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Abstract. In this paper we study set-valued optimization problems with equilibrium
constraints (SOPECs) described by parametric generalized equations in the form

0 ∈ G(x) +Q(x),

where both G and Q are set-valued mappings between infinite-dimensional spaces. Such
models particularly arise from certain optimization-related problems governed by set-valued
variational inequalities and first-order optimality conditions in nondifferentiable program-
ming. We establish general results on the existence of optimal solutions under appropriate
assumptions of the Palais-Smale type and then derive necessary conditions for optimal-
ity in the models under consideration by using advanced tools of variational analysis and
generalized differentiation.

Keywords: variational analysis, nonsmooth and set-valued optimization, equilibrium con-
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entiation
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1. Introduction

This paper concerns a general class of set-valued optimization problems whose

constraints contain, among others, the so-called equilibrium constraints written in

the following form

(1.1) 0 ∈ G(x) + Q(x),

*This research was partly supported by the National Science Foundation under grants
DMS-0304989 and DMS-0603846 and by the Australian Research Council under grant
DP-0451168.
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where both mappings G : X ⇉ Y and Q : X ⇉ Y are generally set-valued between

Banach (may be finite-dimensional) spaces. Constraints of type (1.1) were first con-

sidered by Robinson [16] in the case when the mapping G = g : X → X∗ from X to

its dual X∗ is single-valued and smooth, while Q : X ⇉ X∗ is set-valued given as the

normal cone mapping Q(x) = N(x; Ω) to a convex set. Robinson’s model of “gen-

eralized equations” has been proved to be very convenient and important for both

optimization theory and numerous applications. In particular, it covers the classical

variational inequalities, complementarity problems, KKT systems in nonlinear pro-

gramming as well as their extensions and modifications. It has been subsequently

realized that generalized equations provide a natural framework for describing “equi-

librium constraints” in various problems of hierarchical optimization and equilibria

allowing thus to develop a rich spectrum of theoretical results, numerical methods,

and practical applications in the area, which has been unified under the name of

Mathematical Programs with Equilibrium Constraints (MPECs).

The monograph by Outrata, Kočvara and Zowe [15] is a pioneering book that,

together with that by Luo, Pang and Ralph [6], lays down the foundations of the

MPEC theory, algorithms, and applications; see also the more recent books [4],

[8] and the references therein for further developments. Jiří Outrata is among the

first who obtained principal results on optimality conditions and sensitivity analysis

for various classes of MPECs employing advanced tools of variational analysis and

generalized differentiation (see, e.g., [12], [13]); he is also one of the founders of

the new area known now as Equilibrium Problems with Equilibrium Constraints

(EPECs); see [14] and also [11] with more discussions and references.

Note that the perturbed version of generalized equations (1.1) particularly needed

for their sensitivity analysis is written as

(1.2) 0 ∈ G(p, u) + Q(p, u),

where u signifies the decision variable and p stands for the perturbation parameter.

The majority of previous developments dealt with models of type (1.2) described

by single-valued mappings G = g(p, u) depending on parameters and set-valued

mappings Q(u) independent of them. Outrata initiated the study of optimization

and equilibrium models with equilibrium constraints, where both single-valued and

set-valued parts depend on parameters. Such models happen to be important, e.g., in

the analysis of quasivariational inequalities; see particularly the recent work [10].

It turns out that many interesting optimization and equilibrium problems impor-

tant for a variety of applications cannot be adequately described by the general-

ized equation model (1.1) and its perturbed counterpart (1.2) involving single-valued

mappings G = g; they require extended versions with both set-valued mappings G
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and Q. The latter classes include, e.g., the so-called set-valued/generalized vari-

ational inequalities, variational systems arising in the first-order optimality/KKT

conditions for nonsmooth constrained optimization, problems of nondifferentiable

bilevel programming, etc. The reader can find more details and references in the re-

cent paper [1] containing necessary optimality conditions for such problems (in both

single-objective and vector-objective optimization frameworks) with equilibrium con-

straints of type (1.2).

The primary goal of this paper is to study set-valued optimization problems with

equilibrium constraints of type (1.1) and additional geometric constraints. This class

of problems, labeled for brevity as SOPECs, is described by

minimize F (x)(1.3)

subject to 0 ∈ G(x) + Q(x),

x ∈ Ω,

where all the mappings F : X ⇉ Z, G : X ⇉ Y , and Q : X ⇉ Y are set-valued

between the corresponding Banach spaces, and where Ω is a nonempty subset of X .

In this formulation we do not specify the decision-parametric structure of equilibrium

constraints as in (1.2) considering the pair x = (p, u) as a single variable under

optimization. The main difference of problem (1.3) from the one previously studied

in [1] is that now we deal with a set-valued cost mapping F whose “minimization”

is understood in an appropriate sense; see below.

Furthermore, besides deriving necessary optimality conditions for (1.3), we pay at-

tention in what follows to establishing efficient conditions that ensure the existence

of optimal solutions to the set-valued optimization problem formulated above. We

have concerned the latter issue in the recent paper [2] for the case of unconstrained

problems of set-valued optimization, where the new subdifferential Palais-Smale con-

dition is introduced to provide the existence of weak minimizers. Now we explicitly

incorporate the equilibrium and geometric constraint structure of (1.3) into an ap-

propriate extension of the Palais-Smale condition to the SOPECs under considera-

tion. The results obtained in this paper, in both directions of necessary optimality

conditions and the existence of optimal solutions to SOPECs in finite-dimensional

and infinite-dimensional settings, are strongly based on the generalized differential

calculus developed in [7] and particularly applied below to the new subdifferential

constructions for set-valued mappings with values in partially ordered spaces.

The rest of the paper is organized as follows. In Section 2 we present and briefly

discuss some tools of variational analysis and generalized differentiation needed to

derive our main results. We pay a particular attention to subdifferential notions for

set-valued mappings with values in partially ordered spaces. Besides the notions

455



introduced in the recent paper [2], we define here two new modifications different

from the previous ones for mappings with values in infinite-dimensional spaces.

Section 3 is devoted to deriving efficient conditions that ensure the existence of

optimal solutions to SOPECs while concentrating on the case of weak minimizers.

Based on the subdifferential Palais-Smale condition introduced in [2] for uncon-

strained problems and on appropriate results of generalized differential calculus, we

establish verifiable conditions of the Palais-Smale type providing the existence of

weak minimizers to multiobjective optimization problems with geometric and equi-

librium constraints that are new in both finite-dimensional and infinite-dimensional

spaces.

In the final Section 4 we derive pointwise necessary optimality conditions for

the SOPECs under consideration with geometric and equilibrium constraints con-

sidering both cases of local minimizers and weak local minimizers. Our approach

is based on the extremal principle of variational analysis [7] and calculus rules of

generalized differentiation. Furthermore, in infinite-dimensional settings we apply

the results of SNC calculus [7] ensuring the preservation of the so-called sequential

normal compactness (SNC) properties of sets and mappings under appropriate qual-

ification conditions. The latter properties are automatic in finite dimensions while

playing a crucial role in infinite-dimensional spaces for both issues of the existence

of optimal solutions and necessary optimality conditions studied in the paper. The

necessary optimality conditions obtained in Section 4, being new in finite and infinite

dimensions, unify and improve various results in single-objective and vector-objective

optimization with equality, inequality, operator, and other types of constraints known

in the literature; see the discussion in Remark 4.4.

Our notation is basically standard; cf. [7], [17]. Note that N := {1, 2, . . .}, B andB ∗ stand for the closed unit balls in the space in question and its topological dual,

respectively. Given a set-valued mapping F : X ⇉ X∗ between a Banach X and its

dual X∗, the symbol

Lim sup
x→x̄

F (x) := {x∗ ∈ X∗ : ∃ sequences xk → x̄ and x∗

k

w
∗

→ x∗(1.4)

with x∗

k
∈ F (xk) for all k ∈ N}

signifies the sequential Painlevé-Kuratowski upper/outer limit of F at x̄ in the norm

topology of X and weak∗ topology w∗ of X∗.
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2. Tools of Variational Analysis

In this section we briefly overview some basic constructions and notions of vari-

ational analysis widely used in the paper. We mostly follow the recent book by

Mordukhovich [7], where the reader can find more details and references; see also

the books by Borwein and Zhu [3] and Rockafellar and Wets [17] for related and

additional material. Along with the basic notions, we define in this section new

subdifferential constructions for set-valued mappings with values in partially ordered

spaces, which—together with those recently introduced in [2]—play a crucial role in

formulating and proving the main results of the paper.

Although the definitions presented below hold in arbitrary Banach spaces, the

main results of this paper require the Asplund property of the spaces in question;

see [7] for the corresponding modifications of the basic constructions in more general

settings. Thus, unless otherwise stated, all the primal spaces under consideration

are assumed to be Asplund.

Recall that a Banach space X is Asplund if any convex continuous function is

densely Fréchet differentiable on X . There are many equivalent descriptions of As-

plund spaces; see, e.g., [3], [7] and the references therein for more discussions and

references. Note that the class of Asplund spaces is sufficiently broad including, in

particular, every reflective Banach space as well as Banach spaces with separable

duals.

We start with generalized normals to nonempty sets. Given Ω ⊂ X , the Fréchet

normal cone (or prenormal cone) to Ω at x ∈ Ω is

(2.1) N̂(x; Ω) :=
{

x∗ ∈ X∗ : lim sup
u

Ω
→x

〈x∗, u − x〉

‖x − u‖
6 0

}

,

where u
Ω
→ x means that u → x with u ∈ Ω. For convenience put N̂(x; Ω) := ∅

for x /∈ Ω. Then the (basic, limiting, Mordukhovich) normal cone to Ω at x̄ ∈ Ω is

defined by

(2.2) N(x̄; Ω) := Lim sup
x→x̄

N̂(x; Ω)

via the sequential Painlevé-Kuratowski outer limit (1.4) of Fréchet normals (2.1) as

x → x̄.

A characteristic feature of the basic normal cone (2.2) is its nonconvexity in com-

mon situations. In spite of (in fact due to) this nonconvexity, the normal cone (2.2)

and the corresponding coderivative and subdifferential constructions generated by it

enjoy full calculi in the Asplund space setting; see [7, Chapter 3] for more details.
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Let F : X ⇉ Z be a set-valued mapping with the graph

gphF := {(x, z) ∈ X × Z : z ∈ F (x)},

and let (x̄, z) ∈ gphF . Consider two coderivatives of F at (x̄, z): the normal

coderivative D∗

N
F (x̄, z) : Z∗ ⇉ X∗ defined by

(2.3) D∗

NF (x̄, z)(z∗) := {x∗ ∈ X∗ : (x∗,−z∗) ∈ N((x̄, z); gphF )}

and the mixed coderivative D∗

M
F (x̄, z) : Z∗ ⇉ X∗ defined by

D∗

MF (x̄, z)(z∗) := {x∗ ∈ X∗ : ∃ (xk, zk)
gph F
→ (x̄, z), x∗

k

w
∗

→ x∗, z∗k → z∗(2.4)

with (x∗

k
,−z∗

k
) ∈ N̂((xk, zk); gphF )}.

Note that z = f(x̄) is always omitted in the coderivative notation if F = f : X → Z

is single-valued. It easily follows from (2.2)–(2.4) that

D∗

MF (x̄, z)(z∗) ⊂ D∗

NF (x̄, z)(z∗) for all z∗ ∈ Z∗,

where the equality holds when, in particular, dimZ < ∞. We have

D∗

Nf(x̄)(z∗) = D∗

Mf(x̄)(z∗) = {∇f(x̄)∗z∗} for all z∗ ∈ Z∗

if f : X → Z is strictly differentiable at x̄; in particular, when f ∈ C1 around this

point.

Now we consider a set-valued mapping F : X ⇉ Z between Banach spaces in the

case when the range space Z is partially ordered by a nonempty cone Θ ⊂ Z. In

this case we define subdifferential notions for F , which—similarly to subdifferentials

of real-valued functions and in contrast to coderivatives of arbitrary mappings as

above—depend on the order “6” on Z given by the cone Θ as follows:

z1 6 z2 if and only if z2 ∈ z1 + Θ.

Consider the epigraph of F with respect to the ordering cone Θ defined by

epi F := {(x, z) ∈ X × Z : z ∈ F (x) + Θ}

with epi F = gphF if Θ = {0} and the strict inclusion gphF ⊂ epiF holding oth-

erwise; we omit Θ in the epigraph notation for simplicity. Adopting the approach

in [2], introduce the following four subdifferential constructions for F needed to for-

mulate and justify the main results of this paper; only two of them have been defined
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in [2]. These subdifferentials are generated by the corresponding coderivatives (2.3)

and (2.4) of the epigraphical multifunction EF : X ⇉ Z associated with F (and Θ)

by

EF (x) := {z ∈ Z : z ∈ F (x) + Θ}.

Definition 2.1 (normal and mixed subdifferentials of set-valued mappings). Let

F : X ⇉ Z with Z partially ordered by a cone Θ, and let (x̄, z) ∈ epi F . Then:

• The normal subdifferential of F at (x̄, z) is

(2.5) ∂NF (x̄, z) := {x∗ ∈ X∗ : x∗ ∈ D∗

NEF (x̄, z)(z∗), −z∗ ∈ N(0; Θ), ‖z∗‖ = 1}.

• The mixed subdifferential of F at (x̄, z) is

(2.6) ∂MF (x̄, z) := {x∗ ∈ X∗ : x∗ ∈ D∗

M
EF (x̄, z)(z∗), −z∗ ∈ N(0; Θ), ‖z∗‖ = 1}.

• The normal singular subdifferential and the mixed singular subdifferential of F

at (x̄, z) are defined, respectively, by

(2.7) ∂∞

N
F (x̄, z) := D∗

N
EF (x̄, z)(0) and ∂∞

M
F (x̄, z) := D∗

M
EF (x̄, z)(0).

Clearly, there is no difference between the normal and mixed subdifferentials intro-

duced, as well as between their singular counterparts, if dimZ < ∞. However, they

may be essentially different in infinite dimensions. In the case of extended-real-valued

functions ϕ : X → (−∞,∞], the subdifferentials (2.5)–(2.7) reduce, with Θ = R+ ,

to the corresponding subdifferential constructions by Mordukhovich; see [7].

In what follows we employ the subdifferentials (2.5)–(2.7) of set-valued mappings

to the set-valued optimization problems under consideration. Our approach is largely

based, due to the above definitions, on the extended normal cone and coderivative

calculus rules for the limiting constructions involved. To proceed in this way in

infinite-dimensional settings, we need to use appropriate “sequential normal com-

pactness” properties for sets and set-valued mappings with values in partially ordered

spaces.

Recall that a set Ω ⊂ X ×Z is sequentially normally compact (SNC) at (x̄, z) ∈ Ω

if for any sequence of elements (xk, zk, x∗

k
, z∗

k
) ∈ X × Z × X∗ × Z∗ satisfying

(2.8) (xk, zk)
Ω
→ (x̄, z) and (x∗

k
, z∗

k
) ∈ N̂((xk, zk); Ω), k ∈ N,

one has the implication (x∗

k
, z∗

k
)

w
∗

→ (0, 0) =⇒ ‖(x∗

k
, z∗

k
)‖ → 0 as k → ∞. The

more subtle partial SNC property of Ω at (x̄, z) means that for any sequence of

(xk, zk, x∗

k
, z∗

k
) satisfying (2.8) one has the implication

[x∗

k

w
∗

→ 0, ‖z∗
k
‖ → 0] =⇒ ‖x∗

k
‖ → 0 as k → ∞.
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We refer the reader to the books [7], [8] for efficient conditions ensuring the fulfill-

ment of these properties (which are clearly automatic in finite dimensions) and their

preservation under various operations. The main results of this paper require the

following modifications of the above properties in the case of mappings with values

in partially ordered spaces.

Given F : X ⇉ Z with the range space Z ordered by a cone Θ, we say that F is

sequentially normally epi-compact (SNEC) at (x̄, z) ∈ epi F if its epigraph generated

by Θ is SNC at this point. Correspondingly, the partially SNEC property of F at

(x̄, z) is induced in the same way by the partial SNC property of the epigraph epi F

at (x̄, z).

It turns out that the above SNC/SNEC properties are ensured by certain Lip-

schitzian behavior of sets and mappings; cf. [7, Chapter 1]. In particular, F is

partially SNEC at (x̄, z) if it is epi-Lipschitz-like (ELL) around this point, i.e., there

are neighborhoods U of x̄ and V of z and a constant l > 0 such that

EF (x) ∩ V ⊂ EF (u) + l‖x − u‖B for all x, u ∈ U.

The latter means in fact that the epigraphical multifunction EF associated with F

enjoys the Lipschitz-like/Aubin property around (x̄, z); cf. [7], [17].

Furthermore, it follows from [7, Theorem 1.44] and the constructions of ∂∞

M
F

in (2.7) that the ELL property of F around (x̄, z) implies that

(2.9) ∂∞

M
F (x̄, z) = {0}.

The major driving force of the underlying generalized differential and SNC calculus

results mentioned above is the following Extremal Principle of variational analysis

(see particularly [7, Chapter 2] and both volumes [7], [8] for a variety of applications),

which plays a crucial role in deriving the main results of this paper. Recall that

x̄ ∈ Ω1 ∩ Ω2 is a local extremal point of the set system {Ω1, Ω2} in X if there exists

a neighborhood V of x̄ such that for any ε > 0 we can find a ∈ εB with
(2.10) Ω1 ∩ (Ω2 + a) ∩ V = ∅.

The Extremal Principle. Let x̄ be a local extremal point of the set system

{Ω1, Ω2}, where both Ω1 and Ω2 are locally closed around x̄. Then for every ε > 0

there are

xi ∈ Ωi ∩ (x̄ + εB ) and x∗

i
∈ N̂(xi; Ωi) + εB ∗ , i = 1, 2,

satisfying the relationships

‖x∗

1‖ + ‖x∗

2‖ = 1, x∗

1 + x∗

2 = 0.
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3. Existence of optimal solutions to SOPECs

In this section we formulate set-valued optimization problems in the presence of ge-

ometric and equilibrium constraints and derive verifiable conditions for the existence

of optimal solutions to these problems using the tools of generalized differentiation

discussed in Section 2. Without further mentioning, suppose that the constrained

problems under consideration have nonempty sets of feasible solutions.

Let Z be Banach space ordered by a cone Θ 6= {0}, which is always assumed to

be closed, convex, and pointed in the sequel. Given a set Λ ⊂ Z and following the

book by Jahn [5], we say that z ∈ Λ is a minimal point of Λ if

Λ ∩ (z − Θ) = {z}.

The collection of minimal points of Λ is equivalently described by

Min Λ := {z ∈ Λ: z − z /∈ Θ whenever z ∈ Λ \ {z}}.

If intΘ 6= ∅, we similarly define weak minimal points z of Λ by

Λ ∩ (z − intΘ) = ∅.

Given F : X ⇉ Z and Ξ ⊂ X , we start with the following set-valued optimization

problem under arbitrary geometric constraints :

(3.1) minimize F (x) subject to x ∈ Ξ

and say that (x̄, z) ∈ gphF is a minimizer to (3.1) if x̄ ∈ Ξ and z is a minimal point

of the image set F (Ξ) :=
⋃

x∈Ξ

F (x), i.e.,

(3.2) F (Ξ) ∩ (z − Θ) = {z}.

Similarly, (x̄, z) ∈ gphF is a weak minimizer to (3.1) with intΘ 6= ∅ if x̄ ∈ Ξ and

z is a weak minimal point of F (Ξ), i.e.,

(3.3) F (Ξ) ∩ (z − intΘ) = ∅.

In the first result of this section we establish verifiable conditions ensuring the

existence of weak minimizers to problem (3.1) developing the corresponding result

of [2, Theorem 4.3] on the existence of weak minimizers to the unconstrained problem

of minimizing F .
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Considering a set-valued mapping F : X ⇉ Z and a set Ξ ⊂ X as in (3.1), we say

that F is quasibounded from below with respect to Ξ if there is a bounded set M

such that

F (Ξ) ⊂ M + Θ.

Correspondingly, a set A ⊂ Z is quasibounded from below if the constant mapping

F (x) ≡ A has this property. Following [2], we say that F satisfies the subdifferential

Palais-Smale condition if any sequence {xk} ⊂ X such that

(3.4) there are zk ∈ F (xk) and x∗

k ∈ ∂NF (xk, zk) with ‖x∗

k‖ → 0 as k → ∞

contains a convergent subsequence provided that {zk} is quasibounded from below.

Our goal now is to introduce an appropriate analog of the subdifferential Palais-

Smale condition involving the cost mapping F and the constraint set Ξ in (3.1)

that guarantees the existence of weak minimizers to this constrained problem. The

following one obtained from (3.4) by using subdifferential calculus meets this purpose.

Definition 3.1 (Palais-Smale condition in set-valued optimization with geometric

constraints). We say that the Palais-Smale condition holds in (3.1) if any sequence

{xk} ⊂ Ξ as k → ∞ such that

(3.5) there are zk ∈ F (xk) and x∗

k ∈ ∂NF (xk, zk) + N(xk; Ξ) with ‖x∗

k‖ → 0

contains a convergent subsequence provided that {zk} is quasibounded from below.

The next theorem ensures the existence of weak minimizers to the constrained

problem (3.1) under the Palais-Smale condition from Definition 3.1 combined with

appropriate qualification and SNC assumptions imposed on the initial data.

Theorem 3.2 (existence of weak minimizers in set-valued optimization with geo-

metric constraints). Let F : X ⇉ Z be quasibounded from below with respect to Ξ

and have the closed epigraph, let Ξ be closed and MinF (x) as x ∈ Ξ be compact,

and let

(3.6) for every x ∈ Ξ and z ∈ F (x) there is z ∈ MinF (x) with z 6 z.

Assume in addition that the Palais-Smale condition from Definition 3.1 holds and

that for every (x, z) ∈ gphF with x ∈ Ξ one has the following:

(a) either F is partially SNEC at (x, z), or Ξ is SNC at x;

(b) the pair {F, Ξ} satisfies the qualification condition

(3.7) ∂∞

M
F (x, z) ∩ (−N(x; Ξ)) = {0}.

Then problem (3.1) admits a weak minimizer.
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P r o o f. Consider the restriction of F to Ξ given by

(3.8) FΞ(x) := F (x) + ∆(x; Ξ) with ∆(x; Ξ) :=

{

0 ∈ Z if x ∈ Ξ,

∅ otherwise.

Obviously the constrained problem (3.1) is equivalent to the unconstrained problem

of minimizing the restriction FΞ over X . Applying [2, Theorem 4.3] to the latter

unconstrained problem, we get the existence of weak minimizers to it—and hence

to (3.1)—if FΞ satisfies the afore-mentioned subdifferential Palais-Smale condition

for unconstrained minimization. Due to the structures of (3.4) with F = FΞ and

of (3.5), the subdifferential Palais-Smale condition for the unconstrained problem

follows from the one in Definition 3.1 provided the fulfillment of the calculus rule

(3.9) ∂NFΞ(x, z) ⊂ ∂NF (x, z) + N(x; Ξ).

To justify (3.9) for the normal subdifferential (2.5), we use its definition and the basic

intersection rule in product spaces derived in [7, Theorem 3.4] from the extremal

principle. Applying this rule to the set intersection

(3.10) epi FΞ = Ω1 ∩ Ω2 with Ω1 := epi F and Ω2 := Ξ × Z,

and taking into account the structures ofΩi in (3.10) as well as the simple relationship

∂N∆(x; Ξ) = N(x; Ξ) for any x ∈ Ξ,

we arrive at (3.9) under the fulfillment of the SNEC/SNC and qualification conditions

imposed in the theorem. This completes its proof. �

It turns out that both the qualification and partially SNEC conditions of the

theorem are automatic for a broad class of ELL set-valued mappings defined in

Section 2.

Corollary 3.3 (existence of weak minimizers for constrained minimization of

ELL mappings). Let the cost mapping F be ELL around any point (x, z) ∈ gphF

with x ∈ Ξ under the general assumptions of Theorem 3.2. Then there exist weak

minimizers to problem (3.1) provided the fulfillment of the Palais-Smale condition

from Definition 3.1.

P r o o f. This follows from relationship (2.9) for ELL mappings and the fact

that such mappings are always partially SNEC around the points in question; see

Section 2. �
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Next we establish an existence theorem for the principal set-valued optimization

problem of this paper with both geometric and equilibrium constraints formulated

in (1.3). To derive this result, we reduce the general SOPEC (1.3) to a set-valued

optimization problem with only the geometric constraint of type (3.1) considered in

Theorem 3.2. Such a reduction procedure allows us to obtain verifiable conditions

for the existence of weak minimizers to problem (1.3) in terms of the initial data

of this problem—mainly due to extended calculus rules available for the generalized

differential constructions and SNC properties involved in the major conditions of

Theorem 3.2.

Theorem 3.4 (existence of weak minimizers to SOPECs). Let the sets epi F ,

gphG, gphQ, and Ω in (1.3) be closed, let

(3.11) Ξ := gphG ∩ gph(−Q) ∩ (Ω × Y ),

and let the mapping F̃ (x, y) := F (x) satisfy condition (3.6) relative to set (3.11) with

the closed minimum set MinF (x); the latter is automatic when the corresponding

condition (3.6) of Theorem 3.2 is satisfied for the cost mapping F in (1.3) with

respect to the geometric constraint set Ω. Furthermore, assume that the following

hold:

(a) The two qualification conditions

(3.12) (−∂∞

M
F (x, z)) ∩

(

D∗

N
G(x, y)(y∗) + D∗

N
Q(x,−y)(y∗) + N(x; Ω)

)

= {0},

(3.13)

[

x∗

1 ∈ D∗

N
G(x, y)(y∗), x∗

2 ∈ D∗

N
Q(x,−y)(y∗)

x∗

3 ∈ N(x; Ω), x∗

1 + x∗

2 + x∗

3 = 0

]

=⇒

[

y∗ = 0

x∗

1 = x∗

2 = x∗

3 = 0

]

whenever x ∈ Ω, z ∈ F (x), y ∈ G(x) ∩ (−Q(x)), and y∗ ∈ Y ∗.

(b) The SOPEC Palais-Smale condition: any sequence {xk} ⊂ Ω such that

there are zk ∈ F (xk), yk ∈ G(xk) ∩ (−Q(xk)), y∗

k ∈ Y ∗,(3.14)

and ‖x∗

k
‖ → 0 with

x∗

k ∈ ∂NF (xk, zk) + D∗

NG(xk, yk)(y∗

k) + D∗

NQ(xk,−yk)(y∗

k) + N(xk; Ω)

contains a convergent subsequence provided that {zk} is quasibounded from

below.

(c) The SNC conditions for any x ∈ Ω, z ∈ F (x) and y ∈ G(x) ∩ (−Q(x)):

• either F is partially SNEC at (x, z) and all but one of the sets gphG,

gphQ, and Ω are SNC at (x, y), (x,−y), and x, respectively;
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• or all the sets gphG, gphQ, and Ω are SNC at (x, y), (x,−y), and x,

respectively.

Then the SOPEC (1.3) admits a weak minimizer.

P r o o f. It is easy to observe that the SOPEC problem (1.3) is equivalent to the

set-valued optimization problem (3.1) involving only the geometric constraint given

by the set Ξ from (3.11) and the cost mapping F̃ defined in the formulation of the

theorem:

(3.15) minimize F̃ (x, y) subject to (x, y) ∈ Ξ ⊂ X × Y.

Furthermore, the constraint set Ξ from (3.11) in the latter problem is represented as

the intersection Ξ = Ω1 ∩ Ω2 ∩ Ω3, where

(3.16) Ω1 := gphG, Ω2 := gph(−Q), Ω3 := Ω × Y.

We intend to derive all the conditions of this theorem ensuring the existence of

weak minimizers to the SOPEC problem (1.3) from the corresponding conditions of

Theorem 3.2 applied to problem (3.16). It is clear from the latter conditions that the

main task in this procedure is to express the basic normal cone to the intersection

set Ξ from (3.11) and the SNC property of this set via the normal cone to the sets Ωi

defined in (3.15) and the SNC property for these sets. In what follows we do it by

applying appropriate results of the generalized differential and SNC calculi developed

in [7].

Applying first the intersection rule for basic normals from [7, Corollary 3.37] to

the intersection of n = 3 sets in (3.11) at v := (x, y) ∈ Ξ we get the inclusion

(3.17) N(v; Ξ) ⊂ N(v; Ω1) + N(v; Ω2) + N(v; Ω3)

provided that all but one of these sets are SNC at v and that the normal qualification

condition

(3.18) [v∗i ∈ N(v; Ωi), v∗1 + v∗2 + v∗3 ] =⇒ v∗i = 0 for i = 1, 2, 3

is satisfied. Furthermore, by [7, Corollary 3.81] the intersection set Ξ is SNC at v if

the qualification condition (3.18) holds and all the sets Ω1, Ω2, Ω3 are SNC at this

point.

Taking into account the structures of the sets Ωi in (3.16), definition (2.3) of the

normal coderivative, and the relationship

(x∗, y∗) ∈ N
(

(x,−y); gph(−Q)
)

⇐⇒ (x∗,−y∗) ∈ N
(

(x, y); gphQ
)

,
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we conclude that the normal qualification condition (3.18) is equivalent to the qual-

ification condition (3.13) of the theorem. Observe also that by (3.16) and (3.17) the

inclusion (x∗, 0) ∈ N((x, y); Ξ) implies the description

(3.19) x∗ ∈ D∗

NG(x, y)(y∗) + D∗

NQ(x,−y)(y∗) + N(x; Ω)

with some y∗ ∈ Y ∗. Substituting this into the qualification condition (3.7) of The-

orem 3.2 with the cost mapping F̃ (x, y) = F (x), we get the qualification condi-

tion (3.12). Finally, substituting (3.19) into the Palais-Smale condition of Theo-

rem 3.2, we arrive at the SOPEC Palais-Smale condition (3.14) and complete the

proof of the theorem. �

R em a r k 3.5 (existence of optimal solutions for specific classes of SOPECs).

Similarly to Corollary 3.3 of Theorem 3.2, we conclude that the qualification condi-

tion (3.12) and the SNC requirement (c) of Theorem 3.4 hold automatically if the

cost mapping F in (1.3) is epi-Lipschitz-like around points (x, z) ∈ gphF satisfying

the constraints in (1.3). Of course, the SNC assumptions are not needed at all in

Theorem 3.4 if the spaces X and Y (while not Z) are finite-dimensional. Observe

also that if Ω = X in (1.3), i.e., this problem contains only equilibrium but not

geometric constraints, that the qualification condition (3.13) of Theorem 3.4 reduces

to the Fredholm qualification condition

(3.20) [0 ∈ D∗

N
G(x, y)(y∗) + D∗

N
Q(x,−y)(y∗)] =⇒ y∗ = 0,

which means that the adjoint generalized equation to (1.1) has only the trivial solu-

tion.

4. Necessary optimality condition for SOPECs

In the last section of the paper we derive necessary optimality conditions for local

optimal solutions to the SOPECs under consideration. We pay the main attention

to the case of usual local minimizers to (1.3), which requires less restrictive assump-

tions. At the same time, our approach based on the extremal principle allows us to

derive similar optimality conditions for weak local minimizers under the additional

assumption on the nonempty interior of the ordering cone Θ.

Proceeding similarly to Section 3, we start with the set-valued optimization prob-

lem (3.1) involving only the geometric constraints. We say that (x̄, z) is a local

minimizer to (3.1) if x̄ ∈ Ξ, z ∈ F (x̄), and there is a neighborhood U of x̄ such

that (3.2) holds with the replacement of F (Ξ) by F (Ξ ∩ U). The notion of weak
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local minimizers to (3.1) is defined in the same way by the substitution of F (Ξ∩U)

instead of F (Ξ) in (3.3) provided that intΘ 6= ∅. The next theorem gives necessary

conditions for local minimizers to (3.1).

Theorem 4.1 (necessary conditions in set-valued optimization with geometric

constraints). Let (x̄, z) be a local minimizer to the constrained set-valued opti-

mization problem (3.1), where the convex cone Θ is SNC at the origin and where the

sets epi F and Ξ are locally closed around (x̄, z) and x̄, respectively. Assume also

that either F is partially SNEC at (x̄, z) or Ξ is SNC at x̄ and that the qualification

condition

(4.1) ∂∞

MF (x̄, z) ∩ (−N(x̄; Ξ)) = {0}

is satisfied; the latter group of assumptions is automatic if F is ELL around (x̄, z).

Then

(4.2) 0 ∈ ∂NF (x̄, z) + N(x̄; Ξ).

P r o o f. We proceed by creating the extremal system of sets generated by the

local minimizer (x̄, z) to (3.1) and then by using the extremal principle. Define the

sets

(4.3) Ω1 := epi F, Ω2 := Ξ × (z − Θ)

in the (Asplund) product space X × Z endowed with the sum norm ‖(x, z)‖ :=

‖x‖ + ‖z‖ and show that (x̄, z) is a local extremal point of the system {Ω1, Ω2}.

We obviously have (x̄, z) ∈ Ω1 ∩ Ω2, where the sets Ω1 and Ω2 are locally closed

around this point. To justify condition (2.10) for the set system (4.3), we find a

neighborhood U of x̄ by the local minimality of (x̄, z) to (3.1) such that

(4.4) F (Ξ ∩ U) ∩ (z − Θ) = {z}.

Pick any c ∈ Θ \ {0} and define a sequence {ck} ⊂ Z by ck := k−1c. Let us show

that

(4.5) Ω1 ∩ (Ω2 − (0, ck)) ∩ (U × Z) = ∅, k ∈ N,

which means the fulfillment of (2.10) along the sequence of ak := −(0, ck) ↓ 0 as

k → ∞ with V := U × Z. Arguing by contradiction, suppose that (4.5) does not

hold, i.e.,

there is (x, z) ∈ U × Z with (x, z) ∈ Ω1 ∩ (Ω2 − (0, ck)).
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By the construction of sets (4.3), we have

x ∈ Ξ and z ∈ F (x) + ξ with ξ ∈ Θ and z + ck ∈ z − Θ, k ∈ N.

Thus z−ξ ∈ F (Ξ∩U) and z−ξ ∈ z−ck−Θ ⊂ (z−Θ)\{z}, where the latter inclusion

holds due to the pointedness of Θ. This implies z 6= z − ξ ∈ F (Ξ ∩ U) ∩ (z − Θ),

which contradicts (4.4) and justifies the extremality property (4.5) of sets (4.3) at

the point (x̄, z).

Employing now the extremal principle to this set system, we find sequences εk ↓ 0,

(x1k, z1k) ∈ epi F , (x2k, z2k) ∈ Ξ× (z −Θ) with ‖(xik, zik)− (x̄, z)‖ 6 εk for i = 1, 2

satisfying the relationships

(x∗

1k
,−z∗1k

) ∈ N̂
(

(x1k, z1k); epi F
)

, x∗

2k
∈ N̂(x2k; Ξ), −z∗2k

∈ N̂(z − z2k; Θ),(4.6)

‖(x∗

1k
, z∗1k

) + (x∗

2k
, z∗2k

)‖ 6 εk, 1 − εk 6 ‖(x∗

1k
, z∗1k

)‖ + ‖(x∗

2k
, z∗2k

)‖ 6 1 + εk.(4.7)

By (4.7) and the Asplund property of X × Z, we assume without loss of generality

that the bounded sequences {(x∗

1k
, z∗1k

)} and {(x∗

2k
, z∗2k

)} weak∗ converge in X∗×Z∗

to (x∗,−z∗) and (−x∗, z∗), respectively. Passing to the limit in (4.6) as k → ∞ and

the basic definitions of Section 2 justify the inclusions

(4.8) x∗ ∈ D∗

NEF (x̄, z)(z∗), −x∗ ∈ N(x̄; Ξ), −z∗ ∈ N(0; Θ).

Let us finally show that, due to the SNC and qualification assumptions of the

theorem, z∗ 6= 0, i.e., we get ‖z∗‖ = 1 by rescaling. Assuming the contrary, we have

from above that

z∗2k

w
∗

→ 0 as k → ∞ with − z∗2k
∈ N̂(z − z2k; Θ), k ∈ N,

which yields ‖z∗2k
‖ → 0 by the SNC property of Θ at the origin. This implies by (4.7)

that ‖z∗1k
‖ → 0 as k → ∞. Furthermore, from (4.6) and (2.7) we conclude that

x∗ ∈ ∂∞

M
F (x̄, z), and thus x∗ = 0 due to (4.8) and the qualification condition (4.1).

Therefore

x∗

1k

w
∗

→ 0 and x∗

2k

w
∗

→ 0 as k → ∞.

The latter relationships imply that either ‖x∗

1k
‖ → 0 or ‖x∗

2k
‖ → 0 as k → ∞

depending on the alternative partially SNEC/SNC assumption on F and Θ imposed

in the theorem. Involving now both relationships in (4.7), we arrive at a contradiction

with the nontriviality of (x∗

ik
, z∗

ik
) for i = 1, 2 and all k ∈ N sufficiently large. Thus

z∗ 6= 0 and x∗ ∈ ∂NF (x̄, z) by (2.5) and (4.8). Recalling that −x∗ ∈ N(x̄; Ξ) in (4.8),

we complete the proof of the theorem. �
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If the cost mapping F in (3.1) is single-valued, the necessary optimality conditions

of Theorem 4.1 reduce to those in [2, Theorem 5.1] derived by another approach

based on the subdifferential variational principle from [7, Theorem 2.28]. However,

the realization of the latter approach requires additional assumptions of the type

imposed in Theorem 3.2, which are not needed in Theorem 4.1.

R em a r k 4.2 (necessary conditions for weak local minimizers). All the conditions

of Theorem 4.1 hold with no change for weak local minimizers (x̄, z) to problem (3.1)

provided that intΘ 6= ∅. The only change needed in the proof given above is to show

that (x̄, z) is a local extremal point of the set system (4.3) when the local minimum

relation (4.4) is replaced by the weak local minimum property

(4.9) F (Ξ ∩ U) ∩ (z − intΘ) = ∅.

To justify this, we pick any c ∈ intΘ and proceed exactly as in the proof of Theo-

rem 4.1 showing that (4.9) implies the extremality relation (4.5) arguing by contra-

diction.

Finally in this section, we derive necessary optimality conditions for local mini-

mizers to the SOPEC problem (1.3) involving geometric and equilibrium constraints

by reducing them to just the geometric ones as in the proof of Theorem 3.2. The case

of weak local minimizers to SOPECs can be treated similarly based on Remark 4.2.

Theorem 4.3 (necessary conditions for local minimizers to SOPECs). Let (x̄, z)

be a local minimizer to the SOPEC (1.3), and let y ∈ G(x̄)∩ (−Q(x̄)). Assume that

the ordering cone Θ is SNC at the origin and that all the sets epi F , gphG, gphQ

and Ω are locally closed at (x̄, z), (x̄, y), (x̄,−y) and x̄, respectively. Suppose also

the following two qualification conditions

(−∂∞

M
F (x̄, z)) ∩

(

D∗

N
G(x̄, y)(y∗) + D∗

N
Q(x̄,−y)(y∗) + N(x̄; Ω)

)

= {0},

[

x∗

1 ∈ D∗

N
G(x̄, y)(y∗), x∗

2 ∈ D∗

N
Q(x̄,−y)(y∗)

x∗

3 ∈ N(x̄; Ω), x∗

1 + x∗

2 + x∗

3 = 0

]

=⇒

[

y∗ = 0

x∗

1 = x∗

2 = x∗

3 = 0

]

are satisfied whenever y∗ ∈ Y ∗ and that one of the following SNC conditions holds:

• either F is partially SNEC at (x̄, z) and all but one of the sets gphG, gphQ,

and Ω are SNC at (x̄, z), (x̄,−z), and x̄, respectively;

• all the sets gphG, gphQ, and Ω are SNC at the afore-mentioned reference

points.

Then there is y∗ ∈ Y ∗ such that

(4.10) 0 ∈ ∂NF (x̄, z) + D∗

N
G(x̄, y)(y∗) + D∗

N
Q(x̄,−y)(y∗) + N(x̄; Ω).
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P r o o f. Similarly to the proof of Theorem 3.4 we consider the set-valued opti-

mization problem (3.15) with the cost mapping F̃ (x, y) := F (x) and with only the

geometric constraint (x, y) ∈ Ξ defined by the set intersection

Ξ := Ω1 ∩ Ω2 ∩ Ω3 ⊂ X × Y,

where the sets Ω1, Ω2, and Ω3 are given in (3.16). Applying the results of Theo-

rem 4.1 to the latter problem and then using the normal cone and SNC intersection

rules from [7] for the above set Ξ as in the proof of Theorem 3.4, we arrive at the

necessary optimality condition (4.10) under the qualification and SNC assumptions

of the theorem. �

R em a r k 4.4 (some particular cases). Equilibrium constraints of the type

(4.11) 0 ∈ G(x) + Q(x)

in (1.3) contain as particular cases virtually all the types of constraints considered

in the literature. Thus the necessary optimality conditions of Theorem 4.3 improve

and unify various results previously known in this direction. Let us mention some

particular cases referring the reader to [1], [2], [8] for more examples and discussions.

• Inequality constraints : ϕi(x) 6 0, i = 1, . . . , m, corresponding to (4.11) with

G(x) =
m
∏

i=1

[ϕi(x),∞), Q(x) = Rm

> .

• Equality constraints : ϕi(x) = 0, i = m + 1, . . . , m + r, corresponding to (4.11)

with

G(x) = (ϕm+1(x), . . . , ϕm+r(x)), Q(x) = {0} ∈ Rr .

• Operator constraints : x ∈ G−1(Λ) defined by a set-valued mapping G : X ⇉ Y

and a set Λ ⊂ Y . These constraints are equivalently written as G(x)∩Λ 6= ∅ and

correspond to the equilibrium constraints (4.11) given by the same mapping G

and Q(x) = −Λ. Necessary optimality conditions for set-valued optimization

problems with constraints of the latter type have been recently derived in [18]

under certain normal compactness assumptions on the set Λ, which exclude the

case when Λ is a singleton; in particular, they do not cover the case of the

inclusion constraints 0 ∈ G(x), which is well handled by Theorem 4.3.

• Fixed-point constraints: x ∈ Q(x) with Q : X ⇉ Y . They correspond to the

equilibrium constraints (4.11) defined by the same mapping Q and G(x) = −x.
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R em a r k 4.5 (equilibrium constraints in composite subdifferential forms). Many

classes of equilibrium constraints important for both optimization/equilibrium theory

and applications can be described in one of the following composite subdifferential

forms :

0 ∈ G(x) + ∂(ϕ ◦ q)(x),(4.12)

0 ∈ G(x) + (∂ϕ ◦ q)(x)(4.13)

with q : X → Y , ϕ : Y → R̄, and G : X ⇉ Y ∗. Such systems include nonlinear

and implicit complementarity problems, variational and hemivariational inequalities

of different kinds and their generalizations, KKT systems, mechanical and economic

equilibria, etc.; see the books [4], [7], [8], [15] for more details and examples. The

existence theorems and necessary optimality conditions obtained in this paper can

be specified for the equilibrium systems of types (4.12) and (4.13) by using the corre-

sponding second-order subdifferentials for extended-real-valued functions ϕ in (4.12)

and (4.13) and appropriate subdifferential and coderivative calculus rules; cf. [7],

[8], [9].
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