; see also Example 3.5. 
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Before we illustrate how to compute in practice a Bezout identity for given func­
tions a, b €H, we wish to present the immediate consequences of the theorem for sys­
tems with commensurate delays. First of all, using left equivalent triangular forms, 
one observes that each delay-differential behavior admits a full row rank kernel rep­
resentation. As a consequence, the rank condition on R\ in Proposition 3.3 can be 
dropped and one arrives at the complete delay-differential analogue of the charac­
terization given in [31, Sec. 3.6] for purely differential behaviors. Some more detailed 
arguments even lead to a Galois-correspondence, that is, an anti-isomorphism be­
tween the lattice of delay-differential behaviors in £q on the one hand and the lattice 
of finitely generated submodules of Hq on the other. We summarize as follows. 

Theorem 5.3. Let Ri G HliXq, i = 1,2, be two matrices and put B{ := ker^i^ . 
Then 

(1) B1CB2<=^ R2= XRX for some matrix X G 7ihxh. 
In particular, if TkRi = Ẑ , then B\ = B2 iff l\ = l2 and R2 = XR\ for some 
XeGlh{7i). 

Let TkRi = h for i = 1,2. Then 

(2) Bi H B2 = ker£ gcrd(i?i, ij2), 

(3) Bi+B2 = kerf lclm(i2i,./22)-

As a consequence, the maps 

B H—> B1- n W = {h G Uq | V w G B : hTw = 0}, 

M h—> ML = {w G £q | V h G M : hTw = 0} 

are inverses of each other and form anti-isomorphisms between the lattice of all 
delay-differential behaviors B in £q and the lattice of all finitely generated submod­
ules M oiW. 

The parts (2) and (3) are standard consequences of (1) together with the prop­
erties of the greatest common right divisor and least common left multiple over a 
commutative Bezout domain and the surjectivity in (3.1). Notice that the anti-
isomorphism maps a finitely generated submodule of Hq onto its solution space in 
£q and a behavior onto its annihilator in Hq. For details see [12, Prop. 4.4] and [13, 
Sec. 4.1]. 

Along the same line of general algebraic arguments one can also show that the 
latent variable elimination problem (see (3.5)) is always solvable. Precisely we have 

Theorem 5.4. 

(a) The image of a delay-differential behavior under a delay-differential operator is 
a delay-differential behavior again. Precisely, if Ri G HliXq are two matrices, 
then i?i(ker£ R2) = ker^ X for some matrix X with entries in %. In particular, 
\mzRi is a delay-differential behavior and thus a closed subspace of £h. 

(b) For two matrices Ri G Hlxqi the space B := {w G £qi \ R\w G im£.R2} is a 
delay-differential behavior, that is, B = ker^ Y for some matrix Y eHtxqi. 
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Part (a) follows upon noticing that w G R\(ker£ R2) if and only if (utT,0)T G 
im£[_?iT,_?_T]T and resorting to a left equivalent triangular form for [I?iT,i?2

T]T 

along with the surjectivity in (3.1). Part (b) is a direct consequence of (a) because 
in this case we have B = [Iqi, 0](ker^ [R\, — R2]). 

This result shows that for commensurate delays the class of delay-differential 
behaviors in the sense of Definition 3.1 is not as restrictive as it appears on first 
sight. Images of operators and projections of delay-differential behaviors, extracting 
the desired (manifest) variables, are delay-differential behaviors again. 

At the end of this section we want to address the computability of the various 
objects arising in the previous theorems. In practice one wishes to know, of course, 
whether (and how) a kernel representation of, say, ker^ R\ fl ker^ R2 or R\ (ker^ R2) 
can actually be computed from the given data R\ and R2. A brief study of the 
corresponding constructions reveals that this question reduces in essence to the com­
putation of a greatest common divisor along with a representing Bezout identity for 
given operators in H. The following example should illustrate how to proceed for 
calculating a Bezout identity from the given data. 

E x a m p l e 5.5. 

(a) Let a = a +1 and b = D + l e Q[D, a] C T-L. Then a and b are coprime in 7_ and 
for a Bezout identity 1 = xa+ybmH one needs y* = (l — x*a*) (s + 1)"1 G H(C) 
in order to have y G 7i. Since a*(s) = e~s + 1 (recall that a is the forward shift 
of unit length) this leads to the sole condition x*(—l) = (e + 1 ) _ 1 for x G H. 
Thus one obtains the Bezout identity 1 = xa + yb where x = (e + l)~l G IK is a 
constant and y = (l - (e + l)~x(a + 1)) (D + l ) " 1 G U. 

(b) Let a = (a — e) (D + 1) _ 1 , b = D + a G T~i. Again, a and b are coprime in 7i. 
In order to obtain a Bezout identity one first observes that a and b are coprime 
also in the Euclidean domain R(.D)[cr]. In this larger ring a denominator free 
version of a Bezout identity is given by 

Xla + y\b = D + e G R[D] (5.1) 

where x\ = —(D + l) and y\ = 1. Now one has to adjust the coefficients x\ 
and 2/1 in such a way that they become divisible by 29 + e within the ring 7_. 
Precisely, one wants some h G % such that 

x\+hb yi-ha . 
x = ——— and y = —— are in H, (5.2) 

D + e D + e 

for then 1 = xa + yb forms a desired Bezout equation. The function h G H can 
be found as follows. Equation (5.1) implies 

( | ( - в ) ) Є teM"*(-e),Ъ*(-e)} = i m R 

-b*{-e) 
a*{-e) 

Indeed, with the given data a, b, x\, and y\ G H one can check that 

(*l(-e)\ _ 
Wi(-e)) ~ 

-Ь*(-e) 
a*(~e) 

h, where h = G 
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With this choice for the function h G E C Ti we obtain (5.2) and thus the Bezout 
identity 1 = xa + yb in H. 

The example above is typical for the general situation in the way how to proceed 
for deriving a Bezout identity. The only difference is that in general several steps 
are needed in order to eliminate the zeros (like —e in (b)) of a Bezout identity in 
E(.D)[cr]; see [11, Rem. 2.5] for a general procedure. The example is however not 
typical in the sense that in both cases above a greatest common divisor of the given 
elements was simply found by inspection. This is of course not always possible. In 
any case, use of the fact that E(F))[cr] is Euclidean along with a careful handling of 
the denominators which arise when calculating in that ring, one can build even a 
procedure which upon any input a, b G T~L produces a greatest common divisor of a 
and b along with a representing Bezout identity; for details see [13, Thm. 3.1.5]. 

Let us now turn to a different aspect of the example. Assume we are interested in 
symbolic computability of Bezout identities (and consequently of upper triangular 
forms e tc) , that is, we wish exact computations, not numerical. For the notion 
of symbolic computability (also known as effectiveness or decidability) we refer the 
reader to standard literature of computer algebra, for instance [6, 1]. As an in­
dispensable prerequisite for symbolic computations one needs, of course, a way to 
represent the objects on a computer. It turns out that this part is the main (and 
only) obstacle for the symbolic computability of Bezout identities in H. We wish 
to briefly illustrate the problem arising in this context. Since rational numbers (as 
opposed to arbitrary real numbers) are symbolically representable on a computer, it 
is reasonable to investigate the issue for functions with coefficients in Q. Consider 
now Example 5.5 again. In Part (a) we started with two polynomials in Q[D, a] and 
derived a Bezout equation where the constants are in the extension field Q(e) of Q. 
In the second example we were given two functions with coefficients in Q(e); in that 
case we were forced to pass to the even larger coefficient field Q(e,ee) in order to 
derive a Bezout identity. One should have in mind that such successive Bezout iden­
tities (using the output of one equation as input for the next one) are for instance to 
be computed for the transformation of a matrix into triangular form. For symbolic 
computability, in fact for the symbolic representation, it is important to have some 
information about the algebraic structure of the coefficient fields involved. While 
this is completely understood for the field Q(e), since e is transcendental, this is 
not at all clear for the field Q(e,ee). Indeed, it seems to be unknown whether the 
transcendence degree of Q(e,ee) is two, which is what one would expect. This is 
a very specific case of a more general conjecture in transcendental number theory 
attributed to Schanuel. 

Schanuel 's Conjecture , (see [22, p. 687]) If Ai , . . . , A/ are complex numbers, lin­
early independent over Q, then the transcendence degree of Q(Ai, . . . A/, e A l , . . . , eA/) 
is at least L 

Notice that in the special case where Ai , . . . , A/ are algebraic numbers, the well-
known Theorem of Lindemann-Weierstrass [17, p. 277] tells us that the transcen­
dence degree of Q(Ai , . . . A/, e A l , . . . , eA') is even equal to L A verification of the 
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conjecture would answer a lot of questions concerning the algebraic independence of 
given transcendental numbers, like, say, e and - (where it is in fact even unknown 
whether e + - is irrational!), or e and ee. 

As for the calculations in ?7, it can be shown that an affirmative answer of 
SchanuePs conjecture would imply the symbolic computability of a greatest com­
mon divisor along with a Bezout identity for any finite set of operators in H with 
coefficients in a computable field. The key point is that for the calculation of a 
Bezout identity starting with operators having coefficients in a computable field F 
(like, say, Q or Q(e)), one has to successively adjoin elements A G C which are al­
gebraic over F along with the element ex G C This leads to field extensions of Q 
of the type considered by Schanuel. Thanks to the fact that the elements A G C 
do not contribute to the transcendence degree, the conjecture would yield the exact 
transcendence degree and even a transcendence basis. It can be shown that this 
suffices for symbolic representation and computability. The lengthy details of this 
topic are elaborated in [13, Sec. 3.5]. Needless to say that these considerations are 
still fairly theoretical, since in general the symbolic terms needed even for a single 
Bezout identity turn easily into rather huge expressions. 

5.2. Controllability and interconnections 

In this section we utilize the machinery of Section 5.1 to launch a behavioral control 
theory for systems with commensurate delays. The detailed elaboration of this 
section, performed completely in the algebraic context of the commensurate case, 
can be found in [13, Ch. 4]. 

First observe that, since we can assume full row rank kernel representations, each 
i/o-behavior B has a kernel representation B = ker^ [P, Q] for some P G Hpxm and 
some nonsingular Q E r i p x p , where p = rk [P, Q] = rk Q. Hence, the formal transfer 
function of B is the matrix Q~lP G R(D,a)pxm. 

In the commensurate case it is possible to analyze causality relations (with re­
spect to time) between the external variables. The corresponding notion is called 
nonanticipation in behavioral control theory. 

Theorem 5.7. Let [P,Q] G Hpx(m+P>> and detQ ^ 0. Hence B := ker^ [P,Q] C 
gm+p j s a n i/o-behavior with input u G £m and output y G £p. The following are 
equivalent. 

(a) For all u G £m satisfying TX|(_OO)0] = 0 there exists y G £p such that y\(-ooyo] = 0 
and (u~,yT)T G B. 

(b) Q~lP G R(D){aJpXm, that is, the entries of Q~lP are formal power series in 
a with coefficients in the field R(.D). 

If one of these conditions is satisfied, the delay-differential behavior B is said to be 
nonanticipating. 

Recall that the formal transfer function Q~XP does always exist in R(D,a)pXm. 
Since R(D, a) C R(D) ((a)), the space of formal Laurent series in a with coefficients 
in R(D), part (b) above simply requires that Q~lP does not contain any negative 
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powers of cr, hence no backward shifts. 
The most convenient way for proving the theorem is by interpreting Q~1P 
G R(D, a)pxm as a map from £m to ££, where £+ denotes the space of functions in £ 
with support bounded on the left. This is indeed possible since one can canonically 
embed R(D,cr) in the space of all distributions having support bounded on the left; 
for details see [11, Thm. 2.6] and [13, Sec 4.2]. 

The result above might surprise on first sight if applied to purely differential 
behaviors, i. e. to an operator [P, Q] G R[D]pX(m+p>>. In that case, it simply says 
that every i/o-behavior is nonanticipating. No properness of the associated formal 
transfer function Q~lP arises. This is due to the fact that only C°°-trajectories 
are being considered and has been pointed out already in [40, p. 333]. Only if more 
general function spaces, say L\oc, are taken into consideration, the properness of 
Q~1P is of specific importance, see [40] for purely differential behaviors and [13, 
Rem. 4.2.4] for the case of (commensurate) delay-differential systems. 

We now turn to controllability for delay-differential behaviors. The following 
theorem shows that, in the case of commensurate delays, all the conditions of The­
orem 3.12 are equivalent; recall that this is not the case for the noncommensurate 
case. Thanks to left equivalent upper triangular forms it suffices, again, to restrict 
to full row rank kernel representations. 

Theorem 5.8. Let B = ker,f It, where R G TipXq has rank p. Then the following 
are equivalent. 

(a) rkIT(s) =p for a l l s G C, 

(b) W/(W H # x ) = Hq/imH I?T is a free H-module, 

(c) B is a subbehavior of each delay-differential behavior having the same formal 
transfer function, 

(d) B is controllable, 

(e) B has an image representation, 

(f) R has a right inverse over H. 

P r o o f . The implications (a)4=>(c)^=(d)<=(e)4=(f) result from Theorem 3.12. 
Part (b) above is the analogue of part (d) in Theorem 3.12 together with the fact 
that any finitely generated torsion-free module over a Bezout domain is free. As 
for (f), notice that for full row rank matrices the notions of generalized inverses and 
right inverses coincide. The part (a)--=>(f) has been discussed in Remark 5.2. • 

Remark 5.9. A detailed study of the equivalences above (see, e. g., the direct 
proof of (a)^->(d) in [12, Sec 5]) reveals that controllability of B is equivalent to 
the capability of steering each trajectory in finite time to zero. Precisely, B is 
controllable if and only if for all w G B there exists T > 0 and c : [0, T) -> Cq such 
that WAOCATO G B. 

The following theorem shows that in the commensurate case the weakly con­
trollable subbehavior is actually a controllable delay-differential behavior which, 
moreover, enjoys a simple description. 
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Theorem 5.10. Let R G 7ipXq be a matrix with rank p and put B = keis R. 
Factor RasR = BRC where B G Upxp and Rc G Wxq is right invertible. Then the 
weakly controllable subbehavior Bc = B D V^ of B is a controllable delay-differential 
behavior and given by Bc = kerg Rc. Moreover, if M G %^x(^q~p) is such that 
RM = 0, then Bc = im^M. Finally, B' C Bc for every controllable delay-differential 
behavior B' contained in B. We call Bc the controllable subbehavior of B. 

P r o o f . Let B := ker^i?c, thus Bc is controllable. From Proposition 3.13 we 
know that Bc C Bc. For the converse inclusion, pick w G BnVq. Then BRcw = 0 
and thus Rcw G ker^ i? fl D7 . Since ker^ B is autonomous, we obtain Rcw = 0 
(see Theorem 3.9 and Proposition 3.10). Thus B D Vq C Bc and consequently 
£>c C Bc. The image representation Bc = im^M follows now from Proposition 3.13 
(and its proof) together with the fact that Bc is a closed space. • 

So far we have only been concerned with the analysis of a single behavior. Now 
we shall direct our attention to the interconnection of two behaviors, one of which 
being regarded the given plant, the other one the to-be-designed controller. Indeed, 
a controller does constitute a behavior itself. It processes (part of) the output of 
the to-be-controlled system and computes (part of) the inputs for that system with 
the purpose to achieve certain desired properties of the overall behavior, like for 
instance stability. Thus, the plant and the controller are interconnected to form a 
new system. In the behavioral framework the interconnection can be written as the 
intersection of two suitably defined behaviors. The underlying idea is simply that 
the trajectories of the overall system have to satisfy both sets of equations, those 
governing the plant behavior and those imposed by the controller behavior. In order 
to obtain an efficient controller one has to add some regularity condition on the 
interconnection. 

Definition 5.11. (see [40, p. 332]) The interconnection of two delay-differential 
behaviors Bi = ker^ Ri C £q, i = 1,2, where Ri G %PiXq, is defined to be the 
delay-differential behavior B := B\ fl B2. The interconnection is called regular if 
rk [ IV, IV]T = rk I?! + rk R2. 

The concept of a regular interconnection is rather natural in the behavioral setting 
as it can be seen by Theorem 3.9. Indeed, the number q of external variables minus 
the rank of a kernel representation represents the number of input variables of a 
behavior. If one thinks of one of the interconnecting components as the controller, it 
is natural to require that each linearly independent equation of the controller should 
put a restriction onto one additional input channel, for otherwise the controller would 

be inefficient. As a consequence, the resulting interconnection B = ker^ R
x of Bi 

and B2 is left with q — ikRi — rkR2 input variables, which is exactly the regularity 
condition. 

Obviously, an interconnection is a subbehavior of either of its components. It is 
fairly simple to characterize algebraically those subbehaviors of a given behavior, 
which can be achieved as regular interconnections from that given behavior. But it is 
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also not hard to give a dynamical characterization purely in terms of the trajectories 
involved. 

T h e o r e m 5.12. Let B C B C £q be two delay-differential behaviors and assume 
B = ker£ R where R G %pXq is a matrix with rank p. Then the following statements 
are equivalent. 

(a) There exists a delay-differential behavior B' C £q such that B = B n B' is a 
regular interconnection of B and B', 

(b) the image R(B) C £p of B is controllable, 

(c) B = Bc + B, where Bc denotes the controllable subbehavior of B, 

(d) B is S-controllable, that is, for each w G B there exist T > 0, w E B, and a 
function c : [0,T) —> C* such that WAOCATW G /5. 

If any of these equivalent conditions is satisfied, the subbehavior B is said to be 
achievable via interconnection from B. 

From a behavioral point of view, part (d) is the most important characterization 
for it provides us with an intrinsic criterion for regular interconnections; it is purely 
in terms of trajectories and does not resort to any kind of representation of the 
behaviors. Observe that C-controllability can be understood as the capability to 
steer every trajectory of B into the subspace B in finite time. In light of Remark 5.9 
we see that controllability in the sense of the previous section is the same as {0}-
controllability. The characterization above is close to what has been obtained for 
multidimensional systems in [32, Thm. 4.2]. 

P r o o f of T h e o r e m 5.12. Let B = ker^ R for some R G %pXq having full row 
rank. The inclusion B C B implies a relation XR = R where X G Hpxp is a full row 
rank matrix. One easily verifies that R(B) = ker^ X. 

(a) => (b) Let B' = ker^ R' where B! e7ip'xq has rank p'. Then B = ker^ [ # 1 = 

ker^ R and p = p + p' by regularity of the interconnection. Hence Theorem 5.3 (1) 

yields that the matrices R and „, are left equivalent. This shows that X is a 

block row of a unimodular matrix and therefore ker^ X = R(B) is controllable by 
virtue of Theorem 5.8 (f) and Remark 5.2. 

(b) =-> (a) follows by completing X to a unimodular matrix [X T , y T ] T and defining 
R' = YR. 

(b) =-> (c) Let R = BRC be factored as in Theorem 5.10, thus Bc = ker^ Rc is the 
controllable subbehavior of B. Then B = Bc + B is equivalent to lclm(i?c,.R) = R 
(up to unimodular left factors), see Theorem 5.3 (3). But the latter follows from the 
right invertibility of X, since every lclm(i?c,^) is of the form L = AR eHpxq and 
a right divisor of R = XR = BRC. 

(c) => (d) Choose w = wc + w G B where wc G Bc and w G B. Controllability of 
Bc implies the existence of a trajectory v := WCAQCATO G BC. AS a consequence, 
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v + w = WAOC'ATW G B, which proves (d). 

(d) =-> (b) Let v = Rw G R(B) for some w G B. By assumption there exists a trajec­
tory w G B such that w\ := WAQCATW G B for some T > 0 and a suitable function c 
defined on [0,T). Using [12, Lem. 5.3] one obtains Rwi = RwAoc1A^Rw G R(B) for 
some Ti > 0 and a function c' (here one has to assume that R does not contain any 
negative powers of a for otherwise the first concatenation would occur at a negative 
time instant; but this can indeed be assumed without loss of generality, since a is 
a bijection on £). Since Rw = 0, the last part shows that every trajectory in R(B) 
can be steered to zero, which by Remark 5.9 is equivalent to controllability of R(B). 

• 

Since the image of a controllable behavior is controllable again [12, Lem. 5.4], the 
following additional characterization is immediate from the above theorem. Notice 
that by part (b) below the term controllability can now be understood in a twofold 
way. Firstly, it describes the ability to steer trajectories (Definition 3.11), and sec­
ondly, it expresses the achievability of all subbehaviors via regular interconnections. 
In other words, it guarantees the very existence of controllers. 

Corollary 5.13. The following conditions on a delay-differential behavior B C £q 

are equivalent. 

(a) B is controllable, 

(b) each subbehavior B C B can be achieved via a regular interconnection from B, 

(c) {0} C B can be achieved via a regular interconnection from B. 

We close this section on delay-differential behaviors with commensurate delays 
with a brief outlook at some 

Open problems 

(1) First of all, from a control theoretic point of view it would be interesting to 
develop a theory for behaviors where the trajectories have their components 
in more general functions spaces, say in the space L\QC. In [31] this has been 
elaborated for purely differential behaviors. While for purely differential systems 
every sufficiently smooth weak solution is even a strong one [31, Thm. 2.3.11], 
it is not clear how strong and weak solutions are related for delay-differential 
systems. This, however, would be a helpful information for extending the results 
presented in this paper to larger function spaces. The results in [35, Sec 7] 
might also be helpful in this regard. Furthermore, it is obvious how to define 
a behavior in L\QC via kernel representations over %, but it seems to be fairly 
difficult to characterize controllability for these behaviors. 

(2) For more general function spaces like L\QC the properness of the associated formal 
transfer function plays a fundamental role. With the methods presented in this 
section it is possible to explain this relationship, if one considers inputs with 
components in L\QC having support bounded to the left. This in turn leads 
to a more involved notion of regular interconnection where the properness is 
taken into consideration as well, the so-called regular feedback-interconnection, 
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see [40, p . 334] for purely differential behaviors. The question of achievability 
via regular feedback-interconnections is completely unsolved even for purely 
differential behaviors. 

(3) For any kind of underlying function space the concept of stabilizability remains 
to be investigated . Only part ial results are available in this regard . 

(Received November 22, 2000.) 
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