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EXTENSIONS FROM THE SOBOLEV SPACES H1 SATISFYING 

PRESCRIBED DIRICHLET BOUNDARY CONDITIONS* 

ALEXANDER ZENISEK, Brno 

(Received May 20, 2002, in revised version Novermber 11, 2003) 

Abstract. Extensions from HX(Qp) into H (ft) (where ftp C ft) are constructed in such 
a way that extended functions satisfy prescribed boundary conditions on the boundary dft 
of ft. The corresponding extension operator is linear and bounded. 

Keywords: extensions satisfying prescribed boundary conditions, Nikolskij extension the­
orem 

MSC 2000: 65N99 

This note completes the considerations and results of [4] where a completely dis-

cretized variational problem corresponding to a two-dimensional nonlinear second 

order parabolic-elliptic initial-boundary value problem was analyzed. 

Our problem reads as follows: Let ft C UN be a bounded domain with a Lipschitz 

continuous boundary in the sense of Necas (see [3] or [6, Definition 1]). Let 

(i) ft = ftEuftP, ftEnftP = fb, 

where the subset QM (M = E, P) is either a domain or a union of a finite number of 

mutually disjoint domains (all domains considered are assumed to have a Lipschitz 

continuous boundary)**—see, for example, Figs. 1-3. (ftp and ftE denote the do­

mains (or sets) where the problem studied in [4] is described by parabolic and elliptic 

* This work was supported by the grants No 201/00/0557 and 201/03/0570 of the Grant 
Agency of the Czech Republic and and by the grant MSM: 262100001. 

** The fact that a bounded domain ft has a Lipschitz continuous boundary will be denoted 
by the symbol fteC0'1. 
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equations, respectively.) We define 

(2) V = {v e Hl(Q): v = 0 on rx] (Fx C dil, measN- i I\ > 0), 

(3) VM = {vMeH1(nM): vM=Q on .Tind^} (M = E, P). 

We have to find a bounded linear extension operator V: VP -•> V; this means an 

operator V with the following properties: 

(4) V(ciuP + c2vP) = c\VuP 4- c2VvP VLr ,c2 e R, VuP,vP G Vp, 

(5) I I ^ P I U I ^ ) ^ C H U P I I ^ I ^ ) VIXP G Vp, 

(6) 7> t ip | n p =t ip Vt/pGVP. 

In [4, Lemma 3.9] the existence of such an extension operator was proved under the 

restrictive assumption 

(7) an n dnE n anP c rx or dnE n dnP n rx = 0; 

in [5, Theorem 44.3] the two-dimensional situation with dQE (1 dUP C\ Vi being a 
one point set was also studied. (It should be noted that assumption (7) and [4, 
Lemma 3.9] do not depend on the dimension 1V.) 

In this paper the two-dimensional considerations are completed and generalized 

to the three-dimensional case. 

In our considerations we shall need first of all the following form of the Nikolskij 

extension theorem (formulated first with this name in [2]): 

1. Lemma. Let G G C0,1 be an N-dimensional domain (for applications, N = 2 
and N = 3 is sufficient) and let Go € C0'1 be such a domain that G C Go. Then 
there exists a bounded linear operator £: HX(G) -» Ho (Go) such that 

(Eu)(X)=u(X) VKGG, 

where 

H^Go) = {ve Hl(Go), 1v = 0 on G0}, 

T: Hl(Go) -* L2(dGo) being the trace operator. 

We note that we use the usual brief notation HX(G) = H1,2(G) and Ho (Go) = 
Ho'2(Go) for the corresponding Sobolev spaces (see [1]). 

The proof of Lemma 1 is a special case (for k = 1) of the proof of [6, Theorem 1.4 
and Lemma 1.6]. The following lemma can be obtained by a simple modification of 
this proof: 
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2. Lemma. Let G G c0'1 be an N-dimensional domain (N = 2 or N = 3) 

which is multiply connected. Let Hi,... ,Hn be the "holes" in G with boundaries 

dH\,..., dHn. Let dLo be such a closed simple curve (or surface) that dG = dL0 U 

dH\ U.. .UdHn. Further, let dL\,...,dLn be such closed simple curves (or surfaces) 

that dSi = dHiUdLi form the boundary of a strip (or layer) Si C Hi with a positive 

width (Si EC0 '1). Let us define a closed domain D = G U Si U . . . U Sn. Then there 

exists a bounded linear operator T: H1(Gf) -> Hl(D) such that 

(Tu)(X)=u(X) VXeG, V u G H ^ G ) , 

Fu\dLi=0 \/ueHl(G) (i = l,...,n). 

The following theorem is valid for both N = 2 and N = 3. 

3. Theorem. Let N = 2 or N = 3. Let U G C0'1, ttE G C0'1, ttP G C0'1 

be domains satisfying (1). Then there exists a bounded linear extension operator 
V: Vp -¥ V, i.e., an operator satisfying (4)-(6). 

P r o o f . First we note that part A3a of the proof of [4, Lemma 3.9] is not 

correct; thus we choose a quite different and more general way of proving. We shall 

consider several situations, most of them being indicated in Figs. la-3b . (Shadowed 

parts of the boundary dft denote the set Vi C dft.) In parts A-E of this proof the 

two-dimensional case is studied. Changes in the proof when N = 3 are introduced 

in part F. 

A) In the case of Fig. la we apply Lemma 1 with G = ftp and G0 = ftp U SIE-

B) In the case of Fig. lb we apply Lemma 2 with G = Qp, Hi = ^E and n = 1. 

By Lemma 2 we have 

(8) | | ^ p | | i , D ^ C | | i / p | | i , n p . 

We define 

VuP= < 

f up in Í7p, 

Tup in Si , 

, 0 in nE\ŠL 

Hence by (8) 

IIPwplkn^CIMkfip. 
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Figure la and Figure Ib . 

Figure 2a and Figure 2b. 

C) In the case of Fig. 2b, where dft^ndftpOVi = 0, we use Lemma 1 with G = ftp 

and choose a domain Go D ftp such that Go n 9ftE H I\ = 0. For Sup G Ho (GO) we 

have by Lemma 1 

(9) 

We define 

Hence by (9) 

| |£up| | l ,G„^o | |up| | l ,fip. 

' up in fip, 

Vup = < Sup in Go \ í ip, 

k0 i n í í B \ G 0 . 

| | ^ t ip | | i ,n<o | | «p | | i ,n P . 

D) Now we shall consider the cases where 9ft # H dQp fl Vi ^ 0. Let ft* = 

ft U Hi U . . . U Hm, Hi being the "holes" in ft. Let 9If be a closed simple curve 

with the property dK n ft = 0 and such that dif and 9ft* form the boundary of a 

strip fti with a positive width: 9fti = dK U 9ft*. 

408 



Figure 3a and Figure 3b. 

Figure 4a and Figure 4b. 

1. First, let us consider the case Vi = d£l (or at least Vi = dQ,*). Let us define a 

closed domain G by the relation 

G = Tip U Hi 

and let the function v € HX(G) satisfy 

• - { 
up in Qp, 

0 in Q ь 

We have 

(10) I M | l , G = | | u p | | i , П p . 

Let Go be such a domain that G C Go. Moreover, if QE is not simply connected 

then we choose Go in such a way that Go H Hi = 0, where Hi (i = 1, . . . , n) are 

409 



the "holes" in £)#. Applying Lemma 1 to the function v we obtain a function 

Ev € H1(GQ) satisfying 

(ii) Hf«||i,O0 ^ c|M|,,G. 

Let us set 

{ Ev in G0 n U g , 

0 i n ^ \ G 0 . 

Then the function 

(12) u = 
Up ІП fžp, 

UE ІП ӣE 

satisfies, according to (11) and (10), 

Hfi|li,n = hp\\lnP + \\uE\\laE = ll«p||?,n„ + IMI?,G„nQE 

< ll«p|li,f i l, + C2\\v\\lG = (1 + C-2)\\uP\\lQr. 

Hence the function u given by (12) is the desired extension, u = Vup. 

2. Let now T\ 7- dtt* and dfi, n df}/^ n 5ilp C Vi; see, for example, Fig. 2a. It 

suffices to explain the idea of the proof for the circle and boundary conditions from 

Fig. 2a. Let the center of this circle coincide with the origin of the given Cartesian 

coordinate system and let dQ,p D 8Q,E be the segment lying on the axis x 2. Let 

A = [0, R] and B = [0, — R] be the end-points of dQpCidftE, where R is the radius of 

the circle considered. Let 7^ and 75 be the parts of FL containing the points A and 

B, respectively. Let A\ be the end-point of 7,4 which lies on dO,p. Similarly, let B\ 

be the end-point of 7# which lies on dttp. Finally, let A\ and B{ be the points 

of dK which are closest to A\ and Hi, respectively. Let us cut the domain Q\ into 

two parts Q 2 and f22 by the segments A\Ai and B\B\: Qi = ft2 U Q 2 , Q2 n Q 2 = 0, 

where Q2 lies along a part of dftp. The domain Q,2 is sketched together with Q in 

Fig. 4a. 

Let us define a closed domain G by the relation 

(13) G = Tip u n 2 

and let the function v G Hl (G) satisfy 

{ up in Qp, 

0 in Q2. 

410 



Again, as in part 1, relation (10) holds and we can repeat all considerations from 
that part and obtain also in this case the desired extension Vup. 

3. Now let us consider the case that the set dQ. n 8Q,E H dftp consists only of the 
point A (see, e.g., Fig. 3a). Let the point Ai have the same meaning as in part 2 
and let D* G dK be the point of dK closest to the point D (which is sketched in 
Fig. 4b). Let us cut the domain fti into two parts Q3 and ft3 by segments A\ A\ and 
D*D: Qi = Q3 U ft3, Q3 n Q.3 = 0, where the closed strip Q3 contains the point B. 

The domain ^3 is sketched together with D, in Fig. 4b. 

Let us define a closed domain G by the relation 

(14) G = TtPuTt3 

and let the function v G H1 (G) satisfy 

{ up in Op, 

0 in Q3. 

Relation (10) again holds. 

Let G0 be such a domain that G C G0 and GQ n Hi = 0, where Hi are the "holes" 
in fij5. Now we can apply Lemma 1 to the function v and repeat the construction 
of Vup introduced in part 1. 

3a. Let us note that we could use the segment A2A2 instead of the segment D*D, 

where A2 is the second end-point of the arc 7A and A\ G dK. This approach has 
a modification (whose three-dimensional generalization will be useful in part F of 
this proof): Let u € C0,1 be a domain with the following properties: u n O = 0 and 
UJ n ft = ^A • We define 

(15) G = uU-yAuQP. 

Hence G = u U ftp and we can construct the extension Vup in the same way as in 
part 3 . 

4. We should mention also the case dilp\(8QE^dQp) C I \ : it suffices to exchange 
the notation of the subdomains SIE and Op in Fig. 4a; the rest is clear. 

5. If 7A n (dQ,E \ I) = 0, 7 B n (8QE \ 7) = 0, where I is the relative interior of 
8QE H dftp, then we proceed in the same way as in part C. 

6. At the end of part D of the proof let us consider the case j A H (89,P \ 7) = 0, 
7 B n (dftp \ I) = 0, where I = dftp n OKIE- For a greater simplicity, let 75 = 0 
and Ti = 7^ U A where A C dQP \I (A n j A = 0 ) ; further, let dft be again a circle. 
We obtain a modification of Fig. 3a with A\ = A, where A\ again denotes the left-
hand end-point of the arc 7,4. Let Hi be the upper end-point of A and R2 the lower 
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end-point of A. Let T\ be a (piecewise) smooth arc connecting the points R\, A\ 
and r2 a (piecewise) smooth arc connecting the points R2, A2. Let T\, T2 have no 
common points with dQ (except for the end-points R{, A{). Let S be the strip with 
dS = T\ U r2 U A U 7^ U dK. Let us set G = ftp U S. It is always possible to choose 
the arcs r\, T2 such that G £ C0'1. The domain G is a domain with two "holes". Let 
the function v e Hl (G) satisfy 

{ up in ftp, 

0 in S. 

Relation (10) again holds. Applying Lemma 2 we obtain the required result in this 
case. 

E) It remains to analyze the case from Fig. 3b, where we sketch the situation which 
appears in applications very often: the domain Qp is the rotor of an electromachine, 
the domain ft2

p is the stator of an electromachine and the narrow domain between 
them (the domain QE) represents an air crevice. In this case 

Hp = Qp U Up 

is not a domain. Also in this case we can define the space H1^): For v\ £ H^ftp), 
v2 e H1^2*) we set 

{ v\ on Op, 
o 2 

v2 on up. 

Then F is a bounded linear mapping from H^lOp) x H^ftp) into Hl(ilp) = 

Hl(Q}p U ti2p) and v = (v\,v2) e Hx(nP) satisfies 

* p 

Let 5 be the width of the domain QE. Let us use Lemma 1 with G = Ql
P in such 

a way that G0 n QE is a strip of the width 6/3. Further, let us use Lemma 2 with 
G = fip in such a way that D n Q,E is a strip of the width 6/3. Let us set 

£ul
P in Go n Q,E, 

0 in ftE \ {(Go n nE) u ( D n nE)}, 

K Tu2
P i n D n ft#. 

By (16) and Lemmas 1, 2 we have 

(16) UE = < 

IMIÏ,QE = II^PІIÏ,G„ПÍÌE + ll-P«f»||î,DnílJÏ 

<C?ll«pHÏ,t.î, +CІ\\uЦ1^^maX{CІC2

2}\\uP\\lӣp, 

which we wanted to prove. 
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F) The above presented method of proving can be easily extended to three di­

mensions. Only the case not covered by assumption (7) deserves a special attention: 

Let o\,..., on with meas2 Oi > 0 (i = 1 , . . . , n) and Oj n Ok = 0 be the parts of Ti 

such that Oi n (OQE H dftp) 7- 0 (i = 1 , . . . , n). Let A* (z = 1 , . . . , n) be parts of a 

three-dimensional layer (which is a three-dimensional generalization of the strip fti 

appearing at the beginning of part D) such that Aj fl A*. = 0 and 

AiC\Ti = Oi (i = l , . . . , n ) . 

We define 

G = A U f i U i l p , 

where 
n n 

A= ( jA i , 0= \Joi. 
i=l i=l 

Hence G = A U ftp and the construction of the extension Vup is a straightforward 

modification of part D3. • 

4. R e m a r k . The results presented in this paper play an important role con­

nected with the theory of electromagnetic fields in electromachines and generally in 

the theory of parabolic-elliptic equations (see, e.g., [4]). Without using them one 

cannot present correct proofs of some related results (as it happened, for example, 

in [7] and [8]). 
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Abstract. Extensions from H1(ΩP ) into H1(Ω) (where ΩP ⊂ Ω) are constructed in such
a way that extended functions satisfy prescribed boundary conditions on the boundary ∂Ω
of Ω. The corresponding extension operator is linear and bounded.

Keywords: extensions satisfying prescribed boundary conditions, Nikolskij extension the-
orem

MSC 2000 : 65N99

This note completes the considerations and results of [4] where a completely dis-

cretized variational problem corresponding to a two-dimensional nonlinear second
order parabolic-elliptic initial-boundary value problem was analyzed.

Our problem reads as follows: Let Ω ⊂ � N be a bounded domain with a Lipschitz
continuous boundary in the sense of Nečas (see [3] or [6, Definition 1]). Let

(1) Ω = ΩE ∪ ΩP , ΩE ∩ ΩP = ∅,

where the subset ΩM (M = E, P ) is either a domain or a union of a finite number of
mutually disjoint domains (all domains considered are assumed to have a Lipschitz
continuous boundary)**—see, for example, Figs. 1–3. (ΩP and ΩE denote the do-

mains (or sets) where the problem studied in [4] is described by parabolic and elliptic

*This work was supported by the grants No 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic and and by the grant MSM: 262100001.

** The fact that a bounded domain Ω has a Lipschitz continuous boundary will be denoted
by the symbol Ω ∈ C0,1.
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equations, respectively.) We define

V = {v ∈ H1(Ω): v = 0 on Γ1} (Γ1 ⊂ ∂Ω, measN−1 Γ1 > 0),(2)

VM = {vM ∈ H1(ΩM ) : vM = 0 on Γ1 ∩ ∂ΩM} (M = E, P ).(3)

We have to find a bounded linear extension operator P : VP → V ; this means an

operator P with the following properties:

P(c1uP + c2vP ) = c1PuP + c2PvP ∀c1, c2 ∈ � , ∀uP , vP ∈ VP ,(4)

‖PuP‖H1(Ω) 6 C‖uP ‖H1(ΩP ) ∀uP ∈ VP ,(5)

PuP

∣∣
ΩP

= uP ∀uP ∈ VP .(6)

In [4, Lemma 3.9] the existence of such an extension operator was proved under the

restrictive assumption

(7) ∂Ω ∩ ∂ΩE ∩ ∂ΩP ⊂ Γ1 or ∂ΩE ∩ ∂ΩP ∩ Γ1 = ∅;

in [5, Theorem 44.3] the two-dimensional situation with ∂ΩE ∩ ∂ΩP ∩ Γ1 being a

one point set was also studied. (It should be noted that assumption (7) and [4,
Lemma 3.9] do not depend on the dimension N .)

In this paper the two-dimensional considerations are completed and generalized
to the three-dimensional case.

In our considerations we shall need first of all the following form of the Nikolskij
extension theorem (formulated first with this name in [2]):

1. Lemma. Let G ∈ C0,1 be an N -dimensional domain (for applications, N = 2
and N = 3 is sufficient) and let G0 ∈ C0,1 be such a domain that G ⊂ G0. Then

there exists a bounded linear operator E : H1(G) → H1
0 (G0) such that

(Eu)(X) = u(X) ∀X ∈ G,

where

H1
0 (G0) = {v ∈ H1(G0), Tv = 0 on G0},

T : H1(G0) → L2(∂G0) being the trace operator.

We note that we use the usual brief notation H1(G) = H1,2(G) and H1
0 (G0) =

H1,2
0 (G0) for the corresponding Sobolev spaces (see [1]).
The proof of Lemma 1 is a special case (for k = 1) of the proof of [6, Theorem 1.4

and Lemma 1.6]. The following lemma can be obtained by a simple modification of

this proof:
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2. Lemma. Let G ∈ C0,1 be an N -dimensional domain (N = 2 or N = 3)
which is multiply connected. Let H1, . . . , Hn be the “holes” in G with boundaries

∂H1, . . . , ∂Hn. Let ∂L0 be such a closed simple curve (or surface) that ∂G = ∂L0 ∪
∂H1∪ . . .∪∂Hn. Further, let ∂L1, . . . , ∂Ln be such closed simple curves (or surfaces)

that ∂Si = ∂Hi∪∂Li form the boundary of a strip (or layer) Si ⊂ H i with a positive

width (Si ∈ C0,1). Let us define a closed domain D = G ∪ S1 ∪ . . .∪ Sn. Then there

exists a bounded linear operator F : H1(G) → H1(D) such that

(Fu)(X) = u(X) ∀X ∈ G, ∀u ∈ H1(G),

Fu
∣∣
∂Li

= 0 ∀u ∈ H1(G) (i = 1, . . . , n).

The following theorem is valid for both N = 2 and N = 3.

3. Theorem. Let N = 2 or N = 3. Let Ω ∈ C0,1, ΩE ∈ C0,1, ΩP ∈ C0,1

be domains satisfying (1). Then there exists a bounded linear extension operator
P : VP → V , i.e., an operator satisfying (4)–(6).

���������
. First we note that part A3a of the proof of [4, Lemma 3.9] is not

correct; thus we choose a quite different and more general way of proving. We shall
consider several situations, most of them being indicated in Figs. 1a–3b. (Shadowed

parts of the boundary ∂Ω denote the set Γ1 ⊂ ∂Ω.) In parts A–E of this proof the
two-dimensional case is studied. Changes in the proof when N = 3 are introduced
in part F.

A) In the case of Fig. 1a we apply Lemma 1 with G = ΩP and G0 = ΩP ∪ ΩE .

B) In the case of Fig. 1b we apply Lemma 2 with G = ΩP , H1 = ΩE and n = 1.
By Lemma 2 we have

(8) ‖FuP‖1,D 6 C‖uP‖1,ΩP .

We define

PuP =





uP in ΩP ,

FuP in S1,

0 in ΩE \ S1.

Hence by (8)

‖PuP‖1,Ω 6 C‖uP‖1,ΩP .
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ΩE ΩP
ΩP

ΩE

Figure 1a and Figure 1b.

ΩP ΩEΩP ΩE

Figure 2a and Figure 2b.

C) In the case of Fig. 2b, where ∂ΩE∩∂ΩP ∩Γ1 = ∅, we use Lemma 1 with G = ΩP

and choose a domain G0 ⊃ ΩP such that G0 ∩ ∂ΩE ∩ Γ1 = ∅. For EuP ∈ H1
0 (G0) we

have by Lemma 1

(9) ‖EuP ‖1,G0 6 C‖uP ‖1,ΩP .

We define

PuP =





uP in ΩP ,

EuP in G0 \ ΩP ,

0 in ΩE \G0.

Hence by (9)

‖PuP‖1,Ω 6 C‖uP‖1,ΩP .

D) Now we shall consider the cases where ∂ΩE ∩ ∂ΩP ∩ Γ1 6= ∅. Let Ω∗ =
Ω ∪ H1 ∪ . . . ∪ Hm, Hi being the “holes” in Ω. Let ∂K be a closed simple curve

with the property ∂K ∩ Ω = ∅ and such that ∂K and ∂Ω∗ form the boundary of a
strip Ω1 with a positive width: ∂Ω1 = ∂K ∪ ∂Ω∗.
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Ω1
P Ω2

PΩP ΩE

A

B

D

Figure 3a and Figure 3b.

ΩP ΩE

A

B

D

ΩP ΩE

Figure 4a and Figure 4b.

1. First, let us consider the case Γ1 = ∂Ω (or at least Γ1 = ∂Ω∗). Let us define a
closed domain G by the relation

G = ΩP ∪ Ω1

and let the function v ∈ H1(G) satisfy

v =

{
uP in ΩP ,

0 in Ω1.

We have

(10) ‖v‖1,G = ‖uP ‖1,ΩP .

Let G0 be such a domain that G ⊂ G0. Moreover, if ΩE is not simply connected
then we choose G0 in such a way that G0 ∩ H i = ∅, where H i (i = 1, . . . , n) are
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the “holes” in ΩE . Applying Lemma 1 to the function v we obtain a function

Ev ∈ H1(G0) satisfying

(11) ‖Ev‖1,G0 6 C‖v‖1,G.

Let us set

ũE =

{
Ev in G0 ∩ ΩE ,

0 in ΩE \G0.

Then the function

(12) ũ =

{
uP in ΩP ,

ũE in ΩE

satisfies, according to (11) and (10),

‖ũ‖2
1,Ω = ‖uP ‖2

1,ΩP
+ ‖ũE‖2

1,ΩE
= ‖uP ‖2

1,ΩP
+ ‖Ev‖2

1,G0∩ΩE

6 ‖uP ‖2
1,ΩP

+ C2‖v‖2
1,G = (1 + C2)‖uP‖2

1,ΩP
.

Hence the function ũ given by (12) is the desired extension, ũ = PuP .

2. Let now Γ1 6= ∂Ω∗ and ∂Ω ∩ ∂ΩE ∩ ∂ΩP ⊂ Γ1; see, for example, Fig. 2a. It
suffices to explain the idea of the proof for the circle and boundary conditions from

Fig. 2a. Let the center of this circle coincide with the origin of the given Cartesian
coordinate system and let ∂ΩP ∩ ∂ΩE be the segment lying on the axis x2. Let

A = [0, R] and B = [0,−R] be the end-points of ∂ΩP ∩∂ΩE , where R is the radius of
the circle considered. Let γA and γB be the parts of Γ1 containing the points A and

B, respectively. Let A1 be the end-point of γA which lies on ∂ΩP . Similarly, let B1

be the end-point of γB which lies on ∂ΩP . Finally, let A∗
1 and B∗

1 be the points

of ∂K which are closest to A1 and B1, respectively. Let us cut the domain Ω1 into
two parts Q2 and Ω2 by the segments A∗

1A1 and B∗
1B1 : Ω1 = Ω2 ∪Q2, Ω2 ∩Q2 = ∅,

where Q2 lies along a part of ∂ΩP . The domain Ω2 is sketched together with Ω in
Fig. 4a.

Let us define a closed domain G by the relation

(13) G = ΩP ∪ Ω2

and let the function v ∈ H1(G) satisfy

v =

{
uP in ΩP ,

0 in Ω2.
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Again, as in part 1, relation (10) holds and we can repeat all considerations from

that part and obtain also in this case the desired extension PuP .
3. Now let us consider the case that the set ∂Ω ∩ ∂ΩE ∩ ∂ΩP consists only of the

point A (see, e.g., Fig. 3a). Let the point A1 have the same meaning as in part 2

and let D∗ ∈ ∂K be the point of ∂K closest to the point D (which is sketched in
Fig. 4b). Let us cut the domain Ω1 into two parts Q3 and Ω3 by segments A∗

1A1 and

D∗D : Ω1 = Q3 ∪ Ω3, Q3 ∩ Ω3 = ∅, where the closed strip Q3 contains the point B.
The domain Ω3 is sketched together with Ω in Fig. 4b.
Let us define a closed domain G by the relation

(14) G = ΩP ∪ Ω3

and let the function v ∈ H1(G) satisfy

v =

{
uP in ΩP ,

0 in Ω3.

Relation (10) again holds.
Let G0 be such a domain that G ⊂ G0 and G0∩H i = ∅, where H i are the “holes”

in ΩE . Now we can apply Lemma 1 to the function v and repeat the construction
of PuP introduced in part 1.

3a. Let us note that we could use the segment A∗
2A2 instead of the segment D∗D,

where A2 is the second end-point of the arc γA and A∗
2 ∈ ∂K. This approach has

a modification (whose three-dimensional generalization will be useful in part F of
this proof): Let ω ∈ C0,1 be a domain with the following properties: ω ∩ Ω = ∅ and
ω ∩ Ω = γA. We define

(15) G = ω ∪ γA ∪ ΩP .

Hence G = ω ∪ ΩP and we can construct the extension PuP in the same way as in

part 3.
4. We should mention also the case ∂ΩP \(∂ΩE∩∂ΩP ) ⊂ Γ1: it suffices to exchange

the notation of the subdomains ΩE and ΩP in Fig. 4a; the rest is clear.
5. If γA ∩ (∂ΩE \ I) = ∅, γB ∩ (∂ΩE \ I) = ∅, where I is the relative interior of

∂ΩE ∩ ∂ΩP , then we proceed in the same way as in part C.
6. At the end of part D of the proof let us consider the case γA ∩ (∂ΩP \ I) = ∅,

γB ∩ (∂ΩP \ I) = ∅, where I = ∂ΩP ∩ ∂ΩE . For a greater simplicity, let γB = ∅
and Γ1 = γA ∪ λ where λ ⊂ ∂ΩP \ I (λ ∩ γA = ∅); further, let ∂Ω be again a circle.
We obtain a modification of Fig. 3a with A1 ≡ A, where A1 again denotes the left-
hand end-point of the arc γA. Let R1 be the upper end-point of λ and R2 the lower
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end-point of λ. Let τ1 be a (piecewise) smooth arc connecting the points R1, A1

and τ2 a (piecewise) smooth arc connecting the points R2, A2. Let τ1, τ2 have no
common points with ∂Ω (except for the end-points Ri, Ai). Let S be the strip with
∂S = τ1 ∪ τ2 ∪ λ ∪ γA ∪ ∂K. Let us set G = ΩP ∪ S. It is always possible to choose

the arcs τ1, τ2 such that G ∈ C0,1. The domain G is a domain with two “holes”. Let
the function v ∈ H1(G) satisfy

v =

{
uP in ΩP ,

0 in S.

Relation (10) again holds. Applying Lemma 2 we obtain the required result in this
case.

E) It remains to analyze the case from Fig. 3b, where we sketch the situation which
appears in applications very often: the domain Ω1

P is the rotor of an electromachine,

the domain Ω2
P is the stator of an electromachine and the narrow domain between

them (the domain ΩE) represents an air crevice. In this case

ΩP = Ω1
P ∪ Ω2

P

is not a domain. Also in this case we can define the space H1(Ω): For v1 ∈ H1(Ω1
P ),

v2 ∈ H1(Ω2
P ) we set

Fv = F (v1, v2) =

{
v1 on Ω1

P ,

v2 on Ω2
P .

Then F is a bounded linear mapping from H1(Ω1
P ) × H1(Ω2

P ) into H1(ΩP ) =
H1(Ω1

P ∪ Ω2
P ) and v = (v1, v2) ∈ H1(ΩP ) satisfies

v
∣∣
Ω1

P

= v1, v
∣∣
Ω2

P

= v2.

Let δ be the width of the domain ΩE . Let us use Lemma 1 with G = Ω1
P in such

a way that G0 ∩ ΩE is a strip of the width δ/3. Further, let us use Lemma 2 with
G = Ω2

P in such a way that D ∩ ΩE is a strip of the width δ/3. Let us set

(16) uE =





Eu1
P in G0 ∩ ΩE ,

0 in ΩE \ {(G0 ∩ ΩE) ∪ (D ∩ ΩE)},
Fu2

P in D ∩ ΩE .

By (16) and Lemmas 1, 2 we have

‖uE‖2
1,ΩE

= ‖Eu1
P ‖2

1,G0∩ΩE
+ ‖Fu2

P‖2
1,D∩ΩE

6 C2
1‖u1

P‖2
1,Ω1

P
+ C2

2‖u2
P‖1,Ω2

P
6 max{C2

1 , C2
2}‖uP‖2

1,ΩP
,

which we wanted to prove.
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F) The above presented method of proving can be easily extended to three di-

mensions. Only the case not covered by assumption (7) deserves a special attention:
Let σ1, . . . , σn with meas2 σi > 0 (i = 1, . . . , n) and σj ∩ σk = ∅ be the parts of Γ1

such that σi ∩ (∂ΩE ∩ ∂ΩP ) 6= ∅ (i = 1, . . . , n). Let ∆i (i = 1, . . . , n) be parts of a
three-dimensional layer (which is a three-dimensional generalization of the strip Ω1

appearing at the beginning of part D) such that ∆j ∩∆k = ∅ and

∆i ∩ Ω = σi (i = 1, . . . , n).

We define
G = ∆ ∪ σ ∪ ΩP ,

where

∆ =
n⋃

i=1

∆i, σ =
n⋃

i=1

σi.

Hence G = ∆ ∪ ΩP and the construction of the extension PuP is a straightforward
modification of part D3. �

4. ��� �"! ��# . The results presented in this paper play an important role con-
nected with the theory of electromagnetic fields in electromachines and generally in
the theory of parabolic-elliptic equations (see, e.g., [4]). Without using them one

cannot present correct proofs of some related results (as it happened, for example,
in [7] and [8]).
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