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SIGNORINI PROBLEM WITH A SOLUTION DEPENDENT
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Abstract. Contact problems with given friction and the coefficient of friction depending
on their solutions are studied. We prove the existence of at least one solution; uniqueness
is obtained under additional assumptions on the coefficient of friction. The method of
successive approximations combined with the dual formulation of each iterative step is used
for numerical realization. Numerical results of model examples are shown.

Keywords: contact problems with given friction, unilateral contact and friction, solution
dependent coefficient of friction
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0. Introduction

Contact problems with friction have received great importance during last years.

The mechanical setting of these problems is simple: one looks for an equilibrium
state of deformable bodies being in mutual contact which are subject to body forces

and surface tractions. In addition, effects of friction on the contacting parts are
taken into account. A contact problem with given friction in which the slip bound

is given a-priori represents the simplest model involving friction (see [8], [5]). Due
to its simplicity it is not surprising that it does not reflect the physical situation

very well. Therefore more realistic models of friction have to be used. Among them
the model of friction obeying the Coulomb law is the most classical one. In spite

of its simple formulation the mathematical treatment remained an open problem

*This research was supported under the grant No. 101/01/0538 of the Grant Agency of
the Czech Republic, by the projects CEZ:J17/98:272401 and MSM 113200007 of the
Ministry of Education od the Czech Republic.
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for a long time. The first existence result for the static case of Signorini problems

based on the fixed point approach appeared in [9]. It was shown that there exists
at least one solution provided that the coefficient of friction is sufficiently small.
Another approach was used in [3], namely a simultaneous penalization of unilateral

constraints combined with a regularization of the frictional term. The former (fixed
point) approach is nowadays considered and widely accepted as an efficient and

reliable tool for numerical realization of contact problems with Coulomb friction. In
most papers the coefficient of friction F is supposed to be a function of the space

variable but not depending on the solution itself. Nevertheless, from experiments we
know that F may depend on the tangential component of displacements (or on the

tangential velocity in the case of quasistatic problems). The paper [3] covers also the
case when F depends on the solution. The technique of a simultaneous penalization

and regularization used there for theoretical analysis and in [6] for discretization does
seem to be not convenient for computations. It is the aim of this paper to extend

the fixed point approach to contact problems with a solution-dependent coefficient
of friction. For the sake of simplicity of our presentation we confine ourselves to

a simpler case when a given slip bound is multiplied by a coefficient of friction
depending on the tangential component of the displacement field. Coulomb friction

will be treated in the next paper.

The paper is organized as follows: in Section 1 solutions to the problem are de-

fined as fixed points of a mapping acting on the trace space. In Section 2 we prove
the existence of at least one fixed point of this mapping. The solution is unique

provided that the coefficient of friction is Lipschitz with sufficiently small modulus.
The method of successive approximations is proposed for finding fixed points. Each

iterative step is defined by a contact problem with given friction in which the coeffi-
cient of friction is updated. We briefly mention the dual formulation of this auxiliary

problem in terms of contact stresses which will be used for its numerical realization.
Finally, in Section 3 two iterative strategies are described and numerical results of

several model examples are presented.

1. Setting of the problem

Let Ω be a bounded domain representing an elastic body which is supported by a
rigid foundation S along a part Γc of the boundary ∂Ω. For the sake of simplicity of

our presentation we will suppose that S = � 2− = {(x1, x2) | x2 6 0} is the halfplane
and Γc is a straight line placed on the x1-axis (see Fig. 1.1).

The body is subject to body forces of density F ∈ (L2(Ω))2 and surface tractions
of density P ∈ (L2(Γp))2 that act on a part Γp ⊆ ∂Ω.
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Figure 1.1.

The following unilateral and friction conditions are prescribed on the contact part:

u2 > 0, T2(u) > 0, u2T2(u) = 0 on Γc,(1.1)





|T1(u)| 6 F(|u1|)g on Γc,

|T1(u)(x)| < F(|u1(x)|)g(x) ⇒ u1(x) = 0 x ∈ Γc

|T1(u)(x)| = F(|u1(x)|)g(x) > 0 ⇒ ∃λ(x) > 0:

u1(x) = −λ(x)T1(u(x)) x ∈ Γc

(1.2)

where F is a continuous, positive, bounded function in � 1+ which defines the coeffi-
cient of friction depending on the magnitude of the tangential component u1 of the

displacement vector u, g ∈ L2(Γc), g > 0 is a given slip bound, T1(u), T2(u) are
the tangential and normal components, respectively, of the stress vector T (u) corre-

sponding to u. Finally, the body is fixed on Γu ⊆ ∂Ω, i.e. u = 0 on Γu.

����� �"!$#
1.1. In (1.1) and (1.2) the special geometry of Γc is reflected.

Our aim is to find an equilibrium state of Ω which is characterized by a displace-
ment vector u satisfying the system of equilibrium equations

(1.3)
∂τij

∂xj
+ Fi = 0 in Ω, i = 1, 2, 1

1 The summation convention is adopted.
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the classical boundary conditions

ui = 0 on Γu, i = 1, 2;(1.4)

Ti(u) = Pi on Γp, i = 1, 2(1.5)

and the unilateral and friction conditions (1.1), (1.2). The symbol τ = (τij)2i,j=1

stands for the symmetric stress tensor which is related to the linearized strain tensor
ε = (εij)2i,j=1 by means of a linear Hooke’s law:

(1.6) τij := τij(u) = cijklεkl(u),

where εkl(u) = 1
2 (∂uk/∂xl + ∂ul/∂xk) and cijkl ∈ L∞(Ω), i, j, k, l = 1, 2, are linear

elasticity coefficients which satisfy the usual symmetry and ellipticity conditions.

To give a weak formulation of our problem we introduce some notation. Let

V = {v ∈ H1(Ω) | v = 0 on Γu},
%

= V × V

and let K ⊆ % be a closed convex subset of kinematically admissible displacements:

K = {v = (v1, v2) ∈
% | v2 > 0 a.e. on Γc}.

Further, let H1/2(Γc) denote the space of all traces on Γc of functions from V :

ϕ ∈ H1/2(Γc) iff ∃ v ∈ V : v = ϕ on Γc

and let H
1/2
+ (Γc) be the cone of all non-negative elements of H1/2(Γc). It is known

that H1/2(Γc) is a Banach space if equipped with the norm

(1.7) ‖ϕ‖1/2, Γc
= inf

v∈V
v=ϕ on Γc

|v|1,Ω.

To simplify our presentation let the slip bound g ≡ 1 on Γc. For every ϕ ∈ H
1/2
+ (Γc)

we shall define the following auxiliary problem:

(P(ϕ))





Find u := u(ϕ) ∈ K such that

a(u, v − u) +
∫

Γc

F(ϕ)(|v1| − |u1|) dx1 > L(v − u) ∀ v ∈ K,

where

a(u, v) =
∫

Ω

cijklεij(u)εkl(v) dx,

L(v) =
∫

Ω

Fivi dx +
∫

Γp

Pivi ds.
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It is well-known (see [5], [8]) that (P(ϕ)) has a unique solution for every ϕ ∈
H

1/2
+ (Γc). This makes it possible to define a mapping Ψ: H

1/2
+ (Γc) 7→ H

1/2
+ (Γc) as

follows:

(1.8) Ψ: ϕ 7→ trace
Γc

|u1(ϕ)|

where u(ϕ) = (u1(ϕ), u2(ϕ)) ∈ K solves (P(ϕ)).

Definition 1.1. By a weak solution to the Signorini problem with the solution-
dependent coefficient of friction F we mean any function u ∈ K solving (P(ϕ)) where

ϕ ∈ H
1/2
+ (Γc) is a fixed point of Ψ.

2. Existence result

Before we prove the existence of at least one fixed point, we shall examine basic

properties of Ψ.

Lemma 2.1. The mapping Ψ maps H1/2
+ (Γc) into H

1/2
+ (Γc)∩B1/2, where B1/2 =

{ϕ ∈ H
1/2
+ (Γc) | ‖ϕ‖1/2,Γc

6 ‖L‖?/α}, ‖L‖? is the dual norm of L and α > 0 is the
constant of Korn’s inequality.
&'!$()(+*

. Inserting v = 0 into (P(ϕ)) we obtain

(2.1) α‖u‖2
1 6 a(u, u) +

∫

Γc

F(ϕ)|u1| dx1 6 L(u) 6 ‖L‖?‖u‖1.

From this and the fact that

(2.2) ‖u‖1 > ‖u1‖1/2,Γc
> ‖ |u1| ‖1/2,Γc

the assertion of the lemma follows (observe that (2.2) is an easy consequence of (1.7)).
�

Lemma 2.2. The mapping Ψ is weakly continuous:

ϕn ⇀ ϕ in H1/2(Γc), ϕn, ϕ ∈ H
1/2
+ (Γc) ⇒ Ψ(ϕn) ⇀ Ψ(ϕ) in H1/2(Γc).

&'!$()(+*
. Let un := u(ϕn) ∈ K be a solution to (P(ϕn)), i.e.

(2.3) a(un, v − un) +
∫

Γc

F(ϕn)(|v1| − |un1|) dx1 > L(v − un) ∀ v ∈ K .
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From (2.1) it follows that {un} is bounded:

∃ c > 0 such that ‖un‖1 6 c ∀n ∈ , .

Thus there exist a subsequence {un′} ⊂ {un} and an element u ∈ K such that

(2.4) un′ ⇀ u, n′ →∞ in (H1(Ω))2.

Letting n′ →∞ in (2.3) and using the relations

lim sup
n′→∞

a(un′ , v − un′) 6 a(u, v − u),

lim
n′→∞

L(v − un′) = L(v − u),

lim
n′→∞

∫

Γc

F(ϕn′)(|v1| − |un′1|) dx1 =
∫

Γc

F(ϕ)(|v1| − |u1|) dx1

we see that u solves (P(ϕ)) (the last limit passage follows from the assumption on F ,
the Lebesgue dominated convergence theorem and the fact that traceΓc |un′1| →
traceΓc |u1| in L2(Γc) as n′ →∞).

Since (P(ϕ)) has a unique solution, the whole sequence {un} tends weakly to u in
(H1(Ω))2. It is very easy to verify that

un1 ⇀ u1 in H1(Ω) ⇒ |un1| ⇀ |u1| in H1(Ω)

and consequently

trace
Γc

|un1| ⇀ trace
Γc

|u1| in H1/2(Γc), n →∞.

�

Since Ψ is weakly continuous and maps H
1/2
+ (Γc) ∩ B1/2 into itself, the existence

of at least one fixed point follows from the weak version of the Schauder fixed point
theorem (see [5]). In what follows we give an alternative existence proof which is

based on the existence of fixed points of the discretized problems. To this end we
shall suppose that Ω is a polygonal domain.

Let {Th}, h → 0+ be a family of regular triangulations of Ω such that {Th|Γc
} is

a strongly regular system of partitions of Γc. With any Th the following sets will be

associated:

Kh = {vh = (vh1, vh2) ∈ (C(Ω))2 | vh|T ∈ (P1(T ))2,

vh = 0 on Γu, vh2 > 0 on Γc},
Λh = {ϕh ∈ C(Γc) | ϕh is piecewise linear on Th|Γc

,

ϕh > 0 on Γc and ϕh(x) = 0 if x ∈ Γc ∩ Γu 6= ∅}.
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That is, Kh is the convex set of all continuous, piecewise linear functions satisfying

the unilateral constraints on Γc and Λh, contains all continuous, piecewise linear and
non-negative functions over the partition of Γc generated by Th, vanishing at the
common points of Γc and Γu.

For every ϕh ∈ Λh we define the following discrete problem:

(P(ϕh) h)





Find uh := uh(ϕh) ∈ Kh such that

a(uh, vh − uh) +
∫

Γc

F(ϕh)(|vh1| − |uh1|) dx1 > L(vh − uh)

∀ vh ∈ Kh.

Let Ψh : Λh 7→ Λh be a mapping defined by

Ψh(ϕh) = rh(| trace
Γc

uh1|),

where rh is the piecewise linear Lagrange interpolation operator over Th|Γc
and uh =

(uh1, uh2) ∈ Kh is the solution of (P(ϕh))h.

Lemma 2.3. The mapping Ψh is continuous and maps Λh ∩ BR into Λh ∩ BR,

where BR = {ϕh ∈ Λh | ‖ϕh‖1/2,Γc
6 R} and R > 0 does not depend on h.

&'!$()(+*
. Arguing exactly as in Lemma 2.1 one can show that

(2.5) ‖ |uh1| ‖1/2,Γc
6 ‖uh1‖1/2,Γc

6 ‖L‖?

α
.

Further,

‖rh|uh1| ‖1/2,Γc
6 ‖rh|uh1| − |uh1| ‖1/2,Γc

+ ‖ |uh1 | ‖1/2,Γc

6 ch1/2‖uh1‖1,Γc + ‖uh1‖1/2,Γc

6 c‖uh1‖1/2,Γc
+ ‖uh1‖1/2,Γc

,

where c > 0 does not depend on h, which follows by the well-known approximation

properties of rh and the inverse inequality between H1(Γc) and H1/2(Γc). From this
and (2.5) we see that Ψh maps Λh ∩ BR into Λh ∩ BR with R := (c + 1)‖L‖?/α.

Continuity of Ψh can be easily verified. �

From the Brouwer fixed point theorem the existence of a fixed point of Ψh in

Λh ∩ BR follows. Let {ϕ?
h}, h → 0+ be a sequence of fixed points of Ψh, i.e. ϕ?

h =
rh(|u?

h1|) := rh(| traceΓc u?
h1|), where u?

h = (u?
h1, u

?
h2) ∈ Kh solves

(2.6) a(u?
h, vh − u?

h) +
∫

Γc

F(rh|u?
h1|)(|vh1| − |u?

h1|) dx1 > L(vh − u?
h) ∀ vh ∈ Kh.
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Let v ∈ K be given. Then one can find a sequence {vh}, vh ∈ Kh such that

(2.7) vh → v in (H1(Ω))2.

Since {u?
h} is bounded in (H1(Ω))2 one can pass to a subsequence {u?

h′} and find an
element u? ∈ K such that

(2.8) u?
h′ ⇀ u? in (H1(Ω))2.

From this and (2.7) we obtain

(2.9)





lim sup
h′→0+

a(u?
h′ , vh′ − u?

h′) 6 a(u?, v − u?),

lim
h′→0+

L(vh′ − u?
h′) = L(v − u?).

It is easy to verify that

(2.10) rh′′ |u?
h′′1| → |u| a.e. on Γc

for an appropriate subsequence {u?
h′′} ⊂ {u?

h′}. Indeed

‖rh′ |u?
h′1| − |u?

1| ‖0,Γc 6 ‖rh′ |u?
h′1| − |u?

h′1| ‖0,Γc + ‖ |u?
h′1| − |u?

1| ‖0,Γc

6 c(h′)1/2‖u?
h′1‖1/2,Γc

+ ‖ |u?
h′1| − |u?

1| ‖0,Γc

h′→0+−→ 0.

Using (2.7)–(2.9) we obtain

lim
h′′→0+

∫

Γc

F(rh′′ |u?
h′′1|)(|vh′′1| − |u?

h′′1|) dx1 =
∫

Γc

F(|u?
1|)(|v1| − |u?

1|) dx1.

From this and (2.9) we see that u? ∈ K satisfies

a(u?, v − u?) +
∫

Γc

F(|u?
1|)(|v1| − |u?

1|) dx1 > L(v − u?).

Since v ∈ K was arbitrarily chosen this means that u? solves the respective varia-
tional inequality and in addition ϕ? := traceΓc |u?

1| is a fixed point of Ψ.

We have proved the following theorem.

Theorem 2.1. Let {ϕ?
h}, h → 0+ be a sequence of fixed points of Ψh in Λh∩BR.

Then there exists a subsequence {ϕ?
h′} ⊂ {ϕ?

h} such that

ϕ?
h′ ⇀ ϕ? in H1/2(Γc), h′ → 0 + .

In addition, ϕ? ∈ H
1/2
+ (Γc) ∩ BR is a fixed point of Ψ.

We now prove that Ψ is Lipschitz continuous in the L2(Γc)-norm provided that

F is so. Indeed, we have
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Theorem 2.2. Let Ψ: H
1/2
+ (Γc) 7→ H

1/2
+ (Γc) be defined by (1.8) and q > 0 be

such that

(2.11) |F(x1)− F(x1)| 6 q|x1 − x1| ∀x1, x1 ∈ � 1+ .

Then there exists a positive constant c such that

(2.12) ‖Ψ(ϕ)−Ψ(ϕ)‖0,Γc 6 cq‖ϕ− ϕ‖0,Γc

holds for any ϕ, ϕ ∈ H
1/2
+ (Γc).

&'!$()(+*
. Let ϕ, ϕ ∈ H

1/2
+ (Γc) be given and let u, u be the solutions of (P(ϕ)),

(P(ϕ)), respectively, i.e.

a(u, v − u) +
∫

Γc

F(ϕ)(|v1| − |u1|) dx1 > L(v − u) ∀ v ∈ K,

a(u, v − u) +
∫

Γc

F(ϕ)(|v1| − |u1|) dx1 > L(v − u) ∀ v ∈ K.

Inserting v := u and u respectively into the first and the second inequality and then

summing them we obtain

a(u− u, u− u) 6
∫

Γc

(F(ϕ) −F(ϕ))(|u1| − |u1|) dx1.

Hence

α‖u− u‖2
1 6 a(u− u, u− u) 6 q‖ϕ− ϕ‖0,Γc‖u1 − u1‖0,Γc

6 qc1‖ϕ− ϕ‖0,Γc‖u− u‖1,Ω,

so that

‖ |u1| − |u1| ‖0,Γc 6 ‖u1 − u1‖0,Γc 6 c1‖u− u‖1,Ω 6 qc2
1

α
‖ϕ− ϕ‖0,Γc ,

where c1 is a positive constant. Setting c := c2
1/α we arrive at (2.12). �
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Corollary 2.1. If cq < 1, the mapping Ψ: H
1/2
+ (Γc) 7→ H

1/2
+ (Γc) is contractive

in the L2(Γc)-norm. Consequently, Ψ has a unique fixed point and the method of
successive approximations is convergent.

Next we present the dual formulation of the Signorini problem with a coefficient
of friction depending on the solution. For more detail we refer to [7]. To this end we

introduce some notation.
Let H−1/2(Γc) := (H1/2(Γc))′ be the dual space of H1/2(Γc) and Λ2 := H

−1/2
+ (Γc)

the cone of positive functionals, i.e.

µ2 ∈ Λ2 iff 〈µ2, ϕ〉 > 0 ∀ϕ ∈ H
1/2
+ (Γc),

where 〈 , 〉 stands for the respective duality pairing. With any ϕ ∈ H
1/2
+ (Γc) we

associate the convex set

Λ1(ϕ) = {µ1 ∈ L2(Γc) | |µ1| 6 F(ϕ) a.e. on Γc}.

The dual formulation of the auxiliary problem (P(ϕ)) reads as follows:

(D(ϕ))

{
Find λ := (λ1(ϕ), λ2(ϕ)) ∈ Λ1(ϕ) × Λ2 such that

b(λ, µ− λ) > f(µ− λ) ∀µ = (µ1, µ2) ∈ Λ1(ϕ)× Λ2.

The bilinear form b : (H−1/2(Γc))2 × (H−1/2(Γc))2 7→ � 1 and the linear form f :
(H−1/2(Γc))2 7→ � 1 are given respectively by

b(µ, ν) = 〈µ1, G1(ν1, ν2)〉+ 〈µ2, G2(ν1, ν2)〉,(2.13)

f(µ) = − 〈µ1, G1(L)〉 − 〈µ2, G2(L)〉,(2.14)

where µ = (µ1, µ2), ν = (ν1, ν2) ∈ (H−1/2(Γc))2. Here G = (G1, G2) ∈ L(
% ′, % ) is

the Green operator corresponding to the bilinear form a and the functions

ẑ := G(L) = (G1(L), G2(L)),

z̃ := G(ν1, ν2) = (G1(ν1, ν2), G2(ν1, ν2))

are solutions to the linear elasticity problems

ẑ ∈ % : a(ẑ, v) = L(v) ∀ v ∈ % ,(2.15)

z̃ ∈ % : a(z̃, v) = 〈ν1, v1〉+ 〈ν2, v2〉 ∀ v = (v1, v2) ∈
%
.(2.16)

The relation between (P(ϕ)) and (D(ϕ)) follows from the next theorem.
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Theorem 2.3. For any ϕ ∈ H
1/2
+ (Γc) there exists a unique solution λ :=

(λ1(ϕ), λ2(ϕ)) of (D(ϕ)). In addition,

λ1 = T1(u(ϕ)), λ2 = T2(u(ϕ)),

where u(ϕ) ∈ K is the solution to (P(ϕ)).

For the proof we refer to [7].

Denote Λ(ϕ) := Λ1(ϕ)×Λ2. Then (D(ϕ)) is equivalent to the following minimal-
ization problem:

(D(ϕ) ′)

{
Find λ := λ(ϕ) ∈ Λ(ϕ) such that

S(λ) 6 S(µ) ∀µ ∈ Λ(ϕ),

where S is the dual functional defined by

S(µ) =
1
2
b(µ, µ)− f(µ).

In order to release the constraint µ = (µ1, µ2) ∈ Λ(ϕ) we use again the duality
approach. It is readily seen that

min
µ∈Λ(ϕ)

S(µ) = min
µ1∈L2(Γc)

µ2∈H−1/2(Γc)

sup
v1
1 ,v2

1∈L2
+(Γc)

v2∈H
1/2
+ (Γc)

L(µ, v1
1 , v2

1 , v2),

where L : L2(Γc)×H−1/2(Γc)×(L2
+(Γc))2×H

1/2
+ (Γc) 7→ � 1 is the Lagrangian defined

by

L(µ, v1
1 , v2

1 , v2) =
1
2
b(µ, µ)− f(µ)−

∫

Γc

(F(ϕ)− µ1)v1
1 dx1

−
∫

Γc

(F(ϕ) + µ1)v2
1 dx1 − 〈µ2, v2〉, µ = (µ1, µ2).

Let (λ?, w1
1 , w

2
1, w2) be a saddle-point of L on L2(Γc) × H−1/2(Γc) × (L2

+(Γc))2 ×
H

1/2
+ (Γc), i.e.

L(λ?, v1
1 , v2

1 , v2) 6 L(λ?, w1
1, w

2
1 , w2) 6 L(µ, w1

1 , w
2
1 , w2)

∀µ ∈ L2(Γc)×H−1/2(Γc), ∀ (v1
1 , v2

1 , v2) ∈ (L2
+(Γc))2 ×H

1/2
+ (Γc).
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It is known that this problem is equivalent to

(M(ϕ))





Find (λ?, w1
1 , w

2
1 , w2) ∈ L2(Γc)×H−1/2(Γc)× (L2

+(Γc))2 ×H
1/2
+ (Γc) :

b(λ?, µ) = f(µ) +
∫

Γc

(w2
1 − w1

1)µ1 dx1 + 〈µ2, w2〉
∀µ ∈ L2(Γc)×H−1/2(Γc),∫

Γc

(F(ϕ)− λ?
1)(v

1
1 − w1

1) dx1 +
∫

Γc

(F(ϕ) + λ?
1)(v

2
1 − w2

1) dx1 > 0

∀ (v1
1 , v2

1) ∈ (L2
+(Γc))2

〈λ?
2, v2 − w2〉 > 0 ∀ v2 ∈ H

1/2
+ (Γc).

We now give the interpretation of the saddle-point. First of all λ? = λ(ϕ), where
λ(ϕ) ∈ Λ(ϕ) solves D(ϕ))′. From (M(ϕ))1, (2.13) and (2.14) we see that

〈G1(λ? + L), µ1〉+ 〈G2(λ? + L), µ2〉 =
∫

Γc

(w2
1 − w1

1)µ1 dx1 + 〈µ2, w2〉

for all µ ∈ L2(Γc)×H−1/2(Γc) so that

(2.17)

{
w2

1 − w1
1 = G1(λ? + L) = u1(ϕ) on Γc,

w2 = G2(λ? + L) = u2(ϕ) on Γc,

where u(ϕ) := (u1(ϕ), u2(ϕ)) ∈ K is the solution to (P(ϕ)). Further, from (M(ϕ))2
and (2.17) we see that

(F(ϕ) − λ?
1)w

1
1 = (F(ϕ) + λ?

1)w
2
1 = 0 a.e. on Γc,

w1
1 = u−1 (ϕ), w2

1 = u+
1 (ϕ) on Γc.

Conversely, it is easy to show that the element (λ(ϕ), u−1 (ϕ), u+
1 (ϕ), u2(ϕ)), where

λ(ϕ), u(ϕ) = (u1(ϕ), u2(ϕ)), solves (D(ϕ)), (P(ϕ)) or, in other words, it is a

saddle-point of L on L2(Γc) × H−1/2(Γc) × (L2
+(Γc))2 × H

1/2
+ (Γc). Denote by w :=

max{w1
1, w

2
1} ∈ H

1/2
+ (Γc). We now present an alternative to Definition 1.1.

Definition 2.1. By a weak solution to the Signorini problem with a coefficient

of friction depending on the solution we mean an element (λ?, w1
1 , w

2
1, w2) which is

the solution of (M(w)), where w = max{w1
1, w

2
1}.

The relation between these two definitions is readily seen:

λ? = (T1(u), T2(u)), (w1
1 , w

2
1 , w2) = (u−1 , u+

1 , u2) on Γc,

where u ∈ K is the solution to the Signorini problem in the sense of Definition 1.1.
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3. Numerical realization

In this section we shortly describe algorithms for numerical realization of the

Signorini problem with the coefficient of friction depending on the solution. These
algorithms will be based on the method of successive approximations combined with

the dual formulation (D(ϕ)). Two variants which depend on the realization of (D(ϕ))
will be shown.

Variant I

ϕ(0) ∈ H
1/2
+ (Γc) given;

for ϕ(k) ∈ H
1/2
+ (Γc) known compute λ(k), ϕ(k+1) by:

(i) λ(k) ∈ Λ(ϕ(k)) : S(λ(k)) 6 S(µ) ∀µ ∈ Λ(ϕ(k)),
i.e. λ(k) solves (D(ϕ(k)))′;

(ii) ϕ(k+1) := w(k) = max{w1(k)
1 , w

2(k)
1 } is a part

of the solution to (M(ϕ(k)));
Repeat until stopping criterion.

From its definition we see that (D(ϕ(k)))′ is a quadratic programming problem
with simple (box) constraints which can be efficiently solved by conjugate gradient

methods. To obtain the update ϕ(k+1) one does not need to solve the saddle-point
problem (M(ϕ(k))). Indeed, ϕ(k+1) is defined by the Lagrange multipliers releasing

the constraint µ1 ∈ Λ1(ϕ(k)). These multipliers are at our disposal as soon as λ(k) is
known. Let us mention that Variant I is convergent provided that the conditions of

Corollary 2.1 are satisfied. The next variant consists in a separate minimization of
the dual functional S on the Cartesian product Λ1(ϕ)×Λ2 followed immediately by

the update of ϕ(k). It reads as follows:

Variant II

ϕ(0) ∈ H
1/2
+ (Γc), λ

(0)
1 ∈ Λ1(ϕ(0)) given;

for ϕ(k) ∈ H
1/2
+ (Γc), λ

(k)
1 ∈ Λ1(ϕ(k)) known compute:

(i) λ
(k)
2 ∈ Λ2 : S(λ(k)

1 , λ
(k)
2 ) 6 S(λ(k)

1 , µ2) ∀µ2 ∈ Λ2,

(ii) λ
(k+1)
1 ∈ Λ1(ϕ(k)) : S(λ(k+1)

1 , λ
(k)
2 ) 6 S(µ1, λ

(k)
2 ) ∀µ1 ∈ Λ1(ϕ(k)),

(iii) ϕ(k+1) := w(k) = max{w̃1(k)
1 , w̃

2(k)
1 }, where w̃

1(k)
1 , w̃

2(k)
1 are the Lagrange

multipliers from step (ii) releasing the constraint µ1 ∈ Λ1(ϕ(k)).
Repeat until stopping criterion.

Let us observe that Variant II is formally the same as the splitting type algorithm

for numerical realization of contact problems with Coulomb friction (see [4], [1]).

We now present numerical results of several model examples. The elastic body Ω
is represented by the rectangle Ω = (0, 5)× (0, 1). The material is characterized by
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Figure 3.1.

the Young modulus E = 21.19e10 [Pa] and Poisson’s ratio σ = 0.277. The partition
of ∂Ω into Γu, Γp and Γc is seen from Fig. 3.1.

On Γp = Γ1
p ∪ Γ2

p the body is subject to the surface tractions P = (P1, P2):

P1 = 0, P2 = (1− λ)P 1
2 + λP 2

2 on Γ1
p ,

P1 = P 1, P2 = 0 on Γ2
p ,

where λ ∈ [0, 1], P 1
2 = −4.0e6 [N·m−1], P 2

2 = 1.0e6 [N·m−1], P 1 = 4.0e6 [N·m−1].

The coefficient of friction F is given by

F(t) = 0.2 + 0.3/(param) ∗ t + 3), t > 0,

where three different values of param are considered: param = 5.0e4, 1.0e5, 1.5e5
(see Fig. 3.2). The slip bound was chosen to be g = 15.0e6 [N·m−1]. The uniform grid
consists of 40× 8 points; each square was divided into two triangles by its diagonal

(left bottom, right top).

Both the variants presented above use the same stopping criterion, namely

‖w(k+1) − w(k)‖
‖w(k)‖ 6 10−6,

where w(k) stands for the kth iteration of the modulus of the tangential component
of the displacements on Γc and ‖x‖ is the Euclidean norm.

The quadratic programming problems with simple constraints were solved by the

conjugate gradient method with proportioning analyzed in [2].

The number of fixed point and conjugate gradient iterations is shown in Tab. 3.1
and 3.2.
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param fixed point iterations CG iterations

5.0e4 8 890
10.0e4 9 896
15.0e4 9 920

Table 3.1. Variant I.

param fixed point iterations CG iterations

5.0e4 20 480
10.0e4 18 456
15.0e4 18 411

Table 3.2. Variant II.

The convergence history of the method of successive iterations for both variants

is depicted in Figs. 3.3 and 3.4.
The behavior of the normal contact stress and the normal contact displacement is

shown in Figs. 3.5 and 3.6, respectively. The same for the tangential components is
shown in Figs. 3.7 and 3.8.

The graphs corresponding to param = const. illustrate the distribution of the
respective physical quantities for the coefficient of friction F = 0.3 which does not

depend on the solution.
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Figure 3.3. Variant I.
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Figure 3.4. Variant II.
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Figure 3.5. Normal contact stress.
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Figure 3.6. Normal contact displacement.
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Figure 3.7. Tangential contact stress.
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Figure 3.8. Tangential contact displacement.
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