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WORST SCENARIO METHOD IN HOMOGENIZATION.*

LINEAR CASE
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Abstract. The paper deals with homogenization of a linear elliptic boundary problem
with a specific class of uncertain coefficients describing composite materials with periodic
structure. Instead of stochastic approach to the problem, we use the worst scenario method
due to Hlaváček (method of reliable solution). A few criterion functionals are introduced.
We focus on the range of the homogenized coefficients from knowledge of the ranges of
individual components in the composite, on the values of generalized gradient in the places
where these components change and on the average of homogenized solution in some critical
subdomain.
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0. Introduction

A lot of mathematical models use data (coefficients of equations, right-hand sides,
functions from boundary conditions, etc.), which cannot be easily determined. These

data are usually obtained from experimental measurements and from the subsequent
numerical solution of the inverse problem. Both of these steps are loaded with errors

and therefore we know the data in certain bounds only. From this point of view we
speak about problems with uncertain data.

Homogenization is a mathematical method which helps to model the behaviour of

composite materials with periodic structure. In such materials it is possible to deter-
mine effective parameters from the knowledge of the microstructure. In other words,

homogenization means a replacement of the periodically heterogeneous material by

*This research was supported by grant No. 201/03/0570 of the Grant Agency of the Czech
Republic.
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a homogeneous one which has “equivalent” properties from the macroscopic point of

view. The topic is discussed in many papers and monographs (for introduction see
e.g. [3], [5], [16], [19]).
In this paper we shall consider a linear elliptic problem with a specific class of

uncertain coefficients. Instead of the stochastic approach, the deterministic worst
scenario approach introduced by Hlaváček (see [9], [10]) will be used. The main idea

consists in defining a suitable functional in the given set of data. This functional
can be dependent on both the data and the solution of the model problem and its

values are the criterion determining “good” or “bad” data from a certain point of
view. This approach seems to be new in homogenization theory.

The paper is organized as follows. After introducing the necessary notation, the
model problem is set in Section 2 and its homogenization is presented in Section 3.

Section 4 is devoted to the worst scenario method, where some criterion functionals
are introduced. Section 5 deals with the finite-dimensional approximation of the

given problems. The methods are demonstrated by examples in Section 6. Conclud-
ing remarks in Section 7 close the paper.

1. Preliminaries

Throughout the paper, Einstein convention on summation over repeated indices
is used. In order to save space, partial derivatives of a function v are also denoted

by ∂xiv, i = 1, . . . , N (similarly the derivatives of higher orders). The symbol ν
stands for the unit outward normal vector. A sequence of positive parameters {εn}
such that εn → 0 for n→∞ is considered. As usual, the subscript n is omitted.
The space of all symmetric real matrices is denoted by

� N×N
sym (its dimension is

1
2N(N + 1)). Spaces of continuous functions C, C∞, Lebesgue spaces L2, L∞ and
the Sobolev space W 1,2 endowed with the usual norms are used.

1.1. Y -periodic functions

Definition 1.1. Let Y = (0; 1)N be the unit cube (the so-called unit period).

A function v :
� N → �

is said to be Y -periodic, if v(y + k) = v(y) for all y ∈ � N ,
for all k ∈ � N. If the function v has more variables, we say it is Y -periodic in y.

The spaces of Y -periodic functions will be denoted by X#(Y ). A function v ∈
X#(Y ) is Y -periodic and v ∈ Xloc(

� N ), i.e. v ∈ X(Q) for every compact subset
Q ⊂ � N . For example, in the case of C∞# (Y ), all derivatives coincide on the opposite
sides of ∂Y . In the case of v ∈W 1,2

# (Y ), the traces of the function v coincide almost
everywhere on the opposite sides of ∂Y . The norm in the Banach spaces X#(Y ) is
given by ‖ · ‖X#(Y ) = ‖ · ‖X(Y ).
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Lemma 1.2. Let v ∈ W 1,2
# (Y ). Then

∫

Y

∂v

∂yi
dy = 0.

�������	�
. According to the Gauss-Ostrogradski theorem we have

∫

Y

∂v

∂yi
dy =

∫

∂Y

vνi dS = 0,

since v is Y -periodic and the normals on the opposite sides of ∂Y have inverse
orientation. �

���
������

1.3. The proposition holds even for integrable periodic functions hav-

ing traces on ∂Y , where the derivatives are taken in generalized sense defined by
functionals giving the values on the elements of the space W 1,2

# (Y ), i.e., if a is an
integrable Y -periodic function, then its derivative ∂yia is defined by

∫

Y

∂a

∂yi
v dy =

∫

∂Y

avνi dS −
∫

Y

a
∂v

∂yi
dy = −

∫

Y

a
∂v

∂yi
dy,

since the integral over ∂Y is zero due to the periodicity of both functions and the

orientation of normals on the opposite sides. Taking v = 1 we have

∫

Y

∂a

∂yi
1 dy = −

∫

Y

a 0 dy = 0.

The spaces of Y -periodic functions with zero mean value are denoted by X#0(Y ),
i.e.

X#0(Y ) =
{
v ∈ X#(Y ) :

∫

Y

v(y) dy = 0
}
.

Lemma 1.4. Let v ∈ W 1,2
#0 (Y ). Then

|v|W 1,2
#0 (Y ) 6 ‖v‖W 1,2

#0 (Y ) 6 C|v|W 1,2
#0 (Y ).

� �����������	���������	�
. The first inequality follows directly from the definition of

the norm and seminorm, the second inequality is a consequence of Poincaré inequal-
ity. �
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The following spaces of abstract functions are used:

• C∞0 [Ω;C∞#0(Y )]—the space of functions u : Ω → C∞#0(Y ) such that the mapping
x ∈ Ω 7→ u(x)(·) ∈ C∞#0(Y ) is infinitely differentiable with compact support
in Ω;

• L2[Ω;C#(Y )]—the space of functions u : Ω → C#(Y ) which are L2 integrable
and ‖u‖2L2[Ω;C#(Y )] =

∫
Ω
‖u(x)‖2C#(Y ) dx <∞;

• L2[Ω;W 1,2
#0 (Y )]—the space of functions u : Ω → W 1,2

#0 (Y ) which are L2 inte-
grable and ‖u‖2

L2[Ω;W 1,2
#0 (Y )]

=
∫
Ω
‖u(x)‖2

W 1,2
#0 (Y )

dx <∞.
Let us remark that every function from these spaces can be identified with a func-

tion u(x, y) defined on Ω × � N via u(x, y) = u(x)(y). More details can be found
e.g. in [13].

2. Model problem

Let us consider a linear elliptic 2nd order problem

− ∂

∂xi

(
aij

∂u

∂xj

)
= f in Ω,(2.1)

u = uD on ΓD,

aij
∂u

∂xj
νi = wN on ΓN ,

where Ω is a bounded domain with Lipschitz boundary ∂Ω = Γ̄D∪Γ̄N (measN−1 ΓD >

0). This problem describes e.g. stationary heat conduction, electric circuit, diffusion,
etc. Let us assume the matrix of coefficients A = (aij)N

i,j=1, aij ∈ L∞(Ω), is sym-
metric and positive definite, i.e.

aij = aji, aijξjξi > 0 for a.a. x ∈ Ω, ξ 6= 0.

For anisotropic materials in principal directions we have aij = aji = 0, i 6= j and for

isotropic materials the diagonal elements coincide.
We will consider periodically arranged composite materials which consist of a finite

number of homogeneous components. Let us assume the material properties of these
components are not known exactly but in certain bounds only. So, in what follows,

the coefficients aij are periodic piecewise constant functions with uncertain values
from the predefined intervals. For the sake of simplicity the other functions (right-

hand side, boundary values) are considered to be fixed.
Since the coefficients are not continuous, the problem (2.1) cannot be solved in

the classical sense—we proceed to a weak formulation. Let us define the space V by

(2.2) V = {v ∈W 1,2(Ω): v = 0 on ΓD (in sense of traces)}.
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Then W 1,2
0 (Ω) ⊂ V ⊂ W 1,2(Ω) holds. Multiplying formally the equation by an

arbitrary function v ∈ V and integrating by parts over Ω leads to

∫

Ω

aij
∂u

∂xj

∂v

∂xi
dx =

∫

Ω

fv dx+
∫

ΓN

wNv dS,

where the Neumann boundary condition and the assumption v = 0 on ΓD were used.
Denoting

a(u, v) =
∫

Ω

aij
∂u

∂xj

∂v

∂xi
dx,

b(v) =
∫

Ω

fv dx+
∫

ΓN

wNv dS,

the weak formulation reads:

(W) Find a function u ∈ W 1,2(Ω) such that u− uD ∈ V and the equality

a(u, v) = b(v)

holds for all functions v ∈ V .
The following well-known result on solvability of the problem holds:

Theorem 2.1. Let f ∈ L2(Ω), uD ∈ W 1,2(Ω), wN ∈ L2(ΓN ) and let there exist
α > 0 such that the coefficients aij ∈ L∞(Ω) satisfy the ellipticity condition

(2.3) aijξjξi > α|ξ|2, ∀ ξ ∈ � N , a.a. x ∈ Ω.

Then problem (W) has unique solution. Moreover, this solution satisfies the estimate

(2.4) ‖u‖W 1,2(Ω) 6 C,

where the constant C depends on α, Ω, ΓN , ‖uD‖W 1,2(Ω), ‖wN‖L2(ΓN ), ‖aij‖L∞(Ω)

and ‖f‖L2(Ω).
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3. Homogenization

In this section we give a summary of some homogenization results, especially we
focus on two-scale convergence approach.

3.1. Basic idea
As mentioned in Introduction, homogenization deals with a replacement of the os-

cillating data by constant ones that approximate the original material in the macro-

scopic sense. The first homogenization attempts fall into the 19th century, when
authors used some averaging methods. Since a universal criterion preferring one

method against another one was not available, the authors often approximated the
data in different ways.

The homogenization technique went through the biggest development during

the 70’s of the last century. Babuška proposed a procedure where the model prob-
lem is not considered separately but as a one element of a sequence of problems of

the same type, where the period ratio decreases, see [2]. Then the limit problem is
called the homogenized problem. This idea is straightforward, but it does not say

how to determine the homogenized problem. A few concepts were introduced in the
past. Besides the asymptotic expansion and local energy methods (see e.g. [3], [8]),

G and Γ convergence (see e.g. [4], [7], [20]), two-scale convergence is probably the
most powerful tool for homogenization.

Let us proceed to our model problem. Considering the Y -periodic coefficients aij

we can construct the sequence of coefficients with diminishing period ε defined by
aε

ij(x) = aij(x/ε). This sequence defines a sequence of problems

− ∂

∂xi

(
aε

ij

∂uε

∂xj

)
= f in Ω,

uε = uD on ΓD,

aε
ij

∂uε

∂xj
νi = wN on ΓN .

The weak formulation reads:

(Wε) Find uε ∈W 1,2(Ω) such that uε − uD ∈ V and

aε(uε, v) = b(v) ∀ v ∈ V,(3.1)

where

aε(u, v) =
∫

Ω

aε
ij

∂u

∂xj

∂v

∂xi
dx.
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3.2. Two-scale convergence method
Two-scale convergence is a special weak convergence which stands between the

usual weak and strong convergence in Lebesgue spaces. It was developed for the
homogenization theory in order to simplify the proofs. It overcomes the difficulties

resulting from the properties of weakly converging sequences of periodic functions.
In such sequences the weak limit does not keep the “information on oscillations” of

the original functions. In some cases, the two-scale limit is able to conserve this
information and thus, it makes limit procedures possible.

The concept was first introduced by Nguetseng [15] and then developed by Al-
laire [1] in early 90’s. In the case of L2 the definition reads:

Definition 3.1. A sequence {uε(x)} ⊂ L2(Ω) is said to be two-scale convergent
(denoted

2−s
⇀ ) to a function u0(x, y) ∈ L2(Ω× Y ) if

(3.2) lim
ε→0

∫

Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

u0(x, y)ψ(x, y) dx dy

holds for any test function ψ ∈ L2[Ω;C#(Y )].

This definition is useful in applications due to the following main results.

Theorem 3.2. Let {uε} be a bounded sequence in L2(Ω). Then there exists
a function u0(x, y) ∈ L2(Ω × Y ) such that for an extracted subsequence {uε′} we
have uε′

2−s
⇀ u0.

Theorem 3.3. Let {uε} be a bounded sequence in W 1,2(Ω). Then there ex-
ist functions u0(x) ∈ L2(Ω), u1(x, y) ∈ L2[Ω;W 1,2

#0 (Y )] and an extracted subse-

quence {ε′} such that uε′ ⇀ u0 in W 1,2(Ω) and ∇uε′
2−s
⇀ ∇u0 +∇yu1.


���
������
3.4. The test functions from the space L2[Ω;C#(Y )] form the so-called

admissible test functions. Such functions are Carathéodory which is a sufficient

condition for measurability of the composed function ψ(x, x/ε). Moreover, they are
regular enough, so that we have

lim
ε→0

∥∥∥ψ
(
x,
x

ε

)∥∥∥
L2(Ω)

= ‖ψ(x, y)‖L2(Ω×Y ),

∥∥∥ψ
(
x,
x

ε

)∥∥∥
L2(Ω)

6 ‖ψ(x, y)‖L2[Ω;C#(Y )].

These two properties are necessary in the proof of the two-scale compactness property

(see Theorem 3.2). Elements of the two-scale convergence theory can be found in [1],
[11], [13].

Let us apply the previous results to our problem.
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Lemma 3.5. Let aij satisfy condition 2.3 with some α > 0. Then the sequence
of solutions {uε} to Problem (Wε) is bounded in W 1,2(Ω), i.e.

‖uε‖W 1,2(Ω) 6 C

holds.
�������	�

. Since the coefficients aε
ij have the same L

∞-norm (the transformation

y = x/ε changes the speed of oscillations only, it does not change the norm), the
proposition follows immediately and the C is the same constant as in (2.4). �

Since the sequence of solutions {uε} is bounded in W 1,2(Ω), according to Theo-
rem 3.3 there exist functions u0 and u1 such that an extracted subsequence {uε′}
converges weakly to u0 in W 1,2(Ω) and {∇uε′} two-scale converges to ∇u0 +∇yu1.

From the form of the limits one can expect that the solution uε can be expressed as
a sum u0(x) + εu1(x, x/ε).
According to this, in the equality (3.1) we choose the test function in the form

v0(x) + εv1(x, x/ε), where v0 ∈ C∞(Ω) (v0 = 0 on ΓD), v1 ∈ C∞0 [Ω;C∞#0(Y )], i.e.

∫

Ω

aij

(x
ε

)∂uε

∂xj

[∂v0
∂xi

(x) +
∂v1
∂yi

(
x,
x

ε

)
+ ε

∂v1
∂xi

(
x,
x

ε

)]
dx

=
∫

Ω

f(x)
[
v0(x) + εv1

(
x,
x

ε

)]
dx+

∫

ΓN

wN (x)
[
v0(x) + εv1

(
x,
x

ε

)]
dS.

Taking the expression aij

[
∂v0
∂xi

+ ∂v1
∂yi

]
as a test function, for ε→ 0 we can pass to

∫

Ω

∫

Y

aij(y)
[∂u0

∂xj
(x) +

∂u1

∂yj
(x, y)

]
·
[∂v0
∂xi

(x) +
∂v1
∂yi

(x, y)
]
dx dy(3.3)

=
∫

Ω

f(x)v0(x) dx+
∫

ΓN

wN (x)v0(x) dS,

which is the integral identity corresponding to the system of equations

− ∂

∂yi

(
aij(y)

[∂u0

∂xj
(x) +

∂u1

∂yj
(x, y)

])
= 0 in Ω× Y,(3.4)

− ∂

∂xi

(∫

Y

aij(y)
[∂u0

∂xj
(x) +

∂u1

∂yj
(x, y)

]
dy

)
= f in Ω,

u0(x) = uD on ΓD,∫

Y

aij(y)
[∂u0

∂xi
(x) +

∂u1

∂yi
(x, y)

]
dy · νj = wN on ΓN .

This system is called the two-scale homogenized system (the equality (3.3) can be ob-
tained by the following steps: multiplying the first equation by the function v1(x, y),
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multiplying the second equation by the function v0(x), integrating by parts with
respect to the appropriate variable, summing both results).
Let us introduce a Hilbert spaceW = V ×L2[Ω;W 1,2

#0 (Y )] endowed with the norm1

‖(v0, v1)‖W =
[∫

Ω

( N∑

i=1

[∂v0
∂xi

]2
)

dx+
∫

Ω

∫

Y

( N∑

i=1

[∂v1
∂yi

]2
)

dx dy
]1/2

,

where the space V is defined by (2.2). Thanks to the density of smooth functions
in W , equality (3.3) holds also for each function (v0, v1) ∈ W . Thus, Theorem 3.3

makes it possible to pass to two-scale limit in the sequence of the problems (Wε) to
the weak two-scale formulation:

(W2) Find a function u = (u0, u1) ∈ W 1,2(Ω) × L2[Ω;W 1,2
#0 (Y )] such that u0 −

uD ∈ V and
a2(u,v) = b2(v), ∀v = (v0, v1) ∈ W,

where

a2(u,v) =
∫

Ω

∫

Y

aij(y)
[∂u0

∂xj
(x) +

∂u1

∂yj
(x, y)

]
·
[∂v0
∂xi

(x) +
∂v1
∂yi

(x, y)
]
dx dy,

b2(v) =
∫

Ω

f(x)v0(x) dx+
∫

ΓN

wN (x)v0(x) dS.

Theorem 3.6. Problem (W2) has a unique solution (u0, u1).
�������	�

. Let us denote u0 = u∗0 +uD and u∗ = (u∗0, u1), v = (v0, v1). Then (3.3)
can be rewritten as

a2(u∗,v) = b∗2(v),

where

b∗2(v) =
∫

Ω

fv0 dx+
∫

ΓN

wNv0 dS −
∫

Ω

∫

Y

aij
∂uD

∂xj

[∂v0
∂xi

+
∂v1
∂yi

]
dx dy.

We solve the problem: find u∗ ∈ W such that a2(u∗,v) = b∗2(v), ∀v ∈ W . Thanks
to the property (2.3) and Lemma 1.4 we have

a2(v,v) =
∫

Ω

∫

Y

aij

[∂v0
∂xj

+
∂v1
∂yj

]
·
[∂v0
∂xi

+
∂v1
∂yi

]
dx dy

> α
N∑

i=1

∫

Ω

∫

Y

[∂v0
∂xi

+
∂v1
∂yi

]2

dx dy

= α

( N∑

i=1

∫

Ω

[∂v0
∂xi

]2

dx+
N∑

i=1

∫

Ω

∫

Y

[∂v1
∂yi

]2

dx dy
)

= α‖v‖2W .

1 In fact, it is a seminorm, but according to Friedrichs inequality and Lemma 1.4 it is
equivalent to a norm.
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Thus, a2(v,v) is W -elliptic. Since the forms a2(u,v) and b∗2(v) are bounded in
W×W andW , respectively, the assumptions of the Lax-Milgram lemma are fulfilled,
which yields the existence and uniqueness of the solution (u∗0, u1). �

Corollary 3.7. The whole sequence {uε} converges weakly to u0 in W 1,2(Ω)
and the whole sequence {∇uε} two-scale converges to ∇u0 +∇yu1 as ε→ 0.

3.3. Comparison with the classical approach
Now, let us compare the results introduced above with the classical homogenized

problem (see e.g. [3])

−a0
ij

∂2u0

∂xi∂xj
= f in Ω,(3.5)

u0 = uD on ΓD,

a0
ij

∂u0

∂xj
νi = wN on ΓN ,

where the coefficients a0
ij are given by the formulas

(3.6) a0
ij =

∫

Y

(
aij − aik

∂χj

∂yk

)
dy

and the functions χj ∈ W 1,2
#0 (Y ) are Y -periodic solutions of the local problem

(3.7) − ∂

∂yi

(
aik

∂χj

∂yk

)
= −∂aij

∂yi
.

The homogenized matrix A0 = (a0
ij)

N
i,j has the following properties:

Theorem 3.10.
(i) If the matrix A = (aij)N

i,j is symmetric, then the matrix A0 is also symmetric.

(ii) The matrix A0 satisfies the ellipticity condition

a0
ijξjξi > α|ξ|2, ∀ ξ ∈ � N

with the same constant α as in (2.3).

(iii) If the matrix A is diagonal and the elements are even functions with respect to

the planes of symmetry yj = 1
2 , then the matrix A0 is also diagonal.

The weak formulation of the homogenized problem (3.5) reads:
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(WH) Find a function u0 ∈W 1,2(Ω) such that u0 − uD ∈ V and

aH(u0, v) = bH(v), v ∈ V,

where

aH(u, v) =
∫

Ω

a0
ij

∂u

∂xj

∂v

∂xi
dx,

bH(v) =
∫

Ω

fv dx+
∫

ΓN

wNv dS.

The weak formulation of the local problem (3.7) reads:

(WL) Find a function χj ∈W 1,2
#0 (Y ) such that

aL(χj , µ) = bjL(µ), ∀µ ∈ W 1,2
#0 (Y ),

where

aL(λ, µ) =
∫

Y

aik
∂λ

∂yk

∂µ

∂yi
dy,

bjL(µ) =
∫

Y

aij
∂µ

∂yi
dy.

Lemma 3.11. The two-scale homogenized problem (3.4) can be separated into
a global and local part (3.5)–(3.7) through the relation

(3.8) u1(x, y) = −∂u0

∂xj
(x)χj(y).

� �����������	� �!�����	�
. The proof is technical—substitution of the expression (3.8)

into the system (3.4) and the following averaging with respect to y yields the desired

result. �

Lemma 3.12. Problem (WL) has a unique solution.
� ���������"���#���������

. The proposition is a consequence of Lemma 3.11 and

Theorem 3.6—a direct proof can be obtained by help of the Lax-Milgram lemma
and the zero mean value of the right-hand side of (3.7), see Remark 1.3. �

The two-scale homogenized problem contains double number of variables but it
is of the same type as the original periodic problem. From the numerical point

of view, it is obviously better to have the problem separated. Let us remark that
the separation to the global and local part is not always possible or can yield too
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complicated forms. Here, it is possible due to linearity and relative simplicity of the

problem. The main advantage of the two-scale convergence method is the processing
in one step, i.e. by the derivation of the homogenized problem we prove also the
appropriate convergences of the sequence of solutions.

3.4. Correctors
Let us consider the solutions u0, u1 from Subsection 3.2. The expression

εu1(x, x/ε) is called the corrector and the function

uC
ε (x) = u0(x) + εu1

(
x,
x

ε

)

is called the solution with the corrector. According to Lemma 3.1 we have

uC
ε (x) = u0(x) − ε

∂u0

∂xj
(x)χj

(x
ε

)
.

Theorem 3.13. Let u0 ∈ C2(Ω). Then the difference of solutions uε − uC
ε

converges to zero strongly in W 1,2(Ω) as ε→ 0.

���
������

3.14. The solution with the corrector improves the approximation of

the original solution uε, but it violates the Dirichlet boundary condition, i.e. uC
ε 6= uD

on ΓD. This can be “repaired” by means of the so-called cut off function; for details

and proof of the previous theorem see e.g. [3].

4. Worst scenario method

A deterministic concept of solving the problems with uncertain data was intro-

duced by Hlaváček in [9], [10]. We assume that the main goal of computations is
to find the critical values of a certain functional which depends on both the data

and the solution of the model problem. This functional is a criterion for “bad” or
“good” data and is chosen with respect to the technical requirements; it can rep-

resent e.g. the temperature or the heat flow at some crucial places of the material
etc. Once the functional is set, we can formulate the appropriate maximization or

minimization problem over the set of admissible data. This approach was named
the worst scenario method or the reliable solution method. The terms are natural,

since the method is looking for the “worst” data even if the probability of their oc-
currence is small. If such data are too “dangerous” one can proceed with adjusting

the technological process to obtain a more secure case—we talk about a “reliable”
solution.
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Let us remark that the approach mentioned works as an “anti-optimal” control,

so we can use the techniques used in optimal design theory.

The general principles of the method are described in [10].

4.1. Specification of uncertainties in coefficients
Now, let us specify the uncertainties of the coefficients more precisely. Let the

unit cube Y consist of a finite number of disjoint subsets Yk ⊂ Y , k = 1, . . . ,m and
their complement Y0 in Y . Let us introduce sets U ad

ij by

U ad
ij = {a ∈ L∞# (Y ) : a = const. on Yk, a|Yk

∈ [Cl
ij,k, C

u
ij,k ], k = 0, . . . ,m},

where Cl
ij,k 6 Cu

ij,k are given constants (lower and upper bounds) such that each

combination of functions aij ∈ U ad
ij satisfies the ellipticity condition (2.3). Natural

assumptions are C l
ij,k = Cl

ji,k and C
u
ij,k = Cu

ji,k . The set of admissible coefficients is

defined by

U ad = {A = (aij)N
i,j=1 : aij = aji, aij ∈ U ad

ij }.

Overall, Y -periodic coefficients aij form a symmetric matrix function A ∈ U ad, they
are constant on every set Yk and these constants are from the given intervals.


���
������
4.1. The ellipticity condition ξAξT > α|ξ|2 is equivalent to positive

definiteness of the quadratic form ξAξT , i.e.

ξAξT > α|ξ|2 ∀A ∈ U ad ⇐⇒ ξAξT > 0 ∀A ∈ U ad.

In the case of symmetric interval matrices, a sufficient condition for positive definite-
ness of the forms ξAξT was introduced by Rohn, see [18]. For our purposes it can

be formulated in the following way:

Each quadratic form ξAξT , A ∈ U ad, is positive definite, if

λmin

(1
2
[Cl

(k) + Cu
(k)]

)
− %

(1
2
[Cu

(k) − Cl
(k)]

)
> 0,

where Cl
(k) = (Cl

ij,k)N
i,j=1, C

u
(k) = (Cu

ij,k)N
i,j=1, k = 0, . . . ,m, are matrices of lower

and upper bounds, λmin(M) (%(M)) is the minimal eigenvalue (the spectral radius,
respectively) of the matrix M .

4.2. Choice of the criterion functionals
Here, a few criteria will be set. The existence of a solution of the corresponding

maximization problems will be proved.
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Homogenized coefficients. The first problem deals with the “badness” of the
homogenized coefficients. A natural question is: do the extremal values of the original
discontinuous coefficients attain also the extremal (maximal or minimal) values of the
homogenized coefficients? Therefore, for this problem the criterion functionals Φij

are defined by formulas (3.6), i.e.

(4.1) Φij(A,χ) =
∫

Y

(
aij − aik

∂χj

∂yk

)
dy,

where χ = (χ1, . . . , χN ) is the unique solution of the local problem (WL). The
appropriate maximization (minimization) problem reads:

(P1) Find Ā ∈ U ad (A ∈ U ad) such that

Φij(Ā, χ(Ā)) > Φij(A,χ(A)) ∀A ∈ U ad,(4.2)

(Φij(A,χ(A)) 6 Φij(A,χ(A)) ∀A ∈ U ad, respectively).

Lemma 4.2. The set U ad is compact in L∞# [Y ;
� N×N
sym ] (the space of all sym-

metric essentially bounded periodic matrix functions).
�������	�

. The proposition follows from the fact that the set U ad is represented
by a closed bounded subset of a finite dimensional space. Indeed, every U ad

ij can be

represented by the cartesian product of (m+1) closed intervals, and thus U ad is the
cartesian product of 1

2 (m+ 1)N(N + 1) closed intervals, which is a closed bounded
set in

� (m+1)N(N+1)/2 . �

Lemma 4.3. Let An ∈ U ad and An → A in U ad. Then χj(An) → χj(A) in
W 1,2

#0 (Y ).
�������	�

. First, we prove that functions χj(A) are bounded in W 1,2
#0 (Y ) for each

A ∈ U ad. Lemma 1.4, the ellipticity condition (2.3), (WL) and the Cauchy-Schwarz
inequality yield

α

C2
‖χj‖2W 1,2

#0 (Y )
6 α|χj |2W 1,2

#0 (Y )
6 aL(χj , χj) = bjL(χj)

6 max
i
‖aij‖L∞# (Y )

√
N |χj |W 1,2

#0 (Y ) 6 max
i
‖aij‖L∞# (Y )

√
N‖χj‖W 1,2

#0 (Y ).

Since max
i
‖aij‖L∞# (Y ) 6 max{max

i,k
|Cu

ij,k |,max
i,k

|Cl
ij,k |} = C̃, ∀ aij ∈ U ad

ij , we have

‖χj‖W 1,2
#0 (Y ) 6 C2

√
NC̃

α
∀A ∈ U ad.
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Let us denote χn
j ≡ χj(An) and χj ≡ χj(A). According to (WL) for all µ ∈

W 1,2
#0 (Y ) we have

∫

Y

(
an

ik

∂χn
j

∂yk
− aik

∂χj

∂yk

) ∂µ
∂yi

dy =
∫

Y

(an
ij − aij)

∂µ

∂yi
dy.

In the equality let us put

µ ≡ χn
1 − χ1.

Then∫

Y

an
ik

(∂χn
1

∂yk
− ∂χ1

∂yk

)(∂χn
1

∂yi
− ∂χ1

∂yi

)
dy +

∫

Y

(an
ik − aik)

∂χ1

∂yk

(∂χn
1

∂yi
− ∂χ1

∂yi

)
dy

=
∫

Y

(an
i1 − ai1)

(∂χn1

∂yi
− ∂χ1

∂yi

)
dy.

Lemma 1.4 and the ellipticity condition yield

α

C2
‖χn1 − χ1‖2W 1,2

#0 (Y )
+

∫

Y

(an
ik − aik)

∂χ1

∂yk

(∂χn
1

∂yi
− ∂χ1

∂yi

)
dy

6
∫

Y

(an
i1 − ai1)

(∂χn
1

∂yi
− ∂χ1

∂yi

)
dy.

Both integrals converge to zero, since an
i1 → ai1 in L∞# (Y ) and the derivatives ∂yiχ

n
1 ,

∂yiχ1 are bounded in L2
#(Y ) for each n ∈ $ . Thus

‖χn
1 − χ1‖2W 1,2

#0 (Y )
−→ 0

holds, which is the desired result for j = 1. Similarly one can proceed with conver-
gence for χ2, . . . , χN . �

Theorem 4.4. Problem (P1) has a solution.
�������	�

. Let {An} ⊂ U ad be a maximizing sequence of the functional

Φij(A,χ(A)), i.e.

(4.3) lim
n→∞

Φij(An, χ(An)) = sup
A∈U ad

Φij(A,χ(A)).

Due to Lemma 4.2 there exists an element Ā and an extracted subsequence An′ → Ā

inU ad. Lemma 4.3 yields χj(An′ ) → χj(Ā) inW 1,2
#0 (Y ). Since both the convergences

are strong, we obviously have

lim
n′→∞

Φij(An′ , χ(An′)) = Φij(Ā, χ(Ā)).

Together with relation (4.3) we have

Φij(Ā, χ(Ā)) = sup
A∈U ad

Φij(A,χ(A)).

The existence of the minimizing element can be obtained analogously. �
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Generalized gradient (heat flow). The second problem deals with auxiliary
functions χj . According to Subsection 3.4, these functions play the essential role in
the so-called solution with the corrector uC

ε . For a sufficiently smooth homogenized
solution u0 the strong convergence ‖uε − uC

ε ‖W 1,2(Ω) → 0 holds. In other words,
the function uC

ε approximates not the only values uε, but also the derivatives ∂xiuε.
In technical applications the so-called generalized gradient of the solution (it can

represent e.g. heat flow in the coordinate directions) plays an important role. Since
the coefficients aij are bounded in L∞# (Y ), also the convergence

∥∥∥∥aε
ij

∂uε

∂xj
− aε

ij

∂uC
ε

∂xj

∥∥∥∥
L2(Ω)

→ 0 as ε→ 0

holds. Thus, for ε small enough, the expression aε
ij∂xju

C
ε represents a reasonable

approximation of the generalized gradient aε
ij∂xjuε. We have

aε
ij

∂uC
ε

∂xj
= aij

(x
ε

) ∂

∂xj

(
u0(x)− εχk

(x
ε

)∂u0

∂xk
(x)

)

= aij

(x
ε

)[
∂u0

∂xj
(x) − ε

∂χk

∂xj

(x
ε

)∂u0

∂xk
(x)

1
ε
− εχk

(x
ε

) ∂2u0

∂xk∂xj
(x)

]
.

Let us neglect the expression εχk(x/ε)∂2
xkxj

u0(x) and let us introduce a vector w
having components

wi = aij(y)
[∂u0

∂xj
(x) − ∂χk

∂xj
(y)

∂u0

∂xk
(x)

]
.

We see that the expression contains local functions aij , ∂xjχk and global func-
tions ∂xk

u0. Let us eliminate the influence of the global functions by the constrained

condition |∇u0(x)| = 1. It is natural, since then the vector function w plays the
role of the generalized gradient under the assumption of the unit vector of deriva-

tives ∂xiu0. In other words, w does not depend on a position in the domain Ω, but it
does on the microstructure only. Since we are interested in maximal (critical) values

of the generalized gradient (heat flow), we define the criterion functional Φ in the
following way:

(4.4) Φ(A,χ(A)) =
1
|Ỹ |

[∫

Ỹ

N∑

i=1

[wi(A,χ(A))]2 dy
]1/2

,

where
wi = max

|∇u0|=1
wi
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and Ỹ is a suitably chosen subset of the basic period Y (usually at the places of

a “sharp change” of the composite components, where the values of the derivatives

are high). Functions wi are linear in the variables ∂xk
u0 of the type

N∑
i=1

b
(i)
k ξk. By

the method of Lagrange multipliers one can observe that this linear function has the

maximal value
√
b21 + . . .+ b2N and the minimal value −

√
b21 + . . .+ b2N on the set

|ξ| = 1. Thus,

N∑

i=1

w2
i =

N∑

i=1

{[
ai1

(
1− ∂χ1

∂y1

)
−ai2

∂χ1

∂y2
− ai3

∂χ1

∂y3
− . . .− aiN

∂χ1

∂yN

]2

+
[
−ai1

∂χ2

∂y1
+ ai2

(
1− ∂χ2

∂y2

)
− ai3

∂χ2

∂y3
− . . .− aiN

∂χ2

∂yN

]2

...

+
[
−ai1

∂χN

∂y1
− ai2

∂χN

∂y2
− ai3

∂χN

∂y3
− . . .+ aiN

(
1− ∂χN

∂yN

)]2}
.


���
������
4.5. Obviously, the “smooth” gradient ∇u0 does not affect the values

of the generalized gradient w so strongly as the rapidly oscillating gradient ∇χε
j .

Thus, we eliminate its influence to get the microstructure description only (in the

variable y). Since we find the maximal values on the set |∇u0| = 1, we get an upper
estimate of w for a.a. x ∈ Ω.
The elimination by the constrained condition |∇u0| = 1 is carried out for each

component wi separately. It would be more natural to use this constrained condition

for the (squared) length of the gradient |w|2. However, it would lead to a much more
complicated form.

The corresponding maximization problem reads:

(P2) Find Ā ∈ U ad such that

Φ(Ā, χ(Ā)) > Φ(A,χ(A)) ∀A ∈ U ad.

Theorem 4.6. Problem (P2) has a solution.
�������	�

. Let {An} be a maximizing sequence of a functional Φ, i.e.

(4.5) lim
n→∞

Φ(An, χ(An)) = sup
A∈U ad

Φ(A,χ(A)).

Due to compactness of U ad there exists Ā ∈ U ad and a subsequence such that An′ →
Ā in U ad. According to Lemma 4.3 we also have χn′

j ≡ χj(An′) → χ̄j ≡ χj(Ā)
in W 1,2

#0 (Y ). The integrand of the functional Φ can be transcribed as a sum of three
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function types: b2, b∂yk
µ, b2(∂yk

µ)2, where b corresponds to the coefficients aij and

∂yk
µ corresponds to the derivatives ∂yjχi. Thus, bn′ → b̄ in L∞# (Y ) and ∂yk

µn′ →
∂yk

µ̄ in L2
#(Y ). The convergence bn′ → b̄ in L2

#(Y ) holds, since L∞# (Y ) ⊂ L2
#(Y ).

Further,

∣∣∣∣
∫

Y

(
bn′

∂µn′

∂yk
− b̄

∂µ̄

∂yk

)
dy

∣∣∣∣ =
∣∣∣∣
∫

Y

(bn′ − b̄)
∂µn′

∂yk
dy +

∫

Y

b̄
(∂µn′

∂yk
− ∂µ̄

∂yk

)
dy

∣∣∣∣

6 ‖bn′ − b̄‖L2
#(Y )

∥∥∥∂µn′

∂yk

∥∥∥
L2

#(Y )

+ ‖b̄‖L2
#(Y )

∥∥∥∂µn′

∂yk
− ∂µ̄

∂yk

∥∥∥
L2

#(Y )
−→ 0.

In a similar way we can show that

∫

Y

[
b2n′

(∂µn′

∂yk

)2

− b̄2
( ∂µ̄

∂yk

)2
]

dy → 0.

Altogether,

lim
n′→∞

Φ(An′ , χ(An′)) = Φ(Ā, χ(Ā)).

According to (4.5), Ā is the maximizing element. �

Homogenized solution u0. Now, let us define the functional Φ by the relation

(4.6) Φ(u0(A0(A,χ(A)))) =
1
|Ω̃|

∫

Ω̃

u0(A0(A,χ(A)))) dx,

where A0 is the matrix of the homogenized coefficients defined by (3.6) and u0 is
the solution of problem (WH). It represents the average value of the homogenized

solution u0 on a subdomain Ω̃ ⊂ Ω. Thus, the question is, how the matrix of
coefficients A influences homogenized solution u0 (temperature) at some (critical)
places of material.

(P3) Find Ā ∈ U ad such that

Φ(u0(A0(Ā, χ(Ā)))) > Φ(u0(A0(A,χ(A)))) ∀A ∈ U ad.
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Lemma 4.7. Let An → A in U ad. Then A0(An, χ(An)) → A0(A,χ(A)) in� N×N
sym .
�������	�

. Let us denote χn
j ≡ χj(An). Since An → A in U ad, Lemma 4.3 yields

χn
j → χj ≡ χj(A) in W 1,2

#0 (Y ). Thus,

a0,n
ij =

∫

Y

(
an

ij − an
ik

∂χn
j

∂yk

)
dy =

∫

Y

an
ij dy −

∫

Y

aik

∂χn
j

∂yk
dy −

∫

Y

(an
ik − aik)

∂χn
j

∂yk
dy

−→
∫

Y

(
aij − aik

∂χj

∂yk

)
dy = a0

ij .

Overall, An
0 → A0 in

� N×N
sym . �

Theorem 4.8. Problem (P3) has a solution.
�������	�

. Let {An} be a maximizing sequence of the functional Φ, i.e.

lim
n→∞

Φ(u0(A0(An, χ(An)))) = sup
A∈U ad

Φ(u0(A0(A,χ(A)))).

Since U ad is compact, there exists an element Ā and a subsequence {An′} such that
An′ → Ā in U ad. Thanks to Lemma 4.7 one can verify that u0(A0(An′ , χ(An′))) →
u0(A0(Ā, χ(Ā))) inW 1,2(Ω) (in a similar way as in Lemma 4.3). Thanks to continuity
of the functional Φ, we have

lim
n′→∞

Φ(u0(A0(An′ , χ(An′ )))) = Φ(u0(A0(Ā, χ(Ā)))).

Thus, Ā is the maximizing element. �

5. Finite dimensional approximation of the problem

This section deals with the approximate solutions of the problems mentioned in

the previous section. The situation is simplified due to the fact that the set U ad can
be represented by a closed bounded subset of a finite-dimensional subspace—thus,

we do not carry out the approximation of this set.
LetW 1,2

#0,h(Y ) be a finite-dimensional subspace ofW 1,2
#0 (Y ). The Galerkin approx-

imation of the problem (WL) from Subsection 3.3 reads:

(WLh) Find a function χh
j ∈W 1,2

#0,h(Y ) such that

(5.1) aL(χh
j , µh) = bjL(µh), ∀µh ∈W 1,2

#0,h(Y ).

281



Theorem 5.1. There exists a unique solution χh
j of the Galerkin approxima-

tion (WLh). Moreover, there exists a sequence of subspaces {W 1,2
#0,h(Y )} such that

the sequence of approximate solutions {χh
j } converges to χj strongly in W

1,2
#0 (Y ) as

h→ 0+.

� �����������	���������	�
. Taking a suitable base in the space W 1,2

#0,h(Y ), the equal-
ity (5.1) yields a system of linear algebraic equations. Since the bilinear form aL(χj ,

µ) is an elliptic bounded form on W 1,2
#0 (Y ) ×W 1,2

#0 (Y ) and bjL(µ) is a bounded lin-
ear form on W 1,2

#0 (Y ), the above mentioned system has a unique solution. The
spaceW 1,2

#0 (Y ) is a Hilbert separable space and thus there exists a sequence of finite-
dimensional subspaces which approximates2 this space. By this property we can

easily obtain the strong convergence of χh
j to the exact solution χj in W

1,2
#0 (Y ). �

The approximation of the problem (P1) from Subsection 4.2 reads:

(P1h) Find Āh ∈ U ad (Ah ∈ U ad) such that

Φij(Āh, χh(Āh)) > Φij(A,χh(A)) ∀A ∈ U ad,

(Φ(Ah, χh(Ah)) 6 Φ(A,χh(A)) ∀A ∈ U ad, respectively),

where the functionals Φij are defined by the relation (4.1).

Theorem 5.2. Problem (P1h) has a solution.

The above statement can be proved in the same way as Theorem 4.4.

Lemma 5.3. Let {Āh}, h → 0+, be a sequence of approximate solutions of
problems (P1h) such that Āh → A in U ad, let χh

j (χj) be the solution of prob-
lem (WLh) ((WL), respectively) and let {W 1,2

#0,h(Y )} approximate W 1,2
#0 (Y ). Then

χh
j (Āh) → χj(A) in W 1,2

#0 (Y ) as h→ 0+.
�������	�

. For a fixed h we have

‖χh
j (Āh)− χj(A)‖W 1,2

#0 (Y ) 6 ‖χh
j (Āh)− χh

j (A)‖W 1,2
#0 (Y ) + ‖χh

j (A) − χj(A)‖W 1,2
#0 (Y ).

Convergence of the first term on the right-hand side can be proved in the same way

as Lemma 4.3, i.e., taking µh ≡ χh
1 (Āh) − χh

1 (A) as a test function, the definition

2We say that a sequence of finite-dimensional subspaces {Vh} approximates the space V
if for each element v ∈ V there exists a sequence {vh}, vh ∈ Vh such that ‖vh− v‖V → 0
as h → 0+.
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of (WLh) yields

∫

Y

(
āh

ik

∂χh
1

∂yk
(Āh)− aik

∂χh
1

∂yk
(A)

)(∂χh
1

∂yi
(Āh)− ∂χh

1

∂yi
(A)

)
dy

=
∫

Y

(
āh

i1 − ai1

)(∂χh
1

∂yi
(Āh)− ∂χh

1

∂yi
(A)

)
dy.

Using the ellipticity condition (2.3) and Lemma 1.4, we get

α

C2
‖χh

1 (Āh)− χh
1 (A)‖2

W 1,2
#0 (Y )

+
∫

Y

(āh
ik − aik)

∂χ1

∂yk
(A)

(∂χh
1

∂yi
(Āh)− ∂χ1

∂yi
(A)

)
dy

6
∫

Y

(āh
i1 − ai1)

(∂χh
1

∂yi
(Āh)− ∂χ1

∂yi
(A)

)
dy.

Since all derivatives are bounded in L2
#(Y ), the integrals obviously converge to zero

as h→ 0+. Thus,
‖χh

1 (Āh)− χh
1 (A)‖2

W 1,2
#0 (Y )

→ 0.

Theorem 5.1 yields the convergence ‖χh
j (A)− χj(A)‖W 1,2

#0 (Y ) → 0. �

Theorem 5.4. Let {Āh} ({Ah}) be a sequence of solutions of problems (P1h),
let Ā (A) be a solution of problem (P1) and let the sequence of finite-dimensional sub-
spaces {W 1,2

#0,h(Y )} approximate the space W 1,2
#0 (Y ). Then there exists an extracted

subsequence {Āh′} ({Ah′}) such that

Φij(Āh′ , χh′(Āh′)) → Φij(Ā, χ(Ā)) as h→ 0+,

(Φij(Ah′ , χh′(Ah′)) → Φij(A,χ(A)) as h→ 0+, respectively).

�������	�
. By definition we have

(5.2) Φij(Āh, χh(Āh)) > Φij(A,χh(A)) ∀A ∈ U ad.

Since U ad is compact, there exists an element Ã ∈ U ad and an extracted sub-

sequence {Āh′} such that Āh′ → Ã in U ad as h′ → 0. Using Lemma 5.3 and
Theorem 5.1 we can pass to the limit on both sides of the inequality (5.2):

lim
h→0+

Φij(Āh′ , χh′(Āh′)) = Φij(Ã, χ(Ã)) > Φij(A,χ(A)).

Thus Ã is a maximizing element. Since Ā is also a maximizing element, we have

Φij(Ã, χ(Ã)) = Φij(Ā, χ(Ā)), which is the desired result. The minimizing element
can be obtained analogously. �
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���
������
5.5. Generally, Ã 6= Ā, since the uniqueness of Āh (Ā) of the problem

(P1h) ((P1), respectively) is not guaranteed.

The approximation of problem (P2) reads:

(P2h) Find Āh ∈ U ad such that

Φ(Āh, χh(Āh)) > Φ(A,χh(A)) ∀A ∈ U ad,

where χh is the solution of the problem (WLh) and the functional Φ is
defined by the relation (4.4).

Theorem 5.6. Problem (P2h) has a solution.
�������	�

of this theorem can be obtained in the same way as in Theorem 4.6.

Theorem 5.7. Let {Āh} be a sequence of solutions of problems (P2h), let
Ā be a solution of problem (P2) and let the sequence of finite-dimensional subspaces
{W 1,2

#0,h(Y )} approximate the spaceW 1,2
#0 (Y ). Then there exists a subsequence {Āh′}

such that

Φ(Āh′ , χh′(Āh′)) → Φ(Ā, χ(Ā)) as h→ 0 + .

�������	�
. In the proof one can follow the same steps as in the proof of Theorem 5.4.

�

In the case of problem (P3) we have:

(WHh) Find uh
0 ∈ W 1,2

h (Ω) such that uh
0 − uD ∈ Vh ⊂ V and

aH(uh
0 , vh) = bH(vh), ∀ vh ∈ Vh.

Theorem 5.8. Problem (WHh) has a unique solution. Moreover, there exists

a sequence of finite-dimensional subspaces {Vh} such that the sequence of approxi-
mate solutions {uh

0} converges to the solution u0 strongly in W 1,2(Ω) as h→ 0+.
�������	�

is standard, based on the Lax-Milgram lemma. The existence of a se-
quence of finite-dimensional subspaces that approximates the space V is ensured by

separability of V . �

The approximation of problem (P3) reads:

(P3s,h) Find Ās,h ∈ U ad such that

Φ(uh
0 (A0(Ās,h, χs(Ās,h)))) > Φ(uh

0 (A0(A,χs(A)))) ∀A ∈ U ad,

where uh
0 is the approximate solution of problem (WHh), χs is the approximate

solution of problem (WLs) and the functional Φ is defined by the relation (4.6).
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Theorem 5.9. Problem (P3s,h) has a solution.

�������	�
. In the proof one can follow the same steps as in the proof of Theorem 4.8.

�

Theorem 5.10. Let {Ās,h}, s→ 0+, h→ 0+ be a sequence of solutions of prob-
lems (P3s,h), let Ā be a solution of problem (P3), let a sequence of finite-dimensional

subspaces {W 1,2
#0,s(Y )} approximate the space W 1,2

#0 (Y ) and let a sequence of finite-
dimensional subspaces {Vh} approximate the space V . Then there exists a subse-
quence {Ās′,h′} such that

Φ(uh′
0 (A0(Ās′,h′ , χs′(Ās′ ,h′)))) → Φ(u0(A0(Ā, χ(Ā)))) as s′ → 0+, h′ → 0 + .

� �����������	� �!�����	�
. The proof follows the following steps:

i) Due to compactness of U ad, there exists an element Ã and a subsequence

(s′, h′) → (0+, 0+) such that Ās′,h′ → Ã in U ad.

ii) The convergence χs′(Ās′,h′) → χ(Ã) inW 1,2
#0 (Y ) can be verified in a similar way

as in Lemma 5.3.

iii) Steps i) and ii) yield the convergence A0(Ās′,h′ , χs′(Ās′,h′)) → A0(Ã, χ(Ã))
in
� N×N

sym .

iv) The convergence uh′
0 (A0(Ās′,h′ , χs′(Ās′,h′))) → u0(A0(Ã, χ(Ã))) in W 1,2(Ω)

holds (analogy to Lemma 5.3).

v) Step iv) immediately yields

Φ(uh′
0 (A0(Ās′,h′ , χs′(Ās′ ,h′)))) → Φ(u0(A0(Ã, χ(Ã)))).

Thus, Ã is a maximizing element and

Φ(u0(A0(Ã, χ(Ã)))) = Φ(u0(A0(Ā, χ(Ā)))).

�

285



6. Numerical experiments

In this section we show a few 2D examples demonstrating the above considerations.

Let us emphasize that the input parameters are not real, they have an illustrative
character only.

6.1. Methods of computations
All of the algorithms were programmed under MATLAB environment with help

of PDE toolbox and NAG toolbox routine E04JAF.

Solutions χ1, χ2. These functions are found by the finite element method (with
linear triangular elements). The algorithm is slightly modified for requirements of
a periodic solution. The periodic boundary condition involves that the values of

functions χ1, χ2 must be almost everywhere the same on the opposite sides of Y .
This means the triangulation nodes correspond on the opposite sides, i.e. they lie on

the same levels and have the same prescribed values. This correspondence can be
ensured by the same numbering of the two opposite nodes. For a while the position of

the solution is not “fixed” and thus the system of linear equations contains a linearly
dependent row—so, we add the condition of zero mean value of the functions χ1, χ2

into the stiffness matrix.

Homogenized coefficients and generalized gradient. These values are ob-
tained by numerical integration.

Homogenized solution u0. Homogenized solution u0 was computed by the finite

element method (with linear triangular elements). In this case the MATLAB routine
called assempde included in PDE toolbox was used, see [17].

Finding maximum (or minimum) of a functional. Since the matrix of co-
efficients A can be represented by 3(m + 1) values (m is the number of subsets
of period Y , see Subsection 4.1), finding maximum (or minimum) of a functional

reduces to finding the extremes of a 3(m + 1) variable function in a compact set.
These extremes are obtained by use of the NAG E04JAF iterative process based on

the Quasi-Newton method, which suitably approximates the Hess matrix of the sec-
ond order derivatives from the function values, see [14]. Since the more detailed

description is not available, we omit it here. Let us only remark that the algorithm
does not involve the strict compliance of the conditions which guarantee the existence

of extremes (namely the continuity of the second order derivatives of the objective
function).
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6.2. Examples
For the sake of brevity we will not write the subscript h (or s) for the approximately

computed functions Ā, A, χ, u0.

Homogenized coefficients. Here, we deal with problem (P1) from Subsec-
tion 4.2. For the plane case, criterion functionals are in the form

Φ11 =
∫

Y

(
a11 − a11

∂χ1

∂y1
− a12

∂χ1

∂y2

)
dy,

Φ12 = Φ21 =
∫

Y

(
a12 − a11

∂χ2

∂y1
− a12

∂χ2

∂y2

)
dy,

Φ22 =
∫

Y

(
a22 − a21

∂χ2

∂y1
− a22

∂χ2

∂y2

)
dy.

Y0

Y1

Y0

Y1 �
�

�
�

�

�
�

�
�

�

@@

@@

Y0

Y1

(a) (b) (c)

Figure 1. Ordering on the basic period.

% &!��
'��()�
1. First, let us consider the simplest situation, when the composite

consists of two isotropic components according to Fig. 1 (a), i.e. a11 = a22, a12 =
a21 = 0. Since the components are symmetric with respect to axes y1 = 1

2 , y2 = 1
2 ,

we have also a0
12 = a0

21 = 0. Let us choose the values of coefficients in intervals
a11|Y0 ∈ [90; 110], a11|Y1 ∈ [190; 210]. Thus, we maximize (or minimize) just one
functional Φ11 = Φ22.

Ā =
(
ā11 0
0 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

210 on Y1,

A =
(
a11 0
0 a22

)
, where a11 = a22 =

{
90 on Y0,

190 on Y1,

Φ11(Ā, χ(Ā)) = Φ22(Ā, χ(Ā)) = 128.811, Φ11(A,χ(A)) = Φ22(A,χ(A)) = 107.851.

We can see that the critical values of the matrix A appear on the boundaries of

given intervals. It corresponds to the image of the linear problem—higher values of
particular components imply higher values of the homogenized coefficient.
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% &!��
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2. In the second example, let us consider a two-component composite

with isotropic properties again, but with a different geometric shape according to
Fig. 1 (b). The coefficients are from the same intervals as in Example 1. Since
functions a11 = a22 are not symmetric on Y , the coefficients a0

12 = a0
21 given by the

functional Φ12 will be also nonzero. For the functionals Φ11 = Φ22 we get

Ā =
(
ā11 0
0 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

210 on Y1,

A =
(
a11 0,
0 a22,

)
, where a11 = a22 =

{
90 on Y0,

190 on Y1,

Φ11(Ā, χ(Ā)) = Φ22(Ā, χ(Ā)) = 130.629, Φ11(A,χ(A)) = Φ22(A,χ(A)) = 109.658.

For the functional Φ12 we have

Ā =
(
ā11 0
0 ā22

)
, where ā11 = ā22 =

{
90 on Y0,

210 on Y1,

A =
(
a11 0
0 a22

)
, where a11 = a22 =

{
110 on Y0,

190 on Y1,

Φ12(Ā, χ(Ā)) = 0.902, Φ12(A,χ(A)) = 0.429.

For the functionals Φ12 = Φ21 we got critical values on the opposite sides of intervals,
but we can see that the influence of the non-diagonal homogenized coefficients is

small.

% &!��
'��()�
3. In this experiment the situation is further generalized. Let us

consider that one component is isotropic, while the other is anisotropic described by

non-diagonal coefficients, too. Moreover, the shape of the subdomain Y1 strengthens
these “non-diagonal properties”, see Fig. 1 (c). The coefficients are described by in-

tervals: a11|Y0 = a22|Y0 ∈ [90; 110], a12|Y0 = a21|Y0 = 0, a11|Y1 = a22|Y1 ∈ [190; 210],
a12|Y1 = a21|Y1 ∈ [165; 185]. For the functional Φ11 = Φ22 we get

Ā =
(
ā11 ā12

ā21 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

210 on Y1,
ā12 = ā21 =

{
0 on Y0,

165 on Y1,

A =
(
a11 a12

a21 a22

)
, where a11 = a22 =

{
90 on Y0,

190 on Y1,
a12 = a21 =

{
0 on Y0,

185 on Y1,

Φ11(Ā, χ(Ā)) = Φ22(Ā, χ(Ā)) = 120.288, Φ11(A,χ(A)) = Φ22(A,χ(A)) = 88.856.
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As regards the functional Φ12 = Φ21 we have

Ā =
(
ā11 ā12

ā21 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

190 on Y1,
ā12 = ā21 =

{
0 on Y0,

185 on Y1,

A =
(
a11 a12

a21 a22

)
, where a11 = a22 =

{
90 on Y0,

210 on Y1,
a12 = a21 =

{
0 on Y0,

165 on Y1,

Φ12(Ā, χ(Ā)) = 48.776, Φ12(A,χ(A)) = 29.135.

While two values in the critical matrix Ā (and A) are on the lower (and upper) ends
of appropriate intervals, one value appears on the opposite end.
% &!��
'��()�

4. Let us consider the same situation as in the previous example

according to Fig. 1 (c), but moreover, let us assume that the material of the part Y0

is also anisotropic. Coefficients are prescribed in the following way: a11|Y0 = a22|Y0 ∈
[90; 110], a12|Y0 = a21|Y0 ∈ [65; 85], a11|Y1 = a22|Y1 ∈ [190; 210], a12|Y1 = a21|Y1 ∈
[165; 185]. For the functionals Φ11 = Φ22 we get

Ā =
(
ā11 ā12

ā21 ā22

)
,

where ā11 = ā22 =
{

110 on Y0,

210 on Y1,
ā12 = ā21 =

{
79.950 on Y0,

165 on Y1,

A =
(
a11 a12

a21 a22

)
,

where a11 = a22 =
{

90 on Y0,

190 on Y1,
a12 = a21 =

{
85 on Y0,

165 on Y1,

Φ11(Ā, χ(Ā)) = Φ22(Ā, χ(Ā)) = 128.830, Φ11(A,χ(A)) = Φ22(A,χ(A)) = 107.040

and for the functional Φ12 = Φ21

Ā =
(
ā11 ā12

ā21 ā22

)
,

where ā11 = ā22 =
{

90 on Y0,

210 on Y1,
, ā12 = ā21 =

{
85 on Y0,

185 on Y1,

A =
(
a11 a12

a21 a22

)
,

where a11 = a22 =
{

90 on Y0,

209.882 on Y1,
a12 = a21 =

{
65 on Y0,

165 on Y1,

Φ12(Ā, χ(Ā)) = 102.691, Φ12(A,χ(A)) = 82.078.
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In this case, where the description of the material properties is more complicated,

we get the values a12 also inside the admissible intervals.

Generalized gradient. For the plane case, the functional Φ from problem (P2)
(see Subsection 4.2) is in the form

Φ =
1
|Ỹ |

(∫

Ỹ

{[
a11

(
1− ∂χ1

∂y1

)
− a12

∂χ1

∂y2

]2

+
[
−a11

∂χ2

∂y1
+ a12

(
1− ∂χ2

∂y2

)]2

+
[
a21

(
1− ∂χ1

∂y1

)
− a22

∂χ1

∂y2

]2

+
[
−a21

∂χ2

∂y1
+ a22

(
1− ∂χ2

∂y2

)]2}
dy

)1/2

.

% &!��
'��()�
5. Let us consider the situation according to Fig. 2 (a) with the same

range of coefficients as in Example 1. The maximizing matrix of the coefficients is

Ā =
(
ā11 0
0 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

210 on Y1,

Φ(Ā, χ(Ā)) = 4691.420.

Similarly to Example 1, the maximizing values are on the upper boundaries of in-
tervals determining the set U ad. This result was not expected. In the case of

a functional which represents the size of the derivatives of functions in a certain
sense (e.g. the size of the gradients of these functions), we would get the values on

the opposite sides. Intuitively, a “higher jump” in values should cause “higher” val-
ues of derivatives. However, numerical experiments do not confirm this property and

thus, it is not suitable to think of functions χ1, χ2 separately.

Y0

Y1

��� Ỹ

Y0

Y1���Ỹ
�

�
�

�
�

�
�

�
�

�

@@

@@
��� Ỹ

Y0

Y1

(a) (b) (c)

Figure 2. Choice of the subdomain Ỹ .
% &!��
'��()�

6. In this example let us take the arrangement in the composite
according to Fig. 2 (b) and the range of values as in Example 2. The critical values

are

Ā =
(
ā11 0
0 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

210 on Y1,

Φ(Ā, χ(Ā)) = 4760.215.

290



The subdomain Ỹ is situated into the left bottom corner of the set Y1 because the

gradient has its peak in that corner. Since the other corners are closer to each other,
the corresponding peaks are not so high. Therefore, the values of the generalized
gradient are more uniformly distributed there.
% &!��
'��()�

7. This example models the situation according to Fig. 2 (c) and the

tolerance of the coefficients is the same as in Example 3. The maximizing matrix is

Ā =
(
ā11 ā12

ā21 ā22

)
, where ā11 = ā22 =

{
110 on Y0,

190 on Y1,
ā12 = ā21 =

{
0 on Y0,

185 on Y1,

Φ(Ā, χ(Ā)) = 5668.581.

Similarly to Example 3, we get one value in the matrix Ā on the side opposite to the

other values.

Homogenized solution u0. The following two examples correspond to Fig. 3.
The shape of the domain Ω is a rectangle with sides whose ratio is 2 : 1. Three heat
sources are placed in the body corresponding to the subdomains Ω1, Ω2 and Ω3.

They have the prescribed value f1 = f2 = f3 = 3000.

�
�
�

�
��

Ω̃

Ω1

Ω2

Ω3

Figure 3. “Macroscopic problem.”

Approximately in the center of the domain Ω the test subdomain Ω̃ is placed. The
Neumann condition ∂νu0 = 0 is prescribed on parts of boundary ∂Ω∩∂Ω1, ∂Ω∩∂Ω2

and ∂Ω ∩ ∂Ω3 (the sources are isolated). On the rest of the boundary, the Dirichlet

condition u0 = 0 is given. This model problem was inspired by the example shown
in [6]. Let us recall that the functional Φ is in the form

Φ(u0(A0(A,χ(A)))) =
1
|Ω̃|

∫

Ω̃

u0(A0(A,χ(A)))) dx.

% &!��
'��()�
8. The microstructure and the range of coefficients is given in the

same way as in Example 1 (see Fig. 1 (a)). Then, the matrix Ā maximizing the
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functional Φ has values

Ā =
(
ā11 0
0 ā22

)
, where ā11 = ā22 =

{
90 on Y0,

190 on Y1,

Φ(u0(A0(Ā, χ(Ā)))) = 4.605.

% &!��
'��()�
9. In this example, the ranges of coefficients are set in the same way

as in Example 3 (components are arranged according to Fig. 1 (c)). The maximizing
matrix Ā is

Ā =
(
ā11 ā12

ā21 ā22

)
, where ā11 = ā22 =

{
90 on Y0,

190 on Y1,
ā12 = ā21 =

{
0 on Y0,

185 on Y1,

Φ(u0(A0(Ā, χ(Ā)))) = 6.361.

We can see that the results of two previous examples are “inverse” to the results
of Examples 1 and 3—for instance, Example 8 deals with a composite formed by

isotropic materials and the result can be interpreted—“higher values of the homog-
enized coefficient imply lower values of average temperature on the test domain Ω̃”.

7. Conclusion

We have dealt with homogenization of linear elliptic problems with periodically
oscillating coefficients that models the behaviour of periodically organized composite

materials. The material constants of the components determining the coefficients are
not prescribed exactly, but in certain bounds only. These uncertainties were treated

by the worst scenario method. The method requires to set a criterion determining
“bad” and “good” coefficients in a given set. This criterion is described by a func-

tional. The choice of the functionals was discussed in Section 4. The method was
demonstrated on several examples.

The paper proves that the method can be applied in the homogenization theory.
By a suitable choice of the criterion functional we can solve a wide range of prob-

lems. Here we focused on deducing the tolerance of the effective parameters in the
composite material from the knowledge of tolerances of the particular components,

further on the behaviour of the generalized gradient at the crucial places of “sharp”
changes of materials and on the average value of the homogenized solution in a test

subdomain. The experiments suggest that in the case of isotropic materials, the
functionals have a monotone behaviour. However, this characteristic gets lost in the

case of anisotropic materials. Let us emphasize that the resulting value of function-
als is influenced by many parameters—a number of components in the composite,
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their shape, arrangement and the relative ratio on the unit period Y , the coefficients

describing the properties of these components and their range. It is probable that
a suitable combination of the factors mentioned yields more critical values inside the
intervals determining the original set of coefficients aij .

From both the mathematical and the technical point of view an extension to the
following steps is interesting:

(i) A sensitive analysis with respect to input parameters with help of the gradient
of the criterion functional.

(ii) Use of functionals that combine more than one aspect, for example, a functional

that represents the balance between temperature and heat flow. It deals with
the so-called multiobjective optimization methods. The construction of the

appropriate functionals is described e.g. in [12]. A certain compromise between
the particular criteria is the result.

(iii) The extension to homogenization of the system of linear equations

− ∂

∂xj

(
aijkl

∂uk

∂xl

)
= fi in Ω,

ui = ui
D on ΓD,

aijkl
∂uk

∂xl
νj = wi

N on ΓN ,

where i = 1, 2, 3. These problems are meaningful mainly in linear elasticity
theory (see [8]).

(iv) Nonlinear problems—the above mentioned methods can be applied to various

nonlinear problems, but the form of the homogenized problem is usually not
favourable from numerical point of view. This is due to impossibility of a sep-
aration to a local and global part in the two-scale homogenized system.
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