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Abstract. The paper concludes our investigations in looking for the locally best linear-
quadratic estimators of mean value parameters and of the covariance matrix elements in a
special structure of the linear model (2 variables case) where the dispersions of the observed
quantities depend on the mean value parameters. Unfortunately there exists no linear-
quadratic improvement of the linear estimator of mean value parameters in this model.
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1. Introduction

In the case of measuring a linear dependence (2 variables case) with a measuring

device whose dispersion characteristic is linear-quadratically dependent on the actual
measured value we obtain the model

(1.1) (Y,Xβ,Σ),

where Yn,1 is considered to be a normally distributed random vector. Its realization
yn,1 is the result of the measurement. The mean value is E (Y) = Xn,2β2,1, where

Xn,2 =




X1
X2
...
Xk



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with Xi =




1 ti

1 ti
...
...

1 ti


 of order ni × 2, ni � 1, i = 1, 2, . . ., k, k � 3, n =

k∑
i=1

ni,

t1 < t2 < . . . < tk, β ∈ �2 (two dimensional Euclidean space).
The covariance matrix of the vector Y is

Σ = σ2Σ(β) = σ2




(a+ b|e′1Xβ|)2 0 . . . 0

0 (a+ b|e′2Xβ|)2 . . . 0
...

. . .

0 0 . . . (a+ b|e′nXβ|)2


 ,

where a, b and σ2 are known positive constants (the characteristics of the measuring

device, for more details see e.g. [3] p. 456, 914), e′i is the transpose of the i-th unit
vector.

The paper is based on results obtained in [4], [5], [6], [7] and [8]. In [4], Lemma 3.1
a necessary and sufficient condition for the statistic p′Y to be the UBLUE (uniformly
best linear estimator, see e.g. [1]) of its mean value was shown. According to this
condition it is stated in Section 2 that in model (1.1) the UBLUE of the parametric

function (linear functional) f ′β does not exist (it exists only for f = 02,1). That
is why (according to further considerations in [4]) only the β0-LBLUE (locally best

linear unbiased estimator, see e.g. [1]) exists. Our effort is to find the β0-LBLQUE
(locally best linear-quadratic unbiased estimator, see e.g. [6], [7]) in model (1.1). In

Section 3 it is shown that our effort ended unsuccessfully in the sense that in model
(1.1) exists no locally best linear-quadratic unbiased estimator as an improvement

of the β0-LBLUE of f ′β. This is also the goal of this paper.
We want only to remark for completeness that the β0-LBLQUE of the covariance

matrix elements in model (1.1) (in the case of no or one independently repeated
observation) can be found in [8] together with its asymptotic behaviour (some results

are stated also in [5]).

2. The UBLUE of f ′β in model (1.1)

According to Lemma 3.1 and Lemma 3.2 in [4] the statistic p′Y is the UBLUE of
its mean value in model (1.1) if and only if

(2.1) ∀{β ∈ �2} (I−XX−)Σ(β)p = 0

for an arbitrary but fixed g-inverse X− (see e.g. [2]). In this case p ∈ µ(X) =
{Xu : u ∈ �2}.
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Let the matrix C1 (of order 2× n1) be
(− t2

t1−t2
0 . . . 0

1
t1−t2

0 . . . 0

)
,

while the matrix C2 (of order 2× n2) is
( t1

t1−t2
0 . . . 0

− 1
t1−t2

0 . . . 0

)
.

It can be easily shown that the matrixX− = (C1 C2 O) (of order 2×n) is a g-inverse
of the matrix X. So the matrix I−XX− (of order n× n) is

I−XX− =




D1,1 D1,2 . . . D1,k
D2,1 D2,2 . . . D2,k
...

. . .

Dk,1 Dk,2 . . . Dk,k


 ,

where the matrices Di,j i = 1, 2, . . ., k , j = 1, 2, . . ., k are of orders ni × nj , respec-

tively. Here

D1,1 =




0 0 0 . . . 0

−1 1 0 . . . 0
−1 0 1 . . . 0
...

. . .

−1 0 0 . . . 1




is of order n1 × n1,

D2,2 =




0 0 0 . . . 0
−1 1 0 . . . 0

−1 0 1 . . . 0
...

. . .

−1 0 0 . . . 1




is of order n2 × n2,

Di,1 =




t2−ti

t1−t2
0 . . . 0

t2−ti

t1−t2
0 . . . 0

...
t2−ti

t1−t2
0 . . . 0




is of order ni × n1, i = 3, 4, . . ., k,

Di,2 =




ti−t1
t1−t2

0 . . . 0
ti−t1
t1−t2

0 . . . 0
...

ti−t1
t1−t2

0 . . . 0



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is of order ni × n2, i = 3, 4, . . ., k,

Di,i = I

is the unit matrix of order ni × ni, i = 3, 4, . . ., k and the other Di,j are equal to O
of proper orders. As p in (2.1) belongs to µ(X), we can write it as p = Xw, where

w =
(

w1
w2

)
.

So finally we have

(2.2) (I−XX−)Σ(β)p = (I−XX−)Σ(β)Xw = g =




g1
g2
g3
...
gk




,

where g is of order n× 1, gi = 0 is of order ni × 1, i = 1, 2 and

gj = 1j ⊗ [(a+ b|β1 + t1β2|)2
t2 − tj
t1 − t2

(w1 + t1w2)

+ (a+ b|β1 + t2β2|)2
tj − t1
t1 − t2

(w1 + t2w2) + (a+ b|β1 + tjβ2|)2(w1 + tjw2)]

with 1j =




1
1
...

1


 of order nj × 1, j = 3, 4, . . ., k.

By ⊗ we denote the Kronecker product (see e.g. [2], p. 11).
According to (2.1) we are looking for a statistic p′Y to be the UBLUE of its mean

value, i.e. we are searching for such a vector w that g in (2.2) is equal to O for all
β ∈ �

2 . As k � 3, let us take the first element of the vector g3. (2.1) implies that
for all β1, β2 ∈ �,

(2.3) (a+ b|β1 + t1β2|)2
t2 − t3
t1 − t2

(w1 + t1w2)

+ (a+ b|β1 + t2β2|)2
t3 − t1
t1 − t2

(w1 + t2w2) + (a+ b|β1 + t3β2|)2(w1 + t3w2) = 0.

Let β
(1)
1 =

t3
t3−t1

, β(1)2 =
−1

t3−t1
. So (2.3) is of the form

(2.4)
[
(a+ b)2

t2 − t3
t1 − t2

+
(
a+ b

t3 − t2
t3 − t1

)2 t3 − t1
t1 − t2

+ a2
]
w1

+
[
(a+ b)2

t2 − t3
t1 − t2

t1 +
(
a+ b

t3 − t2
t3 − t1

)2 t3 − t1
t1 − t2

t2 + a2t3

]
w2 = 0.
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For another choice of β1, β2: β
(2)
1 =

t3
t3−t2

, β(2)2 =
−1

t3−t2
, (2.3) is of the form

(2.5)
[(

a+ b
t3 − t1
t3 − t2

)2 t3 − t2
t1 − t2

+ (a+ b)2
t3 − t1
t1 − t2

+ a2
]
w1

+
[(

a+ b
t3 − t1
t3 − t2

)2 t2 − t3
t1 − t2

t1 + (a+ b)2
t3 − t1
t1 − t2

+ a2t3

]
w2 = 0.

Because of

[
(a+ b)2

t2 − t3
t1 − t2

+
(
a+ b

t3 − t2
t3 − t1

)2 t3 − t1
t1 − t2

+ a2
]

×
[(

a+ b
t3 − t1
t3 − t2

)2 t2 − t3
t1 − t2

t1 + (a+ b)2
t3 − t1
t1 − t2

+ a2t3

]

−
[
(a+ b)2

t2 − t3
t1 − t2

t1 + (a+ b
t3 − t2
t3 − t1

)2
t3 − t1
t1 − t2

t2 + a2t3

]

×
[(

a+ b
t3 − t1
t3 − t2

)2 t3 − t2
t1 − t2

+ (a+ b)2
t3 − t1
t1 − t2

+ a2
]

= 2ab3(t1 − t2) �= 0

(which can be obtained after a straightforward calculation), equations (2.4) and (2.5)
imply w1 = w2 = O.

So p′Y (with p = Xw) is the UBLUE of its mean value if and only if p = O.
The only linear functional f ′β having the UBLUE in model (1.1) is equal to 0 for all
β ∈ �2 . There exists no UBLUE of a (nonzero) linear functional f ′β in model (1.1).
That is why we can only look for the β0-LBLUE of the functional f ′β. According to
Lemma 2.4 and Remark 2.5 in [4] the β0-LBLUE of f ′β (f ∈ µ(X′)) is

(2.6) f ′(X′Σ−1(β0)X)−X′Σ−1(β0)Y

where (X′Σ−1(β0)X)− is an arbitrary but fixed g-inverse of the matrixX′Σ−1(β0)X.
We only note that the β0-LBLUE of f ′β exists if and only if f ∈ µ(X′) and is unique.

3. The β0-LBLQUE of f ′β in model (1.1)

Based on Lemma 1.8 in [7] we will show that in model (1.1) the β0-LBLQUE as

an improvement of the β0-LBLUE of any f ′β does not exist. Also we have

{f : ∃ β◦ − LBLQUE for f ′β} = {f : ∃ β◦ − LBLUE for f ′β} = µ(X′) .
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Let us denote by D the class of matrices Dn,n satisfying the following three con-

ditions:

∀{β ∈ �2} TrD




|e′1Xβ| 0 . . . 0
0 |e′2Xβ| . . . 0
...

. . .

0 . . . |e′nXβ|


 = 0,(3.1)

TrD = 0,(3.2)

X′(D+ σ2b2
n∑

i=1

eie′iDeie
′
i)X = O.(3.3)

(TrD is the trace of D i.e.
n∑

i=1
e′iDei.)

Let D ∈ D have the (i, j)-th element di,j , i, j = 1, 2, . . ., n. From (3.1) it follows

that for all β1, β2 ∈ � we have

(3.4)
n1∑

i=1

di,i|β1+t1β2|+
n1+n2∑

i=n1+1

di,i|β1+t2β2|+. . .+
n1+...+nk∑

i=n1+...+nk−1
di,i|β1+tkβ2| = 0.

If we denote

n1∑

i=1

di,i = d1,

n1+n2∑

i=n1+1

di,i = d2, . . .,

n1+...+nk∑

i=n1+...+nk−1
di,i = dk

then following the same way as in [8], Lemma 9.1, we obtain that condition (3.4) is

equivalent to

(3.5) d1 = d2 = . . . = dk = 0.

So (3.2) follows from (3.1). Taking it into account, for all D ∈ D from (3.3) we
obtain

X′DX = −σ2b2X′
n∑

i=1

eie′iDeie
′
iX = −σ2b2




k∑
i=1

di

k∑
i=1

tidi

k∑
i=1

tidi

k∑
i=1

t2i di


 = O.

Now we apply Lemma 1.8 in [7] and obtain the desired result

{f : ∃ β◦ − LBLQUE for f ′β} = µ(X′)

i.e. the class of linear functionals f ′β having the β0-LBLUE is the same as the class

of linear functionals having the β0-LBLUQE. Further the β0-LBLUQE is the same
as the β0-LBLUE of f ′β for all f ∈ µ(X′).
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Final conclusions for the model (1.1).
(i) The uniformly best linear unbiased estimator (UBLUE) of any nonzero linear

functional f ′β does not exist.
(ii) The β0-locally best linear unbiased estimator (β0-LBLUE) of f ′β exists if and

only if f ∈ µ(X′), it is unique and of the form (2.6).
(iii) The β0-locally best linear-quadratic unbiased estimator (β0-LBLQUE) of f ′β

exists for all f ∈ µ(X′) and is the same as the β0-LBLUE of f ′β (i.e there exists no
quadratic improvement of the β0-LBLUE of any f ′β, f ∈ µ(X′)). �
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