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EXTENSIONS FROM THE SOBOLEV SPACES H! SATISFYING
PRESCRIBED DIRICHLET BOUNDARY CONDITIONS*

ALEXANDER ZENISEK, Brno

(Received May 20, 2002, in revised version Novermber 11, 2003)

Abstract. Extensions from H!(Qp) into H'(Q) (where Qp C Q) are constructed in such
a way that extended functions satisfy prescribed boundary conditions on the boundary 02
of 2. The corresponding extension operator is linear and bounded.

Keywords: extensions satisfying prescribed boundary conditions, Nikolskij extension the-
orem

MSC 2000: 65N99

This note completes the considerations and results of [4] where a completely dis-
cretized variational problem corresponding to a two-dimensional nonlinear second
order parabolic-elliptic initial-boundary value problem was analyzed.

Our problem reads as follows: Let @ C RY be a bounded domain with a Lipschitz
continuous boundary in the sense of Necas (see [3] or [6, Definition 1]). Let

(1) QZﬁEUﬁp, QeNQp =0,

where the subset Qs (M = E, P) is either a domain or a union of a finite number of
mutually disjoint domains (all domains considered are assumed to have a Lipschitz
continuous boundary)**—see, for example, Figs. 1-3. (2p and Qg denote the do-
mains (or sets) where the problem studied in [4] is described by parabolic and elliptic

* This work was supported by the grants No 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic and and by the grant MSM: 262100001.
** The fact that a bounded domain 2 has a Lipschitz continuous boundary will be denoted
by the symbol Q € ¢%'.
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equations, respectively.) We define

(2) V={veH (Q): v=0o0n 01} (I} CN, measy_, [} >0),
(3) Vum = {’UM € HI(QM): vy =0on I} ﬂaﬂM} (M:‘E, P)

We have to find a bounded linear extension operator P: Vp — V; this means an
operator P with the following properties:

4) P(crup + cavp) = c1Pup + coPvp Ve, € R, Yup,vp € Vp,
(5) ||PuPllH1(Q) < C||UP||H1(Q,,) Yup € Vp,
(6) PUP|QP =up V’U,p € Vp.

In 4, Lemma 3.9] the existence of such an extension operator was proved under the
restrictive assumption

(7) NNINENINp CIy or aQEnanﬂFI :@;

in [5, Theorem 44.3] the two-dimensional situation with Qg N 8Qp N I} being a
one point set was also studied. (It should be noted that assumption (7) and [4,
Lemma 3.9] do not depend on the dimension N.)

In this paper the two-dimensional considerations are completed and generalized
to the three-dimensional case.

In our considerations we shall need first of all the following form of the Nikolskij
extension theorem (formulated first with this name in [2]):

1. Lemma. Let G € C%! be an N-dimensional domain (for applications, N = 2
and N = 3 is sufficient) and let Gy € C%! be such a domain that G C Go. Then
there exists a bounded linear operator £: H'(G) — H{(Go) such that

(Eu)(X) =u(X) VX €q,
where
Hé(GO):{'UEHI(GO), Fv =0 on G(]},

T: HY(Go) = L2(0Go) being the trace operator.

We note that we use the usual brief notation H!(G) = H"%(G) and H}(Go) =
H,*(Go) for the corresponding Sobolev spaces (see [1]).

The proof of Lemma 1 is a special case (for k¥ = 1) of the proof of [6, Theorem 1.4
and Lemma 1.6]. The following lemma can be obtained by a simple modification of
this proof:
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2. Lemma. Let G € C®! be an N-dimensional domain (N = 2 or N = 3)
which is multiply connected. Let H,,...,H, be the “holes” in G with boundaries
0H,,...,0H,. Let dLg be such a closed simple curve (or surface) that G = 0Ly U
0H,U...U0H,. Further, let OL,,...,0L, be such closed simple curves (or surfaces)
that 8S; = OH;UOL; form the boundary of a strip (or layer) S; C H; with a positive
width (S; € C%'). Let us define a closed domain D = GUS, U...US,. Then there
exists a bounded linear operator ¥: H'(G) — H'(D) such that

(Fu)(X) =u(X) VX €G, Vue H'(G),
Ful,, =0 Yue H'(G) (i=1,...,n).

The following theorem is valid for both N =2 and N = 3.

3. Theorem. Let N =2or N = 3. Let Q € C%', Qp € C%, Qp € C%!
be domains satisfying (1). Then there exists a bounded linear extension operator
P: Vp =V, ie., an operator satisfying (4)—(6).

Proof. First we note that part A3a of the proof of [4, Lemma 3.9] is not
correct; thus we choose a quite different and more general way of proving. We shall
consider several situations, most of them being indicated in Figs. 1a-3b. (Shadowed
parts of the boundary 8Q denote the set [7 C 8Q.) In parts A-E of this proof the
two-dimensional case is studied. Changes in the proof when N = 3 are introduced
in part F.

A) In the case of Fig. 1a we apply Lemma 1 with G = Qp and Go = Qp U Q.

B) In the case of Fig. 1b we apply Lemma 2 with G = Qp, Hy = Qg and n = 1.
By Lemma 2 we have

(8) |Fuplli,p < Cllup|li,op-

We define
up in Q P,

Pup =< Fup in Si,

0 in Qg\S:.

Hence by (8)

IPuplli,0 < Clluplli,ap-

407




Figure la and Figure 1b.

Figure 2a and Figure 2b.

C) In the case of Fig. 2b, where dQgNdQpNIy = @, we use Lemma 1 with G = Qp
and choose a domain Gy D Qp such that GoNdNE NIy = . For Eup € Hé (Go) we
have by Lemma 1

9) I€upll1,co < Cllupllap-
We define
up in QP,
PUP = Eup in @0\9}7,
0 in QE\-G()

Hence by (9)
[Pupll1,0 < Clluprlli,op-

D) Now we shall consider the cases where Qg N 9Qp NI} # 0. Let Q* =
QUH,U...UH,,, H; being the “holes” in Q. Let K be a closed simple curve
with the property 0K N = () and such that K and 9Q* form the boundary of a
strip ©; with a positive width: 092; = 0K U 0Q*.
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Figure 3a and Figure 3b.

Figure 4a and Figure 4b.

1. First, let us consider the case Iy = 9 (or at least I} = 90*). Let us define a

closed domain G by the relation
5 =Q pU Q_l

and let the function v € H'(G) satisfy

up in Qp,
v =
0 in Ql.

We have

(10) vl = lluplliap-

Let G be such a domain that G C Go. Moreover, if Qf is not simply connected
then we choose Gy in such a way that Go N H; = 0, where H; (i = 1,...,n) are
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the “holes” in Qg. Applying Lemma 1 to the function v we obtain a function
Ev € HY(Gy) satisfying

(11) lEv][1,60 < Cllvlh,e-
Let us set
~ Ev in GoNQE,
Ug =
0 in QE \ Go.
Then the function
up in Qp,
(12) = { d P
ﬁE in QE

satisfies, according to (11) and (10),

lall? o = lupllf o, + sl o, = lupli g, + IEvIE gonas
<Hlurli o, +C?I0llt ¢ = 1+ CH)lluplli g,-

Hence the function @ given by (12) is the desired extension, & = Pup.

2. Let now I # 0Q* and 9Q N INE N ONp C I; see, for example, Fig. 2a. It
suffices to explain the idea of the proof for the circle and boundary conditions from
Fig. 2a. Let the center of this circle coincide with the origin of the given Cartesian
coordinate system and let 0Qp N Ig be the segment lying on the axis z;. Let
A = [0, R] and B = [0, —R] be the end-points of N pNINE, where R is the radius of
the circle considered. Let y4 and g be the parts of I} containing the points A and
B, respectively. Let A; be the end-point of v4 which lies on 02p. Similarly, let B,
be the end-point of yg which lies on 02p. Finally, let A} and B be the points
of OK which are closest to A; and Bj, respectively. Let us cut the domain 2; into
two parts Q2 and Q2 by the segments A} A; and Bf B;: Q) = Q,UQ,, Q2NQ2 = 0,
where Q- lies along a part of 9Qp. The domain Q5 is sketched together with 2 in
Fig. 4a.

Let us define a closed domain G by the relation

and let the function v € H(G) satisfy

up in QP,
v =
0 in Qz.
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Again, as in part 1, relation (10) holds and we can repeat all considerations from
that part and obtain also in this case the desired extension Pup.

3. Now let us consider the case that the set 9Q N ONE N INp consists only of the
point A (see, e.g., Fig. 3a). Let the point A; have the same meaning as in part 2
and let D* € 8K be the point of 0K closest to the point D (which is sketched in
Fig. 4b). Let us cut the domain ; into two parts Q3 and Q3 by segments A7 A; and
D*D: Q; = Q; U3, Q3N Q3 =0, where the closed strip Q; contains the point B.
The domain (23 is sketched together with 2 in Fig. 4b.

Let us define a closed domain G by the relation

(14) a:ﬁpUﬁg

and let the function v € H!(G) satisfy

up in Qp,
v =
0 in Qg.

Relation (10) again holds.

Let Gy be such a domain that G C Gy and GoN H; = @, where H; are the “holes”
in Qg. Now we can apply Lemma 1 to the function v and repeat the construction
of Pup introduced in part 1. '

3a. Let us note that we could use the segment A3 A, instead of the segment D*D,
where A, is the second end-point of the arc yv4 and A3 € K. This approach has
a modification (whose three-dimensional generalization will be useful in part F of
this proof): Let w € C%! be a domain with the following properties: w N Q = @ and
TNQ =v4. We define

(15) G=wUvy4UQp.

Hence G = WU Qp and we can construct the extension Pup in the same way as in
part 3.

4. We should mention also the case 90 p\ (0QeNINpP) C I': it suffices to exchange
the notation of the subdomains Qf and Qp in Fig. 4a; the rest is clear.

5 If yan(@Ne\T) =0, v N (0QE \ T) = 0, where I is the relative interior of
0N g N ONp, then we proceed in the same way as in part C.

6. At the end of part D of the proof let us consider the case y4 N (992p \ T) = 0,
18 N (0Qp \ T) = B, where I = dQp N NE. For a greater simplicity, let y5 = 0
and It =4 U\ where A C 9Qp \ I (AN y4 = 0); further, let N be again a circle.
We obtain a modification of Fig. 3a with A; = A, where A; again denotes the left-
hand end-point of the arc y4. Let R; be the upper end-point of A and Ry the lower
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end-point of A\. Let 73 be a (piecewise) smooth arc connecting the points R;, A;
and 72 a (piecewise) smooth arc connecting the points Rs, As. Let 71, 7 have no
common points with 9Q (except for the end-points R;, A;). Let S be the strip with
S =T U UAUv4 UOK. Let us set G = Qp U S. It is always possible to choose
the arcs 71, 72 such that G € C%1. The domain G is a domain with two “holes”. Let
the function v € H!(G) satisfy

up in QP,
v =
0 in S.

Relation (10) again holds. Applying Lemma 2 we obtain the required result in this
case.

E) It remains to analyze the case from Fig. 3b, where we sketch the situation which
appears in applications very often: the domain 2} is the rotor of an electromachine,
the domain Q% is the stator of an electromachine and the narrow domain between
them (the domain Q) represents an air crevice. In this case

QPIQ})UQZP

is not a domain. Also in this case we can define the space H'(Q): For v; € H(Q}),
vy € H(022) we set

vy on O,
Fv = F(’Ul,’U2) =
vy on 0.

Then F is a bounded linear mapping from H!(QL) x H!(Q%) into H'(Qp) =
H'(QL U Q%) and v = (vy,v2) € H' (2p) satisfies

’UI =" ’U| = V2.
ap =V Vlgz,

Let 6 be the width of the domain Qg. Let us use Lemma 1 with G = Q} in such
a way that Gop N Qg is a strip of the width §/3. Further, let us use Lemma 2 with
G = 0% in such a way that D N Qg is a strip of the width §/3. Let us set

E'U.}) in GOOQE,
(16) ug =<0 in QE\{(GoﬂQE)U(DﬂQE)},
Fu% in DNQg.

By (16) and Lemmas 1, 2 we have

. “"E“f,n,,; = ”S“}JH%,GUOQE + ||-7:U?>||f,DnQE
< Cllupllf g1, + C3llublli0z <max{CY, CiYlupl o,

which we wanted to prove.
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F) The above presented method of proving can be‘easily extended to three di-
mensions. Only the case not covered by assumption (7) deserves a special attention:
Let 01,...,0, with meas;0; > 0 (¢ = 1,...,n) and 0; N ox = O be the parts of I}
such that o; N (R NINP) #B (i =1,...,n). Let A; (¢ =1,...,n) be parts of a
three-dimensional layer (which is a three-dimensional generalization of the strip ;
appearing at the beginning of part D) such that A; N A = @ and

ZinQ_:Oi (i=1,...,n).

We define
G=AUocUQp,

where
n n
a=Ua, o=Un
i=1 =1

Hence G = AU Qp and the construction of the extension Pup is a straightforward
modification of part D3. O

4. Remark. The results presented in this paper play an important role con-
nected with the theory of electromagnetic fields in electromachines and generally in
the theory of parabolic-elliptic equations (see, e.g., [4]). Without using them one
cannot present correct proofs of some related results (as it happened, for example,
in [7] and [8]).
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This note completes the considerations and results of [4] where a completely dis-
cretized variational problem corresponding to a two-dimensional nonlinear second
order parabolic-elliptic initial-boundary value problem was analyzed.

Our problem reads as follows: Let  C RY be a bounded domain with a Lipschitz
continuous boundary in the sense of Necas (see [3] or [6, Definition 1]). Let

(1) QZQEUQP, QN Qp =10,

where the subset Q5 (M = E, P) is either a domain or a union of a finite number of
mutually disjoint domains (all domains considered are assumed to have a Lipschitz
continuous boundary)**—see, for example, Figs. 1-3. (Qp and Qg denote the do-
mains (or sets) where the problem studied in [4] is described by parabolic and elliptic

* This work was supported by the grants No 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic and and by the grant MSM: 262100001.
** The fact that a bounded domain 2 has a Lipschitz continuous boundary will be denoted
by the symbol Q € 1.
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equations, respectively.) We define

(2) V={veH(Q): v=0o0n I} (I} C9Q, measy_,I1 >0),
(3) Vi = {var € HY(Qur): var =0 on Ty NOQy+ (M =E, P).

We have to find a bounded linear extension operator P: Vp — V' this means an
operator P with the following properties:

(4) P(clup + CQ’UP) =c1Pup + coPvp Vei,c0 € R, Yup,vp € Vp,
(5) [Pupllr o) < Cllupllmop) Yup € Vp,
(6) PUP|QP =up VYup € Vp.

In [4, Lemma 3.9] the existence of such an extension operator was proved under the

restrictive assumption
(7) oNNINENINp CIT or 8QEHBQPDF1:Q);

in [5, Theorem 44.3] the two-dimensional situation with Qg N INp NI} being a
one point set was also studied. (It should be noted that assumption (7) and [4,
Lemma 3.9] do not depend on the dimension N.)

In this paper the two-dimensional considerations are completed and generalized
to the three-dimensional case.

In our considerations we shall need first of all the following form of the Nikolskij
extension theorem (formulated first with this name in [2]):

1. Lemma. Let G € C%! be an N-dimensional domain (for applications, N = 2
and N = 3 is sufficient) and let Gy € C%' be such a domain that G C Gy. Then
there exists a bounded linear operator £: H'(G) — H}(Gy) such that

(Eu)(X)=u(X) VX €@,
where
Hi(Go) = {ve H (Gy), Tv=0 on Go},

T: HY(Go) — L2(0Gy) being the trace operator.

We note that we use the usual brief notation H'(G) = H?(G) and HE(Go) =
H,*(Gy) for the corresponding Sobolev spaces (see [1]).

The proof of Lemma 1 is a special case (for k = 1) of the proof of [6, Theorem 1.4
and Lemma 1.6]. The following lemma can be obtained by a simple modification of
this proof:
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2. Lemma. Let G € C%!' be an N-dimensional domain (N = 2 or N = 3)
which is multiply connected. Let Hi,...,H, be the “holes” in G with boundaries
OH,,...,0H,. Let OLg be such a closed simple curve (or surface) that 0G = 9Ly U
OHyU...UJ0H,. Further, let OL1,...,0L, be such closed simple curves (or surfaces)
that 0S; = OH; UL, form the boundary of a strip (or layer) S; C H; with a positive
width (S; € C%'). Let us define a closed domain D = GU Sy U...US,. Then there
exists a bounded linear operator F: H'(G) — H'(D) such that

(Fu)(X) =u(X) VX €, Yuec H(G),

Ful,, =0 Yue HY(G) (i=1,...,n).

The following theorem is valid for both N =2 and N = 3.

3. Theorem. Let N =2or N =3. Let Q € C%, Qp € CO!, Qp € CO!
be domains satisfying (1). Then there exists a bounded linear extension operator
P: Vp — V, ie., an operator satisfying (4)—(6).

Proof. First we note that part A3a of the proof of [4, Lemma 3.9] is not
correct; thus we choose a quite different and more general way of proving. We shall
consider several situations, most of them being indicated in Figs. 1a—3b. (Shadowed
parts of the boundary 99 denote the set Iy C 9€2.) In parts A-E of this proof the
two-dimensional case is studied. Changes in the proof when N = 3 are introduced
in part F.

A) In the case of Fig. 1a we apply Lemma 1 with G = Qp and Gy = Qp U Qp.

B) In the case of Fig. 1b we apply Lemma 2 with G = Qp, Hy=Qp and n = 1.
By Lemma 2 we have

(8) [Fuplip < Cllupl1,0p-

We define
up in Qp,

Pup =< Fup in §1,

0 in QE\§1

Hence by (8)

|Puplli,0 < Cllupl,0p-
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Figure la and Figure 1b.

7
7/,
7
Qp Op Op O
’ 4

Figure 2a and Figure 2b.

C) In the case of Fig. 2b, where QN0 pNT} = @, we use Lemma 1 with G = Qp
and choose a domain Gy D Qp such that GoNINE NIy = . For Eup € H(Gy) we
have by Lemma 1

(9) [€uplli,co < Clluplip-
We define
up in Qp,
Pup =< Eup in Go\ Qp,
0 in Qg \ Go.
Hence by (9)
[Pup|1,0 < Cllurliop-

D) Now we shall consider the cases where Qg N 9Qp NTY # 0. Let Q* =
QUH,U...UH,, H; being the “holes” in 2. Let 0K be a closed simple curve
with the property 0K N Q = () and such that 0K and 0Q* form the boundary of a
strip £ with a positive width: 09, = 0K U 0Q*.

408



/7
Qp Qg 02,
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Figure 3a and Figure 3b.

A
7
/
Qp Qg
D
B

Figure 4a and Figure 4b.

1. First, let us consider the case Iy = 99 (or at least Iy = 90Q*). Let us define a
closed domain G by the relation

and let the function v € H!(G) satisfy

up in QP,
v =
0 in Ql.

We have

(10) [vllie = llup

1,Qp-

Let G be such a domain that G C Gy. Moreover, if Q0 is not simply connected
then we choose G in such a way that Go N H; = ), where H; (i = 1,...,n) are
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the “holes” in Qp. Applying Lemma 1 to the function v we obtain a function
Ev € HY(Gy) satisfying

(11) [€v]l1,60 < Cllvll16-
Let us set
_ Ev in GoNQg,
U =
0 in QE \ Go.
Then the function
up in Qp,
(12) a={ " g
ﬁE in QE

satisfies, according to (11) and (10),

1313 o = llupl? op + @l op = lurll op + 10T gynam

<lupllf op + C2llvli 6 = 1+ CH)lupli o,

Hence the function @ given by (12) is the desired extension, & = Pup.

2. Let now I} # 0Q* and 9Q N INE N INp C I7; see, for example, Fig. 2a. It
suffices to explain the idea of the proof for the circle and boundary conditions from
Fig. 2a. Let the center of this circle coincide with the origin of the given Cartesian
coordinate system and let OQ0p N O2g be the segment lying on the axis xo. Let
A =10, R] and B = [0, —R] be the end-points of 9QpNIN g, where R is the radius of
the circle considered. Let v4 and vp be the parts of I} containing the points A and
B, respectively. Let A; be the end-point of v4 which lies on 9Qp. Similarly, let B;
be the end-point of v which lies on 0Q2p. Finally, let A7 and Bj be the points
of K which are closest to A; and B, respectively. Let us cut the domain €27 into
two parts Q2 and €2 by the segments A% A; and BfB1: Q1 = Qo UQ,, 22N Q2 =0,
where ()2 lies along a part of 9Qp. The domain (2, is sketched together with € in
Fig. 4a.

Let us define a closed domain G by the relation

(13) G=0pU0,

and let the function v € H!(G) satisfy

up in QP,
v =
0 in QQ.
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Again, as in part 1, relation (10) holds and we can repeat all considerations from
that part and obtain also in this case the desired extension Pup.

3. Now let us consider the case that the set 9Q N 0N g NI p consists only of the
point A (see, e.g., Fig. 3a). Let the point A; have the same meaning as in part 2
and let D* € OK be the point of OK closest to the point D (which is sketched in
Fig. 4b). Let us cut the domain € into two parts Q3 and Q3 by segments A A; and
D*D: Q, = @3 U Qs, Q3 N Q3 = (), where the closed strip 63 contains the point B.
The domain 3 is sketched together with € in Fig. 4b.

Let us define a closed domain G by the relation

(14) G = ﬁp Uﬁg,

and let the function v € H!(G) satisfy

up in QP,
v =
0 in Q3.

Relation (10) again holds.

Let Go be such a domain that G € Gy and GoNH; = 0, where H; are the “holes”
in Q. Now we can apply Lemma 1 to the function v and repeat the construction
of Pup introduced in part 1.

3a. Let us note that we could use the segment A% A, instead of the segment D* D,
where Ay is the second end-point of the arc y4 and A5 € 0K. This approach has
a modification (whose three-dimensional generalization will be useful in part F of
this proof): Let w € C%! be a domain with the following properties: w N Q = () and
TNQ =4 We define

(15) G=wUvsUQp.

Hence G = @ U Qp and we can construct the extension Pup in the same way as in
part 3.

4. We should mention also the case 9Qp\ (002NN p) C Ty: it suffices to exchange
the notation of the subdomains Qg and Qp in Fig. 4a; the rest is clear.

5 Ifyan (0 \1) =0,y N (02 \ I) = 0, where I is the relative interior of
00 g NINp, then we proceed in the same way as in part C.

6. At the end of part D of the proof let us consider the case v4 N (0Qp \ I) = 0,
v N (0Qp \ I) = 0, where I = 9Qp N INg. For a greater simplicity, let yp = ()
and I} = y4 UX where A C 9Qp \ I (AN ~vy4 = 0); further, let 9Q be again a circle.
We obtain a modification of Fig. 3a with A; = A, where A; again denotes the left-
hand end-point of the arc v4. Let R; be the upper end-point of A and Rs the lower
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end-point of A. Let 71 be a (piecewise) smooth arc connecting the points Ry, A;
and 7 a (piecewise) smooth arc connecting the points Rz, As. Let 71, 72 have no
common points with 9Q (except for the end-points R;, A;). Let S be the strip with
0S =1 UmUAUva UIK. Let us set G=0pUS. Ttis always possible to choose
the arcs 71, 72 such that G € C%!. The domain G is a domain with two “holes”. Let
the function v € H(Q) satisfy

up in QP,
v =
0 in S.

Relation (10) again holds. Applying Lemma 2 we obtain the required result in this
case.

E) It remains to analyze the case from Fig. 3b, where we sketch the situation which
appears in applications very often: the domain Q1 is the rotor of an electromachine,
the domain Q% is the stator of an electromachine and the narrow domain between
them (the domain Qg) represents an air crevice. In this case

Qp = 0L U0

is not a domain. Also in this case we can define the space H!(Q): For v; € H'(Q}),
vg € HY(02) we set
v; on QL

FU:F(’Ul,Ug) :{

Then F is a bounded linear mapping from H!(QL) x H'(Q%) into H!(Qp) =
HY(QLUO%) and v = (v1,v2) € HY(Qp) satisfies

vy on Q%.

’U’ =1 ’U’ = V2.
oL ’ 02,

Let § be the width of the domain Qg. Let us use Lemma 1 with G = QL in such
a way that Go N Qg is a strip of the width §/3. Further, let us use Lemma 2 with
G = Q% in such a way that D N Qg is a strip of the width 6/3. Let us set

5u}3 in GoNQg,
(16) ug =14 0 in QE\{(GoﬁQE)U(DﬂQE)},
Fu% in DNQg.

By (16) and Lemmas 1, 2 we have

< Cillupli oy + Clluplly gz < max{CF, C3}l|uplli g,
which we wanted to prove.
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F) The above presented method of proving can be easily extended to three di-
mensions. Only the case not covered by assumption (7) deserves a special attention:
Let 01,...,0, with measso; >0 (i = 1,...,n) and 0; N oy = () be the parts of I
such that o; N (OQg NINP) #B (i =1,...,n). Let A; (: =1,...,n) be parts of a
three-dimensional layer (which is a three-dimensional generalization of the strip 3
appearing at the beginning of part D) such that A; N Ay, = () and

ZiﬂQ:UZ‘ (7,:1,,71)
We define
G=AUocUQp,
where . .
A:UAZ-, J:Um
i=1 =1

Hence G = A U Qp and the construction of the extension Pup is a straightforward
modification of part D3. |

4. Remark. The results presented in this paper play an important role con-
nected with the theory of electromagnetic fields in electromachines and generally in
the theory of parabolic-elliptic equations (see, e.g., [4]). Without using them one
cannot present correct proofs of some related results (as it happened, for example,
in [7] and [8]).
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