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REMARK ON STABILIZATION OF

TREE-SHAPED NETWORKS OF STRINGS
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Abstract. We consider a tree-shaped network of vibrating elastic strings, with feedback
acting on the root of the tree. Using the d’Alembert representation formula, we show that
the input-output map is bounded, i.e. this system is a well-posed system in the sense of
G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827–854). As a consequence we prove that
the strings networks are not exponentially stable in the energy space. Moreover, we give
explicit polynomial decay estimates valid for regular initial data.
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1. Introduction

During the last years various models of multiple-link flexible structures have been
given and developed. The structures which we have in mind consist of finitely many

interconnected flexible elements like beams, plates, shells which represent trusses,
frames, solar panels, antennae deformable mirrors; for more details concerning the

models see [9]. The analysis of such models has in addition to its own mathematical
interest applications control or stabilization problems, see [7], [8], [9] and [14].

First of all, we introduce some notation, which is simply that of [5], and refer

to [5] for more details that are needed to formulate the problem under consideration.
Let A be a tree. We call the root of A the exterior vertex and we denote it by R.
Moreover, we denote by eα and Oα the remaining edges and vertices, respectively,
where α = (α1, . . . , αk) is a multi-index, possibly empty, of variable length k.

We choose the empty index for the edge containing the root R. That edge is
denoted by e and its vertex different from R is denoted by O.
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Assume there are mα edges, different from eα, that branch out from Oα. We

denote these edges by eα◦β , β = 1, . . . , mα and the other vertex of the edge eα◦β
by Oα◦β , i.e. the interior vertex O, contained in the edge eα, has multiplicity equal
to mα + 1.
We denote by M the set of the interior vertices of A and by S the set of the

exterior vertices except R and define

IM = {α : Oα ∈M}, IS = {α : Oα ∈ S},

which are the sets of the indices of the interior and exterior vertices except R,
respectively.

We admit the empty multi-index in this notation, which corresponds to the ver-
tex O and belongs to one of the sets IM or IS . We denote also by I = IM ∪ IS the

set of indices of all the vertices, except that of the root R. We call the sets

Aα = {eα◦β : α ◦ β ∈ I}

for α ∈ IM, sub-trees of A, where α ◦ β denotes the multi-index of length k + m

defined by α ◦β = (α1, . . . , αk, β1, . . . , βm), with α = (α1, . . . , αk), β = (β1, . . . , βm).
We study the one-node stabilization properties of the vibrations of a planar tree-

shaped network of N strings, where N > 3, see [9] and [5] as concerns the model.
That is, we analyze the possibility of quieting the motion of the tree shaped network,

caused by a feedback deformation of its strings, by means of feedback applied through
the nodes. More precisely, we consider the following initial and boundary value

problem:

∂2uα

∂t2
(x, t) − ∂2uα

∂x2
(x, t) = 0, 0 < x < lα, t > 0, α ∈ I,(1.1)

∂u

∂t
(0, t)− ∂u

∂x
(0, t) = 0, t > 0; uα(lα, t) = 0, α ∈ IS , t > 0,(1.2)

uα◦β(0, t) = uα(lα, t), t > 0, β = 1, . . . , mα, α ∈ IM,(1.3)
mα∑

β=1

∂uα◦β
∂x

(0, t) =
∂uα

∂x
(lα, t), t > 0, α ∈ IM,(1.4)

uα(x, 0) = u0
α(x),

∂uα

∂t
(x, 0) = u1

α(x), 0 < x < lα, α ∈ I,(1.5)

where uα : [0, lα]× (0, +∞) → �
, α ∈ I , is the transversal displacement of the string

with index α and of length lα. With this notation the remaining elements related to

the system (1.1)–(1.5) are defined exactly in subsection 2.2.2 of chapter 2 in [6] or
in [4].
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Figure 1. A tree-shaped network.

In the present paper we prove that the input-output map is bounded. As a con-
sequence we show that the solutions of (1.1)–(1.5) are not uniformly stable in the

energy space, thus, we give explicit decay estimates for regular initial data.
Our approach is based on the methodology introduced in Ammari and Tucsnak [3],

where the exponential stability for the closed loop problem is reduced to an observ-
ability estimate for the corresponding uncontrolled system combined with a bound-

edness property of the transfer function of the associated open loop system, and on
the d’Alembert representation formula.

The plan of the paper is as follows. In Section 2 we give precise statements of
the main results. Section 3 contains the proof of the main result and the weighted

observability inequality needed in the following sections. The proof of decay esti-
mates results is given in Section 4. The last section is devoted to some comments

and related questions.

2. Statement of the main results

The skew-adjoint operator corresponding to (3.2)–(3.7) can be diagonalized over

the orthonormal basis of eigenvectors Φ̄n, n ∈ � . Let λk = iwk, k ∈ � be the
associated eigenvalues.

Let Aα be a sub-tree. We consider the eigenvalue problem inherited from the
eigenvalue problem for the whole tree A with homogeneous Neumann boundary
condition at the new root Oα. This eigenvalue problem is similar to that for A. Its
spectrum will be called the spectrum of the Aα subtree.
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The tree A is called a non-degenerate tree if the spectra of any two sub-trees Aα◦i ,

Aα◦j of A with the common root Oα are disjoint.

We define the energy of ū = uα of (1.1)–(1.5) at an instant t by

(2.1) E(t) =
∑

α∈I

1
2

∫ lα

0

(∣∣∣∂uα

∂t
(x, t)

∣∣∣
2

+
∣∣∣∂uα

∂x
(x, t)

∣∣∣
2
)

dx.

We show that a sufficiently smooth solution (1.1)–(1.5) satisfies the energy identity

(2.2) E(0)−E(t) =
∫ t

0

∣∣∣∂u

∂t
(0, s)

∣∣∣
2

ds, ∀ t > 0.

The wellposedness space for (1.1)–(1.5) is E = V ×X , where

V =
{

ϕ̄ ∈
∏

α∈I

H1(0, lα) : ϕα(lα) = 0, α ∈ IS ,

ϕα◦β(0) = ϕα(lα), β = 1, . . . , mα, α ∈ IM

}
,

and

X =
∏

α∈I

L2(0, lα).

The wellposedness and strong stability properties are summarized in the result below.
The existence and uniqueness of finite energy solutions of (1.1)– (1.5) can be obtained
by standard semigroup methods. For the strong stability see [5].

Proposition 2.1. The following assertions hold true:
1. If (ū0, ū1) ∈ V ×X , then the problem (1.1)–(1.5) admits a unique solution

ū = uα ∈ C(0, T ; V ) ∩ C1(0, T ; X)

such that u(0, ·) ∈ H1(0, T ) and

(2.3) ‖u(0, ·)‖2
H1(0,T ) 6 C‖(ū0, ū1)‖2V×X ,

where the constant C > 0 depends only on T . Moreover, ū satisfies the energy

identity (2.2).

2. The estimate lim
t→∞

E(t) = 0 holds true for any finite energy solution of (1.1)–

(1.5) if and only if the tree A is non-degenerate.
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We consider the open-loop problem associated with (1.1)–(1.5)

∂2vα

∂t2
(x, t) − ∂2vα

∂x2
(x, t) = 0, 0 < x < lα, t > 0, α ∈ I,(2.4)

vα(lα, t) = 0, t > 0, α ∈ IS ,(2.5)

vα◦β(0, t) = vα(lα, t), t > 0, β = 1, . . . , mk, α ∈ IM,(2.6)

mα∑

β=1

∂vα◦β
∂x

(0, t) =
∂vα

∂x
(lα, t), ∀ t > 0, α ∈ IM,(2.7)

∂v

∂x
(0, t) = k(t), t > 0,(2.8)

vα(x, 0) = 0,
∂vα

∂t
(x, 0) = 0, 0 < x < lα, α ∈ I.(2.9)

By using the transposition method, see [11], and the observation that the control
operator satisfies an admissible condition, i.e. (3.9), we prove that for k ∈ L2(0, T )
the problem (2.4)–(2.9) admits a unique solution having the regularity property

(2.10) v = vα ∈ C(0, T ; V ) ∩ C1(0, T ; X).

Our main result can now be stated as follows.

Theorem 2.2. There exists a constant C > 0 depending only on T such that for

k ∈ L2(0, T ) and for a solution v ∈ C(0, T ; V ) ∩ C1(0, T ; X) of (2.4)–(2.9) we have

(2.11) ‖v(0, ·)‖H1(0,T ) 6 C‖k‖L2(0,T ), ∀ k ∈ L2(0, T ).

Corollary 2.3.
1. The system described by (1.1)–(1.5) is not exponentially stable in the energy
space.

2. Let A be a non-degenerate tree. Then for all t > 0 we have

(2.12) E(t) 6 C

t + 1
‖(u0, u1)‖2Z , ∀ (ū0, ū1) ∈ Z,

where

Z =
{(

ū0 =
∑

k>0

akΦ̄k, ū1 =
∑

k>0

bkΦ̄k

)
∈ V ×X :

∑

k>0

1
d2

k

(|wkak|2 + |bk|2) < ∞
}

,

‖(ū0, ū1)‖2Z =
∑

k>0

1
d2

k

(|wkak|2 + |bk|2), ∀ (ū0, ū1) ∈ Z,
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dk is a sequence of strictly positive real numbers and C > 0 is a constant
depending only on lα, α ∈ I .

�������
	��
2.4.

1. The tree where IM = ∅, IS = {1, . . . , N}, mα = N , is non-degenerate if and
only if li/lj /∈ 
 , for all 1 6 i 6= j 6 N , see [2], where 
 denotes the set of all
rational numbers.

2. Concerning the size of the set of non-degenerate trees, see [5].

3. In the case we are able to establish uniform lower estimates of dn, for all n, we

obtain an explicit characterization of the space Z. So, in the case when A is
a simple tree (see [2] for details) corresponding to IM = ∅, IS = {1, . . . , N},
mα = N , we have Z = D(A(N+1)/2) if li/lj /∈ 
 , for all 1 6 i 6= j 6 N and

li/
N∑

i=1

li ∈ S,1 for all i = 1, . . . , N , where

D(A) =
{

(u, u1, . . . , uN , v, v1, . . . , vN ) ∈
[
V ∩

(
H2(0, l)×

N∏

i=1

H1(0, li)
)]
× V :

du

dx
(l) =

N∑

i=1

dui

dx
(0),

du

dx
(0) = v(0)

}
.

The corresponding operator A is defined by

A

(
ū

v

)
=

(
v

d2ū/dx2

)
, ∀ (ū, v) ∈ D(A).

Also in the case of the star-shaped network we can characterize the space Z.
This has been done in [1] (see [1] for more details). However, it is unlikely to
expect similar results in the case of general trees.

1 S is the set of all numbers % such that % 6∈ � and if [0, a1, . . . , an, . . .] is the expansion
of % as a continued fraction, then (an) is bounded. Let us notice that S is obviously un-
countable and, by classical results on diophantine approximations, its Lebesgue measure
is equal to zero. Roughly speaking the set S contains the irrationals which are “badly”
approximable by rational numbers.
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3. Proof of Theorem 2.2 and observability inequality

��	������
of Theorem 2.2. We consider the following equation:





∂2u

∂t2
(x, t) − ∂2u

∂x2
(x, t) = 0, t > 0, x ∈ (0, l),

u(0, t) = h(t), u(l, t) = 0, t > 0,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ (0, l),

where h is a regular function which vanishes in (−∞, 0). Our purpose is to determine
an operator Rl such that

∂u

∂x
(0, t) = Rlh

′(t).

By the d’Alembert formula there exist F , G such that

u(x, t) = F (x + t) + G(x− t).

The equation ∂u/∂x(0, t) = Rlh
′(t) can be written as F ′(t) + G′(−t) = Rlh

′(t),




u(x, 0) = 0, 0 < x < l

∂u

∂t
(x, 0) = 0, 0 < x < l

=⇒
{

F (x) + G(x) = 0, 0 < x < l

F ′(x)−G′(x) = 0, 0 < x < l,

which implies
F ′(t) = G′(t) = 0, ∀ 0 < t < l.

On the other hand,

u(0, t) = h(t) =⇒ F ′(t)−G′(−t) = h′(t) ∀ t > 0

and

u(l, t) = 0 =⇒ F ′(2l + t)−G′(−t) = 0 ∀ t > 0.

Thus

F ′(t) = F ′(t− 2l)− h′(t− 2l),

so
∂u

∂x
(0, t) = 2F ′(t)− h′(t), ∀ t > 0.

An explicit computation proves that Rl is given by the formula

Rlf(t) = −2
q∑

i=1

f(t− 2il)− f(t), ∀ q ∈ � and ∀ t ∈ (2ql, 2(q + 1)l)

with the convention
0∑

i=1

= 0.
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We consider now the problem





∂2u

∂t2
(t, x) − ∂2u

∂x2
(x, t) = 0, t > 0, x ∈ (0, l),

u(l, t) = h(t),
∂u

∂x
(0, t) = k(t), t > 0,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ (0, l),

and the same computation yields

∂u

∂t
(0, t) = Qlk(t) + Mlh

′(t) ∀ t > 0

and
∂u

∂x
(l, t) = Mlk(t)−Qlh

′(t) ∀ t > 0,

where

Qlf(t) = 2
q∑

i=1

(−1)i+1f(t− 2il)− f(t), ∀ q ∈ � and ∀ t ∈ (2ql, 2(q + 1)l)

and

Mlf(t) = 2
q∑

i=1

(−1)i+1f(t− (2i− 1)l), ∀ q ∈ � and ∀ t ∈ ((2q − 1)l, (2q + 1)l).

�

Operators of type T

Definition 3.1. An operator P is of type T if there exists a sequence m =
(mk)k∈ � strictly increasing and such that m0 = 0, lim

k→+∞
mk = +∞, and a complex

sequence α = (αk)k∈ � such that

Pf(t) =
q∑

i=0

αif(t−mi), a.e. t ∈ (mq , mq+1) and ∀ q ∈ � .

The sequences (m, α) are the parameters of P and we write P ≡ (m, α). The
number α0 is called the coefficient of P and we denote coef(P ) = α0.
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�������
	��
3.2. If P ≡ (m, α) is of type A and if a ∈ �

+ \m, then there exists

i0 ∈ � such that mi0 < a < mi0+1. We denote by (m̃, α̃) the sequence defined by





m̃i = mi, α̃i = αi if i 6 i0,

m̃i0+1 = a, α̃i0+1 = 0,

m̃i = mi−1, α̃i = αi−1 if i > i0 + 1.

Then P ≡ (m̃, α̃).

� ���
���������
. The operators Rl, Ql and Ml are of type T with coef(Rl) =

coef(Ql) = −1 and coef(Ml) = 0.

Proposition 3.3. If P is an operator of type T and T > 0, then there exists a
constant C = C(P, T ) > 0 such that for all f ∈ L2(0, T )

‖Pf‖L2(0,T ) 6 C‖f‖L2(0,T ).

��	������
. Let P ≡ (m, α) be an operator of type A and let T > 0. Let q ∈ � be

such that mq < T 6 mq+1. Then

∫ T

0

|Pf(t)|2 dt 6
q∑

k=0

∫ mk+1

mk

|Pf(t)|2 dt =
q∑

k=0

∫ mk+1

mk

∣∣∣∣
k∑

j=0

αjf(t−mj)
∣∣∣∣
2

dt

6
q∑

k=0

∫ mk+1

mk

( k∑

j=0

|αj |2
)( k∑

j=0

|f(t−mj)|2
)

dt

=
q∑

k=0

( k∑

j=0

|αj |2
) k∑

j=0

∫ mk+1

mk

|f(t−mj)|2 dt

=
q∑

k=0

( k∑

j=0

|αj |2
) k∑

j=0

∫ mk+1−mj

mk−mj

|f(t)|2 dt

6
q∑

k=0

( k∑

j=0

|αj |2
) k∑

j=0

∫ T

0

|f(t)|2 dt

=
( q∑

k=0

(k + 1)
k∑

j=0

|αj |2
)
‖f‖2L2(0,T ).

�
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Proposition 3.4. Let P ≡ (m, α) be an operator of type T and let g be a function
defined a.e. in [0, +∞). Then the equation

Pf(t) = g(t), a.e. t > 0

admits a unique solution f if and only if coef(P ) 6= 0. In this case f = P−1g, P−1 is

of type T and coef(P−1) = 1/coef(P ).
��	������

. We construct by recurrence sequences (r, β) satisfying

(3.1) f(t) =
k∑

i=0

βig(t− ri) a.e. t ∈ (rq , rq+1) and ∀ q ∈ �

as follows:





r0 = 0 and β0 =
1
α0

for n ∈ � ∗ , rn = min{mi + rj > rn−1 : j < n}, Bn = {(i, j) : mi + rj = rn}

and βn = − 1
α0

∑
(i,j)∈Bn

αiβj .

It is easy now to verify that f given by (3.1) is a solution of the equation Pf = g.

To prove uniqueness, it suffices to consider the sequence r = (rn)n∈ � constructed
above to show that the unique solution of the equation Pf = 0 is f ≡ 0 a.e. More
precisely, for the solution f of Pf = 0 (coefP = α0 6= 0) we prove by recurrence in q

that f(t) = 0, a.e. t ∈ (0, mq) for all q ∈ � ∗ .
For q = 1 the result is true because

Pf(t) = α0f(t), a.e. t ∈ (0, m1).

Suppose now that f(t) = 0 for a.e. t ∈ (0, mq) and let us prove that f(t) = 0 a.e.
t ∈ (mq , mq+1).
Let

F =
{∑

kimi : mq <
∑

kimi < mq+1, ki ∈ �
}

,

then F is a finite set of cardinality kq. We denote by (rk) the elements of F such
that r0 = mq < r1 < r2 < . . . < rkq < mq+1 =: rkq+1. We have

∀ rj < t < rj+1, 0 6 j 6 kq , P f(t) = α0f(t)+α1f(t−m1)+ . . .+αqf(t−mq) = 0,

and

∀ r0 < t < r1, P f(t) = α0f(t) + α1f(t−m1) + . . . + αqf(t−mq) = 0.
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Or,

∀ 1 6 i 6 q, r0 −m− i < t−mi < r1 −mi,

and r1 − mi 6 mq because if no r1 − mi > mq, then mq < mi + mq < r1 which

contradicts the construction of the sequence (rk)16k6kq . Thus according to the
hypotheses of recurrence

f(t−mi) = 0, ∀ 1 6 i 6 q ⇒ f(t) = 0, ∀ r0 < t < r1.

Suppose that f(t) = 0 a.e. r0 < t < rj , 1 6 j 6 kq .
Let rj < t < rj+1, then for all 1 6 i 6 q, t −mi < rj+1 −mi 6 rj because if no

rj+1 −mi > 0, then rj < rj + mi < rj+1, which contradicts the construction of the

sequence (rk)16k6kq . Then

f(t−mi) = 0, ∀ 1 6 i 6 q ⇒ f(t) = 0 a.e. rj < t < rj+1.

�
� ���
�������

. We consider the operator P = −Rl of parameters (m, α) given by
{

mk = 2kl ∀ k ∈ � ,
α0 = 1 and αk = 2 ∀ k > 1.

Then the solution of the equation Pf = g is given by

f(t) = g(t) +
q∑

j=1

(−1)jg(t− 2jl) ∀ 2ql < t < 2(q + 1)l and ∀ q ∈ � ,

i.e. f = −Qlg, which proves that R−1
l = Ql.

Proposition 3.5. If P and Q are two operators of type T , then P + Q and PQ

are of type T and

coef(P + Q) = coef(P ) + coef(Q) and coef(PQ) = coef(P ) · coef(Q).

��	������
. We suppose that P ≡ (m, α) and Q ≡ (n, β).

1. For the sum it suffices to consider the sequence r = m∪ n, then P ≡ (r, α̃) and
Q ≡ (r, β̃) where

α̃i =

{
αj if ri = mj ∈ m,

0 otherwise
and β̃i =

{
βj if ri = nj ∈ n,

0 otherwise,

which implies P + Q ≡ (r, α̃ + β̃).
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2. For the composition, we consider sequences defined by recurrence as follows:




r0 = 0 and γ0 = α0β0,

for n ∈ � ∗ , rn = min{mi + nj : mi + nj > rn−1, 0 6 i, j < n},
Bn = {(i, j) : mi + nj = rn},
and γn =

∑
(i,j)∈Bn

αiβj ;

then PQ ≡ (r, γ). �

Case of a generic tree (i.e. a simple tree)
We consider the problem





∂2ui

∂t2
(x, t) − ∂2ui

∂x2
(x, t) = 0, ∀ t > 0, 0 < x < li, 1 6 i 6 n,

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0, ∀ t > 0, 0 < x < l,

n∑
i=1

∂ui

∂x
(0, t) =

∂u

∂x
(l, t), ∀ t > 0,

ui(li, t) = 0, ∀ t > 0, 1 6 i 6 n,

ui(0, t) = u(l, t), 1 6 i 6 n,

ui(x, 0) = 0,
∂ui

∂t
(x, 0) = 0, ∀x ∈ (0, li), 1 6 i 6 n,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, ∀x ∈ (0, l).

Proposition 3.6. There exists an invertible operator U : L2(0, T ) → L2(0, T ) of
type T satisfying

∂u

∂t
(0, t) = U

∂u

∂x
(0, t).

��	������
. We denote h(t) = u(t, l) = ui(t, 0) (1 6 i 6 n) and k(t) = ∂u/∂x(0, t).

Then we have 



∂u

∂t
(t, 0) = Qlk(t) + Mlh

′(t),

∂u

∂x
(t, l) = Mlk(t)−Qlh

′(t),

which implies that for all 1 6 i 6 n, ∂ui/∂x(0, t) = Rlih
′(t) and the condition

n∑
i=1

∂ui/∂x(0, t) = ∂u/∂x(l, t) can be rewritten as

( n∑

i=1

Rli

)
h′(t) = Mlk(t)−Qlh

′(t) ⇐⇒
( n∑

i=1

Rli + Ql

)
h′(t) = Mlk(t).
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The operator
( n∑

i=1

Rli + Ql

)
is of type T and with the coefficient equal to −(n + 1),

thus it is invertible and

h′(t) =
( n∑

i=1

Rli + Ql

)−1

Mlk(t),

hence
∂u

∂t
(t, 0) =

[
Ql + Ml

( n∑

i=1

Rli + Ql

)−1

Ml

]
k(t) = Uk(t).

The operator U is of type T and coef(U) = −1, thus U is invertible. �

Case of a general tree
Suppose we construct Uα◦i (1 6 i 6 nα) satisfying coef(Uα◦i) = −1 and

∂uα◦i
∂t

(0, t) = Uα◦i
∂uα◦i
∂x

(0, t);

then 



∂uα

∂t
(0, t) = Qlα

∂uα

∂x
(0, t) + Mlα

∂uα

∂t
(lα, t),

∂uα

∂x
(t, lα) = Mlα

∂uα

∂x
(0, t)−Qlα

∂uα

∂t
(lα, t).

Using the condition
nα∑
i=1

∂uα◦i/∂x(0, t) = ∂uα/∂x(lα, t), we obtain by the same argu-

ment as that used for the generic tree case

(
Qlα +

nα∑

i=1

U−1
α◦i

)
∂uα

∂t
(lα, t) = Mlα

∂uα

∂x
(0, t).

The operator
(
Qlα +

nα∑
i=1

U−1
α

)
is of type T and with the coefficient −(1 + nα), thus

it is invertible and

∂uα

∂t
(t, 0) =

[
Qlα + Mlα

( nα∑

i=1

U−1
α◦i + Qlα

)−1

Mlα

]
∂uα

∂x
(t, 0) = Uα

∂uα

∂x
(t, 0).

The operator Uα is of type T and coef(Uα) = −1.
Conclusion: If ū is a solution of (1.1)–(1.5) then there exists an operator U of

type A such that
∂u

∂t
(0, t) = U

∂u

∂x
(0, t), t > 0,

which is exactly (2.11).
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We consider the initial and boundary value problem

∂2ϕα

∂t2
(x, t) − ∂2ϕα

∂x2
(x, t) = 0, 0 < x < lα, t > 0, α ∈ I,(3.2)

ϕα(lα, t) = 0, t > 0, α ∈ IS ,(3.3)

ϕα◦β(0, t) = ϕα(lα, t), t > 0, β = 1, . . . , mα, α ∈ IM,(3.4)
mα∑

β=1

∂ϕα◦β
∂x

(0, t) =
∂ϕα

∂x
(lα, t), ∀ t > 0, α ∈ IM,(3.5)

∂ϕ

∂x
(0, t) = 0, t > 0,(3.6)

ϕα(x, 0) = u0
α(x),

∂ϕα

∂t
(x, 0) = u1

α(x), 0 < x < lα, α ∈ I.(3.7)

The following result, besides showing that the above problem is well posed in the
natural energy space, gives an inequality for the trace of ϕ̄ at the root of the tree. It is

easy to see by the semi-group method [13] that the problem (3.2)–(3.7) is well-posed
in the energy space. For the proof of the inequality (3.9) see [10] and [12].

Lemma 3.7. Suppose that (ū0, ū1) ∈ V × X . Then the initial and boundary

value problem (3.2)–(3.7) admits a unique solution

(3.8) ϕ̄ ∈ C(0, T ; V ) ∩ C1(0, T ; X)

satisfying

ϕ(0, ·) ∈ H1(0, T ).

Moreover, there exists a constant C > 0, depending only on T , such that

(3.9) ‖ϕ(0, ·)‖2
H1(0,T ) 6 C‖(ū0, ū1)‖2V×X .

Observability inequalities concerning the trace, at the root of the tree, of the

solutions of (3.2)–(3.7) can be stated as follows.

Proposition 3.8.
1. For all lα, α ∈ I and for all T > 0 there exists no constant C > 0 such that the
solutions ϕ̄ of (3.2)–(3.7) satisfy

(3.10)
∫ T

0

∣∣∣∂ϕ

∂t
(0, t)

∣∣∣
2

dt > C‖(ū0, ū1)‖2V×X , ∀ (ū0, ū1) ∈ V ×X.
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2. There exist T > 0 and positive numbers dk, k ∈ � , such that the solution ϕ̄

of (3.2)– (3.7) satisfies

(3.11)
∫ T

0

∣∣∣∂ϕ

∂t
(0, t)

∣∣∣
2

dt > C‖(ū0, ū1)‖2Y , ∀ (ū0, ū1) ∈ V ×X,

where

Y =
{(

ū0 =
∑

k>0

akΦ̄k, ū1 =
∑

k>0

bkΦ̄k

)
∈ V ×X,

∑

k>0

d2
k(|wkak|2 + |bk|2) < ∞

}
,

‖(ū0, ū1)‖2Y =
∑

k>0

d2
k(|wkak|2 + |bk|2), ∀ (ū0, ū1) ∈ Y,

and C > 0 is a constant depending only on lα, α ∈ I .

��	������
. The first assertion is proved in [6]; for the sake of completeness, we give

a proof. For the tree IS = {1, 2}, IM = ∅, mα = 2 there exists no constant C > 0
such that ∣∣∣sin

(
kπ

li
L

)∣∣∣ > C, ∀ k ∈  ∗, i = 1, 2,

where L = l + l1 + l2. So we get the existence of a sequence (pm) ⊂ � , lim
m→∞

pm = ∞
such that

(3.12) lim
m→∞

sin
[
pmπ

l1
L

]
= 0.

If we denote by ϕi,m the solution of (3.2)–(3.7) with the initial data

ϕm(x, 0) = cos(wpmx),

ϕ1,m(x, 0) = − cos(wpm l)
sin(wpm l1)

sin(wpm(x− l1)),

ϕ2,m(x, 0) = − cos(wpm l)
sin(wpm l2)

sin(wpm(x− l2)),

∂ϕi,m

∂t
(x, 0) = 0, ∀x ∈ (0, li), i = 1, 2,

∂ϕm

∂t
(x, 0) = 0, ∀x ∈ (0, l),
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a simple calculation using (3.12) implies that

lim
m→∞

∫ T

0
|∂ϕm/∂t(0, t)|2 dt

‖(ϕ̄m(x, 0), ∂ϕ̄m/∂t(x, 0))‖2
V×X

= lim
m→∞

sin2(wpm l1) = lim
m→∞

sin2
(pmπ

L
l1

)
= 0,

so (3.10) is false for any l, l1, l2.

From [5] we obtain that for all T > 2
∑
α∈I

lα there exists a constant CT > 0 and a

sequence (dn)n∈ � of real numbers such that

(3.13)
∫ T

0

∣∣∣∂ϕ

∂t
(0, t)

∣∣∣
2

dt > CT

+∞∑

n=0

d2
n[w2

na2
n + b2

n],

which is exactly (3.11). The weights dn depend on the lengths lα of the strings and
the choice of the root. �

We note that (3.13) holds for all trees, regardless of whether they are degenerate

or not. Moreover, if the tree A is non-degenerate, all the coefficients dn are different
from zero.

4. Proof of Corollary 2.3

According to Theorem 2.2 in [3] the solutions of (1.1)–(1.5) satisfy the estimate

(4.1) E(t) 6 Me−ωtE(0), ∀ t > 0,

where M, ω > 0 are constants depending only on lα if and only if the solution ϕ̄

of (3.2)–(3.7) satisfies
∫ T

0

∣∣∣∂ϕ

∂t
(0, s)

∣∣∣
2

ds > C

4
E(0), ∀ (ū0, ū1) ∈ V ×X.

The above inequality clearly contradicts assertion 1 in Proposition 3.8. So the as-

sumption (4.1) is false. We complete in this way the proof of the first assertion of
Corollary 2.3.

We pass now to the proof of the second assertion of this corollary. Let A be a
non-degenerate tree. By Proposition 3.8, the solution ϕ̄ of (1.1)–(1.5) satisfies the

inequality ∫ T

0

∣∣∣∂ϕ

∂t
(0, t)

∣∣∣
2

dt > K1‖(ū0, ū1)‖2Y .

The conclusion (2.12) follows now by simply using Theorem 2.4 in [3].
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5. Comments and related questions

Simple examples illustrating the meaning of these results are investigated in [1]

concerning the star-shaped networks case of strings and in [2] concerning generic
trees.

A question related to the problem studied in this paper is the stabilization problem
for nonlinear dynamic networks of strings, see [9] for the models.
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