
Applications of Mathematics

Jan Eisner; Milan Kučera
Spatial patterns for reaction-diffusion systems with conditions described by
inclusions

Applications of Mathematics, Vol. 42 (1997), No. 6, 421–449

Persistent URL: http://dml.cz/dmlcz/134368

Terms of use:
© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134368
http://dml.cz


42 (1997) APPLICATIONS OF MATHEMATICS No. 6, 421–449

SPATIAL PATTERNS FOR REACTION-DIFFUSION SYSTEMS

WITH CONDITIONS DESCRIBED BY INCLUSIONS
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Abstract. We consider a reaction-diffusion system of the activator-inhibitor type with
boundary conditions given by inclusions. We show that there exists a bifurcation point
at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from
the branch of trivial solutions. This bifurcation point lies in the domain of stability of
the trivial solution to the same system with Dirichlet and Neumann boundary conditions,
where a bifurcation of this classical problem is excluded.
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1. Introduction

We will study a reaction-diffusion system

(1.1) ut = d1∆u+ f(u, v), vt = d2∆v + g(u, v) on (0,∞)× Ω

with boundary conditions of the type

(1.2) u = u, v = v on ΓD,
∂u(x)
∂n

∈ −m1(x, u(x))
d1

,
∂v(x)
∂n

∈ −m2(x, v(x))
d2

on ΓN .

It will be always supposed that f , g are real differentiable functions on �2 , u, v are

constants such that f(u, v) = g(u, v) = 0, Ω is a bounded domain in �N with a
lipschitzian boundary ∂Ω, ΓD, ΓN are open (in ∂Ω) disjoint subsets of ∂Ω such that

(1.3) measΓD > 0, meas(∂Ω \ ΓD ∪ ΓN ) = 0,

The authors are supported by the grant No. 201/95/0630 of the Grant Agency of the
Czech Republic
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m1,m2 are multivalued functions of a certain type. (For instance, m1 can be de-

scribed by a real continuous function on (−∞, u) ∪ (u,+∞), m1(s) = 0 for s > u,
m1(s) � 0 for s < u, lim

s→u−
m1(s) = m1 < 0, m1(u) = [m1, 0], similarly for m2.)

Simultaneously we will study (1.1) with classical boundary conditions

(1.4) u = u, v = v on ΓD,
∂u

∂n
=
∂v

∂n
= 0 on ΓN .

We will denote b11 =
∂f
∂u (u, v), b12 =

∂f
∂v (u, v), b21 =

∂g
∂u (u, v), b22 =

∂g
∂v (u, v) and

suppose

(1.5) b11 > 0, b12 < 0, b21 > 0, b22 < 0, b11 + b22 < 0, det bij > 0.

This assumption corresponds to systems of activator-inhibitor (prey-predator) type
for which diffusion-driven instability occurs: u, v is a stable solution of the ordinary

differential equations ut = f(u, v), vt = g(u, v) but it is stable as a solution of the
problem (1.1), (1.4) only for some parameters d1, d2 (the domain of stability) and un-

stable for the other d1, d2 ∈ �2+ (domain of instability). See Fig. 1, Proposition 2.1.
Moreover, stationary spatially nonhomogeneous solutions of (1.1), (1.4) (spatial pat-

terns) bifurcate at the border between the domain of stability and instability. This
effect was discovered in the simplest form by A. M. Turing in [23] and studied by

many authors from the point of view of applications in biology (see e.g. [7], [16]) as
well as from the purely mathematical point of view (see e.g. [15], [17]).

It was studied in the papers [3], [4], [20], [10], [12], [13], [14], [5] how the situation

changes if the classical boundary conditions (1.4) are replaced (or supplemented)
by some unilateral conditions, e.g. by boundary conditions (1.2) (some additional

conditions in the interior of Ω can be also considered). Unilateral conditions were
prescribed only for one of the functions u or v in all papers mentioned, that means
particularly m1 ≡ 0 or m2 ≡ 0 in the case of boundary conditions (1.2). A certain
destabilizing effect of such conditions prescribed only for the inhibitor v and a sta-
bilizing effect of such conditions for the activator u was proved. See [10], [11] for a

brief survey. In the paper [11], the first result concerning the destabilizing effect (in
terms of bifurcations) of unilateral conditions prescribed for both u and v is given.

However, the unilateral conditions considered in [11] are described by variational
inequalities (which can be understood as a special case of inclusions) and a certain

simplicity assumption concerning critical points of the classical problem is consid-
ered. The aim of the present paper is to give a generalization to the inclusions and

to remove the simplicity assumption.
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2. Abstract formulation, examples

We will always suppose without loss of generality that u = v = 0.

�������� 2.1. R+—the set of all positive reals, �2+ = �+ × �+

D(d) =

(
d1 0

0 d2

)
, D−1(d) =

(
1/d1 0

0 1/d2

)
,

B =

(
b11 b12
b21 b22

)
, B∗ =

(
b11 b21
b12 b22

)

�, A, Nj—a real Hilbert space and operators satisfying (2.1) (see also Weak Formu-
lation 2.1)

�̃ = � × �, AU = [Au,Av], U∗ = [u∗, v∗] = [ b21b12
u, v] for U = [u, v] ∈ �̃

〈. , . 〉, ‖. ‖—the inner product and the norm in � or in �̃, i.e. 〈U,W 〉 = 〈u,w〉+〈v, z〉,
‖U‖2 = ‖u‖2 + ‖v‖2 for U = [u, v], W = [w, z] ∈ �̃

Lδ—linear completely continuous operator defined in Notation 4.2

M , M0—multivalued mappings of �̃ into 2�̃ satisfying (2.14)–(2.18)

P τ—mappings of �̃ into �̃ satisfying (2.19)–(2.23)

K = {U ∈ �̃, 0 ∈M0(U)}—closed convex cone (see the assumption (2.15))
K− = {U ∈ K ; 〈P τV, U〉 < 0 for all V /∈ K, τ > 0 and for any Z ∈ �̃, Z �= 0 there
exists F ∈ �̃ such that 〈Z,F 〉 > 0, U ± F ∈ K}

κj , ej (j = 1, 2, . . .)—the characteristic values and characteristic vectors of the opera-
tor A, i.e. eigenvalues and eigenvectors of −∆u = κu with the boundary conditions
(1.4) in the special case of the operator from Weak Formulation 2.1

Cj = {d = [d1, d2] ∈ �2+ ; d2 =
b12b21/κ2j
d1−b11/κj

+ b22
κj
}, j = 1, 2, 3, . . . (see Fig. 1)

C—the envelope of the hyperbolas Cj , j = 1, 2, 3, . . . (see Fig. 1)

T—joint tangent to all hyperbolas Cj , j = 1, 2, 3, . . . (see Fig. 1)

DS—domain of stability—the set of all d ∈ �2+ lying to the right from C (see Fig. 1)

DU—domain of instability—the set of all d ∈ �2+ lying to the left from C (see Fig. 1)

→, ⇀ —strong convergence, weak convergence
EB(d) = {U ∈ �̃; (2.3) holds}, EI(d) = {U ∈ �̃; (2.12) holds}
critical point of (3.2) or (3.3)—a parameter s ∈ � for which EB(σ(s)) �= {0} or
EI(σ(s)) �= {0}, respectively

bifurcation point of (3.2) or (3.3)—a parameter s0 ∈ � such that in any neighbour-
hood of [s0, 0] in � × �̃ there is [s, U ] = [s, u, v], ‖U‖ �= 0 satisfying (3.2) or (3.3),
respectively.

���� 	�
��
����� 2.1. Set � = {ϕ ∈ W 1
2 (Ω); ϕ = 0 on ΓD}, �̃ = � × �.

Then � is a Hilbert space with the inner product 〈u, ϕ〉 =
∫
Ω∇u · ∇ϕdx and the
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�
Fig. 1

corresponding norm ‖·‖ is equivalent to the usual Sobolev norm under the assumption
(1.3). Set n1(u, v) = b11u+ b12v − f(u, v), n2(u, v) = b21u+ b22v − g(u, v),

〈Au,ϕ〉 =
∫

Ω
uϕdx, 〈Nj(u, v), ϕ〉 =

∫

Ω
nj(u, v)ϕdx for all u, v, ϕ ∈ �,

N(U) = [N1(U), N2(U)] for all U = [u, v] ∈ �̃.

Then

(2.1)
A : � → �, Nj : �̃ → � are completely continuous operators,

A is linear, symmetric, positive, lim
‖U‖→0

‖N(U)‖
‖U‖ = 0

under standard growth conditions on nj (see e.g. [6], for the last condition see [10],

Appendix). A weak solution of the stationary problem corresponding to (1.1), (1.4)
is a solution of the system of operator equations

d1u− b11Au − b12Av +N1(u, v) = 0, d2v − b21Au− b22Av +N2(u, v) = 0

which can be written in the vector form as

(2.2) D(d)U −BAU +N(U) = 0.

����
� 2.1. We shall use the linearized equation

(2.3) D(d)U −BAU = 0
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and the corresponding adjoint equation

(2.4) D(d)U −B∗AU = 0.

Clearly U = [u, v] satisfies (2.3) if and only if U∗ = [u∗, v∗], u∗ = b21
b12
u, v∗ = v

satisfies (2.4).

Recall that if Reλ � −ε < 0 for all eigenvalues of the problem

(2.5) d1∆u+ b11u+ b12v = λu, d2∆v + b21u+ b22v = λv

with the boundary conditions (1.4) (with u = v = 0) then the trivial solution of (1.1),
(1.4) is stable and if there exists an eigenvalue of (2.5), (1.4) satisfying Reλ > 0 then

the trivial solution of (1.1), (1.4) is unstable (see e.g. [8], [22]). If A is from Weak
Formulation 2.1 then the weak formulation of (2.5), (1.4) is

(2.6) D(d)U −BAU + λAU = 0.

The eigenvalues and the eigenvectors of (2.5), (1.4) coincide with those of (2.6).

Hence, our definition of the domains of stability and instability (see Notation 2.1) is
justified by the following statement.

Proposition 2.1. Let the assumptions (1.5), (2.1) be fulfilled. Then
∞⋃

j=1
Cj is the

set of all d ∈ �2+ such that EB(d) �= {0}. If p is such that the characteristic value κp

of A (i.e. the eigenvalue κp of −∆, (1.4) in the situation of Weak Formulation 2.1)
has the multiplicity k, κp = . . . = κp+k−1 then Cp = . . . = Cp+k−1, Cp �= Cj for all

j /∈ {p, . . . , p+ k − 1}. If d ∈ Cp, d /∈ Cj for all j /∈ {p, . . . , p+ k − 1} then

EB(d) = Lin{Ui(d)}p+k−1
i=p where Ui(d) = [αp(d)ei, ei]

with αp(d) =
d2κp−b22

b21
> 0. If d ∈ Cp ∩Cq for some q satisfying Cp �= Cq, κp �= κq =

. . . = κq+l−1, where κq has the multiplicity l then

EB(d) = Lin{Ui(d)}i=p,...,p+k−1,q,...,q+l−1,

Ui(d) = [αp(d)ei, ei] for i = p, . . . , p+ k − 1,
Ui(d) = [αq(d)ei, ei] for i = q, . . . , q + l − 1.

If d ∈ DS then all eigenvalues of (2.6) (i.e. particularly of (2.5), (1.4)) satisfy Reλ <
−ε < 0. If d ∈ DU then there exists at least one positive (real) eigenvalue of (2.6)

(i.e. also of (2.5), (1.4)).

�
��� can be done by the same considerations as in Observations 4.1, 4.2 where

we will study a slightly different and more complicated eigenvalue problem (see also
[17] for the special case N = 1 and ΓD = ∅ or [4] for the general case). �

425



�����
� 2.1. Let �, A, N be from Weak Formulation 2.1. Consider multival-

ued mappings mj : ΓN × � → 2�, j = 1, 2 defined by

mj(x, ξ) = 0 for ξ > 0,

mj(x, ξ) � 0 for ξ < 0, lim
ξ→0−

mj(x, ξ) = m0j(x),

mj(x, 0) = [m
0
j (x), 0] with some m0j(x) ∈ [−∞, 0]





for all x ∈ ΓN .

mj

pτ
j

m0j
ξ�

Fig. 2

Let us suppose for the simplicity that

if m0j(x) = 0 for some x ∈ ΓN then

either mj(x, ξ) = 0 for all ξ ∈ � or mj has the left derivative
∂−mj(x, 0)

∂ξ
= +∞.

(Of course, this assumption is not necessary. We could consider more general mj

under suitable growth conditions.) Set

mj(x, ξ) = mj(x, ξ) = mj(x, ξ) for ξ �= 0,
mj(x, 0) = m

0
j(x), mj(x, 0) = 0

}
for all x ∈ ΓN .

Let us denote

Γj =
{
x ∈ ΓN ; either mj(x, 0) < 0 or mj(x, 0) = 0 and

∂−mj(x, 0)
∂ξ

= +∞
}

and suppose

(2.7) measΓ1 > 0 and measΓ2 > 0.

For x ∈ ΓN \ Γj we have mj(x, ξ) = 0 for all ξ ∈ �. The multivalued condition
(1.2) with such mj describes for instance a semipermeable membrane on Γj allowing
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the flux only in the direction from the outside source into the domain Ω. If the

concentration of u or v at the point x ∈ Γj is great enough (u(x) > u or v(x) > v)
then the membrane is closed, i.e. there is no flux through the boundary at this point.
If the concentration is low (u(x) < u or v(x) < v) then there is a certain amount of

flux prescribed by m1(x, u(x)) or m2(x, v(x)). The interval [m0j(x), 0] corresponds to
the opening/closing of the membrane at the point x when the concentration reaches

the prescribed value u or v, respectively. There is no flux through the part of the
boundary ΓN \ Γj .

Further, define a multivalued mapping M : �̃ → 2�̃, M(U) = [M1(u),M2(v)] for
U = [u, v] by

(2.8)

Mj(ψ) =

{
z ∈ � ;

∫

ΓN

mj(x, ψ(x))ϕ(x) dΓ � 〈z, ϕ〉

�
∫

ΓN

mj(x, ψ(x))ϕ(x) dΓ for all ϕ ∈ �, ϕ � 0 on ΓN

}
.

Then a weak solution of the stationary problem corresponding to (1.1), (1.2) can be
introduced as a solution of the inclusion written in the vector form

(2.9) D(d)U −BAU +N(U) ∈ −M(U).

Let us define multivalued mappings m0j : ΓN × � → 2�, j = 1, 2 and corresponding
m0j ,m0j : ΓN × � → � by

(2.10)

m0j(x, ξ) = m0j(x, ξ) = m0j(x, ξ) = 0 for ξ > 0, x ∈ ΓN ,

m0j(x, 0) = [−∞, 0], m0j(x, 0) = −∞, m0j(x, 0) = 0 for x ∈ Γj ,

m0j(x, ξ) = m0j(x, ξ) = m0j(x, ξ) = −∞ for ξ < 0, x ∈ Γj ,

m0j(x, ξ) = m0j(x, ξ) = m0j(x, ξ) = 0 for all ξ ∈ �, x ∈ ΓN \ Γj .

Further, consider positively homogeneous multivalued mapping M0 : �̃ → 2�̃,

M0(U) = [M01(u),M02(v)] corresponding to M and defined by

(2.11)

M0j(ψ) =

{
z ∈ � ;

∫

ΓN

m0j(x, ψ(x))ϕ(x) dΓ � 〈z, ϕ〉

�
∫

ΓN

m0j(x, ψ(x))ϕ(x) dΓ for all ϕ ∈ �, ϕ � 0 on ΓN

}
.

(Note that M0j(ψ) = ∅ if ψ < 0 on a subset of Γj of a positive measure.) The
“homogenized” inclusion

(2.12) D(d)U −BAU ∈ −M0(U)
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is a weak formulation of the problem (2.5) with λ = 0 and with the boundary

conditions

(2.13) u = v = 0 on ΓD,
∂u

∂n
(x) ∈ −m01(x, u(x)),

∂v

∂n
(x) ∈ −m02(x, v(x)) on ΓN

which are equivalent to

u = v = 0 on ΓD,

∂u

∂n
= 0 on ΓN \ Γ1,

∂v

∂n
= 0 on ΓN \ Γ2,

u � 0, ∂u
∂n

� 0, u · ∂u
∂n
= 0 on Γ1, v � 0, ∂v

∂n
� 0, v · ∂v

∂n
= 0 on Γ2.

Of course, the problem (2.12) is positively homogeneous but nonlinear again. One

of the basic difficulties in the study of our bifurcation problem consists in the fact
that it cannot be approximated by a linear problem.

It is not hard to show that the following conditions are fulfilled for such M and

M0 (cf. [14] and [5]):

0 ∈M(0);(2.14) {
K = {U ∈ �̃, 0 ∈M0(U)} is a closed convex cone in �̃
with the vertex at the origin, {0} �= K �= �̃;

(2.15)

M0(tV ) = tM0(V ) for all t > 0, V ∈ �̃;(2.16) {
if Un → 0, Wn = Un

‖Un‖ ⇀W, Zn → Z, dn → d ∈ �2+ ,
D(dn)Wn + Zn ∈ −M(Un)

‖Un‖ then Wn →W, D(d)W + Z ∈ −M0(W );
(2.17)

if U ∈ �̃ then 〈Z, V 〉 � 0 for all V ∈ K, Z ∈ −M0(U).(2.18)

We have K = K1 ×K2, Kj = {ϕ ∈ � ; ϕ � 0 on Γj} in our situation.
Moreover, there exists a system of real functions pτ

j : ΓN×� → � with a parameter

τ ∈ [0,+∞) (see Fig. 2) such that the operators P τU = [P τ
1 u, P

τ
2 v] with

〈P τ
j u, ϕ〉 =

∫

ΓN

pτ
j (x, u(x))ϕ(x) dΓ for all u, ϕ ∈ �

satisfy the following conditions (2.19)–(2.23) (see [5] for details):

(2.19)

{
〈P τ (U), U〉 � 0 for all U ∈ �̃, P τ (U) = 0 for all U ∈ K, τ ∈ [0,+∞),
〈P τ (U), V 〉 � 0 for all U ∈ �̃, V ∈ K, τ ∈ [0,+∞);
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(2.20)





if Un ⇀ U, τn � 0, dn → d ∈ �2+
then lim inf〈D−1(dn)P τn(Un), Un − U〉 � 0;

if moreover U = 0, P τn (Un)
‖Un‖ are bounded and Wn = Un

‖Un‖ ⇀W

then lim inf
〈D−1(dn)P

τn (Un)
‖Un‖ ,Wn −W

〉
� 0;

(2.21)





if Un ⇀ U, τn → τ ∈ [0,+∞) then P τn(Un)→ P τ (U);

if Un → U, τn → +∞, P τn(Un)→ Z then Z ∈M(U);
if, moreover, U = 0, Wn = Un

‖Un‖ ⇀W, τn → +∞

and P τn (Un)
‖Un‖ → Z then Z ∈M0(W );

(2.22) if Un → 0, τn → 0 then
P τn(Un)
‖Un‖

→ 0.

The interior of K is empty and therefore it is useful to introduce the “pseudointerior”

K− (see Notation 2.1). Particularly, ϕ ∈ K−
j for any ϕ ∈ � satisfying ϕ � ε on Γj

with some ε > 0. Further,

(2.23)

{
if Un → 0, Wn = Un

‖Un‖ ⇀W /∈ K, τn → τ ∈ [0,+∞), V ∈ K−

then lim sup〈P τn (Un)
τn‖Un‖ , V 〉 < 0.

Let us consider a fixed d0 ∈ Cp such that there is an eigenfunction ep of −∆, (1.4)
corresponding to κp satisfying

(2.24)

ep � −ε on Γ1, ep � ε on Γ2 with some ε > 0,

any eigenfunction of −∆, (1.4) corresponding to κp

changes its sign on Γ1 ∪ Γ2.

(Of course, this is possible only if Γ1 ∩ Γ2 = ∅.) Particularly, it follows from Propo-
sition 2.1 that the following condition is fulfilled with U0 = [α(d0)ep, ep]:

(2.25) EB(d
0) ∩K = {0} and there exists U0 ∈ EB(d

0), U∗0 ∈ K−.

This condition will be essential for our abstract considerations.

����
� 2.2. It is easy to see that −U �∈ K for any U ∈ K− under the assump-
tion K �= �̃. If M(U) = [M1(u),M2(v)], M0(U) = [M01(u),M02(v)] then M,M0

satisfy the assumptions (2.14)–(2.18) if and only if Mj, M0j satisfy the same condi-
tions in �. If there are operators P τ

1 , P
τ
2 : � → � satisfying conditions analogous to

(2.19)–(2.23) in � then P τ (U) = [P τ
1 (u), P

τ
2 (v)] satisfy (2.19)–(2.23). Of course, if

K = K1 ×K2, K1,K2 ⊂ � then K− = K−
1 ×K−

2 .
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����
� 2.3. If the operators A and N are from Weak Formulation 2.1, then

it follows from Proposition 2.1 that dimEB(d0) = 1 for d0 ∈ C1 \
∞⋃

k=2
Ck because

the first eigenvalue of −∆ with (1.4) is simple. Further, if dimEB(d0) = 1 and if
K = K1 × K2, K1 �= �,K2 �= � then U0 �∈ K,−U0 �∈ K is fulfilled automatically

under the assumption U∗0 ∈ K−. Indeed, U∗0 ∈ K− means u∗0 =
b21
b12
u0 ∈ K−

1 , v
∗
0 =

v0 ∈ K−
2 . But

b21
b12

< 0 by (1.5) and therefore u0 �∈ K1, i.e. U0 �∈ K. Simultaneously
−v0 �∈ K2, i.e. −U0 �∈ K.

�����
� 2.2. Let �, A, N be from Weak Formulation 2.1. Consider multival-
ued mappings mj : ΓN × � → 2�, j = 1, 2 defined by

m1(x, ξ) = 0 for ξ < 0,

m1(x, ξ) � 0 for ξ > 0, lim
ξ→0+

m1(x, ξ) = m
0
1(x),

m1(x, 0) = [0,m01(x)] with some m01(x) ∈ [0,+∞]





for all x ∈ ΓN ,

m2(x, ξ) = 0 for ξ > 0,

m2(x, ξ) � 0 for ξ < 0, lim
ξ→0−

m2(x, ξ) = m02(x),

m2(x, 0) = [m02(x), 0] with some m02(x) ∈ [−∞, 0]





for all x ∈ ΓN .

m1

pτ
1

ξ

m01� m2

pτ
2

m02
ξ�

Fig. 3

Set

mj(x, ξ) = mj(x, ξ) = mj(x, ξ) for ξ �= 0
m1(x, 0) = 0, m1(x, 0) = m01(x)

m2(x, 0) = m
0
2(x), m2(x, 0) = 0





for all x ∈ ΓN .
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Let us suppose for the simplicity that

if m01(x) = 0 for some x ∈ ΓN then

either m1(x, ξ) = 0 for all ξ ∈ � or m1 has the right derivative
∂+m1(x, 0)

∂ξ
= +∞,

if m02(x) = 0 for some x ∈ ΓN then

either m2(x, ξ) = 0 for all ξ ∈ � or m2 has the left derivative
∂−m2(x, 0)

∂ξ
= +∞.

Let us denote

Γ1 = {x ∈ ΓN ; either m1(x, 0) > 0 or m1(x, 0) = 0 and
∂+m1(x, 0)

∂ξ
= +∞},

Γ2 = {x ∈ ΓN ; either m2(x, 0) < 0 or m2(x, 0) = 0 and
∂−m2(x, 0)

∂ξ
= +∞}

and suppose (2.7) again. Let us define multivalued mappings m0j : ΓN × � → 2�,
j = 1, 2 and corresponding m0j ,m0j : ΓN × � → � by

m01(x, ξ) = m01(x, ξ) = m01(x, ξ) = 0 for ξ < 0, x ∈ ΓN ,

m01(x, 0) = [0,+∞], m01(x, 0) = 0, m01(x, 0) = +∞ for x ∈ Γ1,
m01(x, ξ) = m01(x, ξ) = m01(x, ξ) = +∞ for ξ > 0, x ∈ Γ1,
m01(x, ξ) = m01(x, ξ) = m01(x, ξ) = 0 for all ξ ∈ �, x ∈ ΓN \ Γ1,

m02(x, ξ) = m02(x, ξ) = m02(x, ξ) = 0 for ξ > 0, x ∈ ΓN ,

m02(x, 0) = [−∞, 0], m02(x, 0) = −∞, m02(x, 0) = 0 for x ∈ Γ2,
m02(x, ξ) = m02(x, ξ) = m02(x, ξ) = −∞ for ξ < 0, x ∈ Γ2,
m02(x, ξ) = m02(x, ξ) = m02(x, ξ) = 0 for all ξ ∈ �, x ∈ ΓN \ Γ2.

Further, define multivalued mappingsM,M0 : �̃ → 2�̃,M(U) = [M1(u),M2(v)] and
M0(U) = [M01(u),M02(v)] by (2.8) and (2.11), respectively, as in Example 2.1. The
corresponding convex cones are K1 = {ϕ ∈ � ; ϕ � 0 on Γ1}, K2 = {ϕ ∈ � ; ϕ �
0 on Γ2}, K = K1 ×K2.
Such M and M0 satisfy the conditions (2.14)–(2.18) and there exist operators P τ

such that the conditions (2.19)–(2.23) are fulfilled. If d0 ∈ Cp and there exists an
eigenfunction ep of −∆ with (1.4) corresponding to κp such that

(2.26)

ep � ε > 0 on Γ1 ∪ Γ2,
there is no eigenfunction e of −∆, (1.4) corresponding to κp

satisfying e � 0 on Γ1, e � 0 on Γ2
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then it follows from Proposition 2.1 that the assumption (2.25) is fulfilled. This is

automatically true in the case d0 ∈ C1 \
∞⋃

k=2
Ck, because the first eigenfunction of

the Laplacian is positive.

�����
� 2.3. Analogously as in Example 2.1 we can consider multivalued
mappings mj : Ω× � → 2�, j = 1, 2 defined by

mj(x, ξ) = 0 for ξ > 0,

mj(x, ξ) � 0 for ξ < 0, lim
ξ→0−

mj(x, ξ) = m0j(x),

mj(x, 0) = [m
0
j(x), 0] with some m0j(x) ∈ [−∞, 0]





for all x ∈ Ω.

Let us suppose for the simplicity that

if m0j(x) = 0 for some x ∈ Ω then

either mj(x, ξ) = 0 for all ξ ∈ � or mj has the left derivative
∂−mj(x, 0)

∂ξ
= +∞.

Set
mj(x, ξ) = mj(x, ξ) = mj(x, ξ) for ξ �= 0
mj(x, 0) = m

0
j(x), mj(x, 0) = 0

}
for all x ∈ Ω.

Further, define a multivalued mapping M : �̃ → 2�̃, M(U) = [M1(u),M2(v)] by

(2.27)
Mj(ψ) = {z ∈ � ;

∫

Ω
mj(x, ψ(x))ϕ(x) dx � 〈z, ϕ〉 �

∫

Ω
mj(x, ψ(x))ϕ(x) dx

for all ϕ ∈ �, ϕ � 0 on Ω}.

If Gj = {x ∈ Ω; either mj(x, 0) < 0 or mj(x, 0) = 0 and
∂−mj(x,0)

∂ξ = +∞}, j = 1, 2
are subsets of Ω such that Gj ⊂ Ω,

(2.28) measG1 > 0 and measG2 > 0

then a solution of (2.9) is a weak solution of the problem

(2.29) d1∆u+ f(u, v) ∈ m1(x, u) d2∆v + g(u, v) ∈ m2(x, v) on Ω

with the boundary conditions (1.4). Particularly

d1∆u+ f(u, v) = 0 on Ω \G1, d2∆v + g(u, v) = 0 on Ω \G2.

432



Such a model describes a similar situation as in Example 2.1 with the source in the

interior of the domain Ω.

Analogously as in Example 2.1, we have K = K1 ×K2 with Kj = {ϕ ∈ � ; ϕ �
0 on Gj}. Further, if d0 ∈ Cp and there exists an eigenfunction ep of −∆ with (1.4)
corresponding to κp such that

(2.30)

ep � −ε on G1 and ep � ε on G2 with some ε > 0,

any eigenfunction of −∆, (1.4) corresponding to κp

changes its sign on G1 ∪G2

then the assumption (2.25) is fulfilled by Proposition 2.1. The penalty operator
corresponding to M is P τU = [P τ

1 u, P
τ
2 v] with 〈P τ

j u, ϕ〉 =
∫
Ω p

τ
j (x, u(x))ϕ(x) dx for

all u, ϕ ∈ � where pτ
j are suitable (real) functions.

����
� 2.4. Let Ψ: �̃ → (−∞,+∞] be a positive convex lower semicontinuous
functional such that Ψ �≡ +∞. Let us define the multivalued mappingM = ∂Ψ—the
subdifferential of Ψ. Then (2.9) is equivalent to

(2.31) 〈D(d)U −BAU +N(U), Z − U〉+Ψ(Z)−Ψ(U) � 0 for any Z ∈ �̃

(see [2]).

3. Main results

In the sequel, we will consider a general real Hilbert space �, operators A, N

satisfying (2.1), a multivalued mapping M for which there exists a corresponding
multivalued positively homogeneous operator M0 such that the conditions (2.14)–

(2.18) are fulfilled and such that there exist operators P τ satisfying (2.19)–(2.23).

Further, we will consider a differentiable curve σ : (−∞,+∞)→ �
2
+ , σ = [σ1, σ2]

such that

(3.1)
σ(s) ∈ DS for s > s0, σ(s) ∈ DU for s < s0,

lim
s→+∞

σ1(s) = +∞, lim inf
s→+∞

σ2(s) > 0.

We will study the problems (2.2) and (2.9) only on the curve σ, i.e. the problems

(3.2) D(σ(s))U −BAU +N(U) = 0
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and

(3.3) D(σ(s))U −BAU +N(U) ∈ −M(U)

with a single bifurcation parameter s.

Proposition 3.1. If (1.5), (2.1) and (3.1) hold then there is no bifurcation point
of (3.2) greater than s0.

�
��� follows directly from Proposition 2.1 and the well-known fact that any
bifurcation point s of (3.2) is simultaneously a critical point, i.e. EB(σ(s)) �= {0}. �

Notice that if, moreover, σ intersects C transversally at σ(s0) then s0 really is a
bifurcation point of (1.1), (1.4) under reasonable assumptions (see e.g. [15], [17]).

Theorem 3.1. Let (1.3), (1.5), (2.1) hold, let M : �̃ → 2�̃ be a multival-
ued mapping for which there exists a corresponding homogenization M0 : �̃ → 2�̃
such that (2.14)–(2.18) hold. Suppose that there exist operators P τ : �̃ → �̃

(τ ∈ [0,+∞)) satisfying (2.19)–(2.23). Consider a differentiable curve σ satisfy-
ing (3.1) and intersecting C at d0 = σ(s0). Suppose that d0 ∈ Cp, (2.25) holds with

some U0 = Up = [α(d)e0, e0] where e0 is an eigenvector of A corresponding to κp

and that σ intersects Cp transversally at d0. * Then there exists a bifurcation point

sI > s0 of (3.3).

Corollary 3.1. Let (1.3), (1.5) hold, let σ satisfy (3.1) and intersect C at d0 =
σ(s0). Suppose that d0 ∈ Cp and σ intersects Cp transversally. Let m1, m2 be from

Example 2.1 or 2.2 or 2.3 and suppose that there exists an eigenfunction ep of −∆
with (1.4) corresponding to κp such that (2.24) or (2.26) or (2.30), respectively, is
fulfilled. Then stationary spatially nonconstant weak solutions (spatial patterns) of

(1.1) with (1.2) or (2.29) with (1.4), respectively, bifurcate at some sI > s0.

�
��� follows from Theorem 3.1, Examples 2.1 or 2.2 or 2.3, respectively, and
the fact that no nontrivial constant functions can satisfy (1.2) (with u = v = 0). �

����
� 3.1. Theorem 3.1 (particularly Corollary 3.1) asserts that a bifurcation
of solutions to (3.3) (particularly a bifurcation of stationary spatially nonconstant

solutions to (1.1) with (1.2)) occurs in the domain where a bifurcation for the corre-
sponding equation (3.2) (particularly for (1.1), (1.4)) is excluded by Proposition 3.1.

*The case when d0 is an intersection point of two different hyperbolas Cp �= Cq is not
excluded but it is essential that σ intersects transversally the hyperbola with the index
p corresponding to U0 = Up from the assumption (2.25) of the form described—see also
Proposition 2.1.
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This can be understood as a destabilizing effect of unilateral conditions—cf. e.g. [12],

[13]. The first result of this type was proved in [3] for a particular case of conditions
given by variational inequalities with cones K = �×K2 (i.e. for unilateral conditions
only for the inhibitor v) with intK2 �= ∅ and for the special curve σ2(s) = 1. In this
case, the condition (2.25) has the form U0 ∈ intK. A destabilizing effect of such
unilateral conditions in terms of instability of the trivial solution of the correspond-

ing linearized inequality was shown in [4] (already for cones with empty interior).
The idea of the proofs in these papers (analogously to the proof of our Theorem 3.1)

consists in a certain homotopical joining of the inequality with the corresponding
linearized equation. This idea is taken from [9] where it was used for inequalities of

a simpler type.
Another method for the investigation of bifurcations for inequalities was found by

P. Quittner [19] who introduced (in a slightly different way than in our Notation
2.1) a pseudointerior and strengthened the results mentioned (see [20]). His method

is based on a reformulation of the inequality as a (strongly nonlinear) equation with
the projection onto K and a direct use of the Leray-Schauder degree (a jump of the

degree implies a bifurcation). This method is simpler than the homotopy approach
mentioned but, unfortunately, in some cases it is not clear how to use it, e.g. for the

proof of Theorem 3.1 when nonstandard conditions are prescribed for both u and v.
A destabilizing effect of unilateral conditions for the inhibitor in the case of a

general curve was proved for quasivariational inequalities in [12] by using Quittner’s
method and for inclusions in [13] by using the homotopy method (see also a forth-

coming paper of J. Eisner [5]).
On the other hand, if unilateral conditions are prescribed only for the activator

u then a bifurcation can occur only in the interior of the domain of instability of
the corresponding equation under certain assumptions. This stabilizing effect of

unilateral conditions is proved in [14] for inclusions and in [10] for quasivariational
inequalities.

4. Proof of the main results

In the sequel, we will consider the assumptions of Theorem 3.1 with d0 ∈ Cp.

����
������ 4.1. (Cf. [4], Section 2.) Let us consider an eigenvalue problem

(4.1) D−1(d)BAU − U = µU.

We can write ϕ =
+∞∑
i=1

〈ϕ, ei〉ei for any ϕ ∈ � under the assumption (1.3), where ei

are eigenvectors of the operator A (see Notation 2.1). Writing (4.1) as two single
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equations and multiplying by ei we have

〈u, ei〉(b11 − d1κi − µd1κi) + 〈v, ei〉b12 = 0,
〈u, ei〉b21 + 〈v, ei〉(b22 − d2κi − µd2κi) = 0,

i = 1, 2, . . .. The couple of 〈u, ei〉, 〈v, ei〉 can be nontrivial for some i if and only if

(b11 − d1κi − µd1κi)(b22 − d2κi − µd2κi)− b12b21 = 0.

Hence, µ is an eigenvalue of (4.1) if and only if µ is a root of

(4.2) µ2d1d2κ
2
i − µβi(d)κi + γi(d) = 0

with βi(d) = d1b22 + d2b11 − 2d1d2κi,

γi(d) = (b11 − d1κi)(b22 − d2κi)− b12b21

for at least one i. Let us denote by µ1,2i (d) the roots of (4.2), set ω(d) = β2i (d) −
4d1d2γi(d). Hence, µ1i (d), µ

2
i (d), i = 1, 2, . . . are all eigenvalues of (4.1). An elemen-

tary investigation gives the following information (see [5] for details). The number

ω(d) does not depend on i and T = {d; d2 = d1
detB−b12b21+2

√−b12b21 detB
b211

} =
{d; ω(d) = 0} is the joint tangent to all hyperbolas Cj , j = 1, 2, . . . (Cf. also [15]).

For d lying to the left from Ci we have µ1i (d) �= µ2i (d), one of them is positive, the
second one is negative. Further, for d ∈ Ci \ T , one of the roots µ1,2i (d) is zero, the

second one has the same sign as βi(d) �= 0. For d ∈ Ci∩T we have βi(d) = γi(d) = 0
and therefore both µ1,2i (d) = 0. For d lying strictly between Ci and T we have
µ1i (d) �= µ2i (d) and signµ1,2i (d) = signβi(d) �= 0. If d lies below T then the roots are
complex (not real). We have µ1i (d) = µ

2
i (d) if and only if d ∈ T .

Further, we will suppose that the characteristic value κp of A (i.e. the eigenvalue
κp of −∆ with (1.4) in the situation from Weak Formulation 2.1) has a multiplicity
k, κp = . . . = κp+k−1. Hence, Cp = . . . = Cp+k−1 and Observation 4.1 yields
µ1,2p (d) = . . . = µ

1,2
p+k−1(d) for any d.

�������� 4.1. Let U be a neighbourhood of d0 such that U \ {d0} contains no
intersection point of Cp with the other hyperbolas Cj , j /∈ {p, . . . , p+ k − 1} and in
the case d0 ∈ Cp \T , moreover no point d ∈ T . If d0 ∈ Cp \T then we will denote by
µp(d) = . . . = µp+k−1(d), d ∈ U , the root changing the sign for d crossing Cp ∩ U . If
d0 ∈ Cp ∩ T then µp(d) = . . . = µp+k−1(d) will denote the positive root for d ∈ U , d
lying to the left from Cp = . . . = Cp+k−1 and µp(d) = . . . = µp+k−1(d) will denote

the real part of complex roots for d lying below T . (In fact we shall consider our
problem only on the curve σ(s) intersecting Cp transversally at d0 and therefore we
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need no definition for d lying between Cp and T in the case d0 ∈ Cp ∩ T .) Further,
define

(4.3)

U1,2i (d) =
[d2κi − b22 + µ

1,2
i (d)d2κi

b21
ei, ei

]
, i ∈ �, d ∈ U

Ui(d) =
[d2κi − b22 + µi(d)d2κi

b21
ei, ei

]
,

{
i = p, . . . , p+ k − 1,
d such that µi(d) is defined.

����
������ 4.2. For all i ∈ �, d ∈ U , U1,2i (d) are eigenvectors of (4.1)

corresponding to µ1,2i (d). Moreover, Ker(D
−1(d)BA− I −µr

i (d)I) = Lin{U r
j (d); j ∈

�, µr
j(d) = µ

r
i (d)} for any i = 1, 2, . . ., r = 1, 2.

If d0 ∈ Cp \ T then Ui(d) are eigenvectors corresponding to µi(d) = µp(d) for i =

p, . . . , p + k − 1, d ∈ U . If d0 ∈ Cp ∩ T then Ui(d) are eigenvectors corresponding
to µi(d) for i = p, . . . , p + k − 1, d ∈ U , d lying to the left from Cp and they are

real parts of complex eigenvectors corresponding to µ1,2i (d) for d ∈ U , d lying below
T . (See Observation 4.1, Notation 4.1.) Note that the vectors Ui(d) from (4.3) for

d ∈ Ci, i = p, . . . , p+ k − 1 coincide with those introduced in Proposition 2.1.
If µq(d) �= µp(d) for all q satisfying κq �= κp then Ker(D−1(d)BA − I − µp(d)I) =
Lin{Ui(d)}p+k−1

i=p . Particularly, if d ∈ Cp (i.e. µp(d) = 0) and d /∈ Cq for all Cq �= Cp,

then

(4.4) EB(d) = Lin{Ui(d)}p+k−1
i=p .

If µq(d) = µp(d) for some q satisfying κp �= κq = . . . = κq+l−1, where κq has a

multiplicity l, then Ker(D−1(d)BA−I−µp(d)I) = Lin{Ui(d)}i=p,...,p+k−1,q,...,q+l−1.
Particularly, if d ∈ Cp ∩ Cq for some Cq �= Cp, then

(4.5) EB(d) = Lin{Ui(d)}i=p,...,p+k−1,q,...,q+l−1.

����
� 4.1. Let d0 = [d01, d
0
2] ∈ Cp. Let (2.25) hold with some U0 = [α(d)e0, e0]

where e0 is an eigenvector of A corresponding to the characteristic value κp = . . . =

κp+k−1 with a multiplicity k (see Observation 4.2). Then the system {ei}∞i=1 can be
chosen such that U0 = Up(d0) =

[
d02κp−b22

b21
ep, ep

]
with U∗p (d

0) =
[

d02κp−b22
b12

ep, ep

]
∈

K−.

�������� 4.2. Set I(d0) = {i ∈ � \ {p}; d0 ∈ Ci}. Let us choose η > 0
small enough. Let ξ be a continuous function such that ξ(s0) = 1, ξ(s) ∈ (0, 1) for
s ∈ (s0 − η, s0) ∪ (s0, s0 + η) and ξ(s) = 0 for s /∈ (s0 − η, s0 + η). For any δ > 0
small, introduce the linear completely continuous operator Lδ(s) : �̃ → �̃ (for any
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s ∈ � fixed) by

Lδ(s)U = 0 for s /∈ (s0 − η, s0 + η)

= δ ·
∑

i∈I(d0)

ξ(s)
〈Ui(σ(s)), U〉
‖Ui(σ(s))‖2

· Ui(σ(s)) for s ∈ [s0 − η, s0 + η]

(cf. [4]).

����
� 4.2. We have Lδ(s) ≡ 0 for s ∈ � if I(d0) = ∅, i.e. if dimEB(d0) = 1.

Further, it follows from the form of U1,2i (d), Ui(d), U∗i (d) (see Notations 4.1 and 4.2,
Remark 2.1) that 〈U1,2i (d), U

1,2
j (d)〉 = 〈Ui(d), Uj(d)〉 = 〈U∗i (d), Uj(d)〉 = 0 for all

j �= i and

(4.6)

Lδ(s)Up(σ(s)) = 0, Lδ(s)U
1,2
i (σ(s)) = 0 for i /∈ I(d0), s ∈ (s0 − η, s0 + η),

〈D(σ(s))Lδ(s)U,Up(σ(s))〉 = 〈D(σ(s))Lδ(s)U,U∗p (σ(s))〉 = 0
for any s ∈ (s0 − η, s0 + η), U ∈ �̃.

Lemma 4.1. There exist δ > 0 and η > 0 such that the following assertions
hold. (a) Let d0 ∈ Cp \ T . Then for all (s0− η, s0+ η), the eigenvalue µp(σ(s)) from

Notation 4.1 is simultaneously an algebraically simple eigenvalue of the operator

D−1(σ(s))BA − Lδ(s) − I with the corresponding eigenvector Up(σ(s)). It changes

the sign as s crosses s0. The other positive eigenvalues have constant signs and

constant multiplicities on (s0 − η, s0 + η).

(b) Let d0 ∈ Cp ∩ T . Then for s ∈ (s0 − η, s0], µp(σ(s)) is an eigenvalue of
D−1(σ(s))BA − Lδ(s) − I with the only normed eigenvector Up(σ(s)). For s ∈
(s0 − η, s0), µp(σ(s)) is positive and algebraically simple, µp(σ(s0)) = 0 is not alge-

braically simple. The sum of algebraic multiplicities of the other positive eigenvalues

of D−1(σ(s))BA − Lδ(s) − I is even for all s ∈ (s0 − η, s0). For s ∈ (s0, s0 + η), all
eigenvalues of this operator are complex.

In both cases (a), (b), Ker(D−1(σ(s0))BA − Lδ(s0) − I) = Lin{Up(d0)} and the
number ν(s0−ε)−ν(s0+ε) is odd for all ε ∈ (0, η) where ν(s) is the sum of algebraic
multiplicities of all positive eigenvalues of the operator D−1(σ(s))BA − Lδ(s)− I.

�
���. Analogously as in Observation 4.1 we obtain that µ is an eigenvalue of

the problem

D−1(σ(s))BAU − Lδ(s)U − U = µU

if and only if µ is a root of a quadratic equation

(4.7) µ2 − βδ
i (s)µ+ γ

δ
i (s) = 0
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with coefficients βδ
i (s), γ

δ
i (s) depending continuously on s and δ.

Let i /∈ I(d0). It follows from (4.6) that µ1,2i (σ(s)) and U
1,2
i (σ(s)) from Ob-

servation 4.1 and Notation 4.1 are simultaneously eigenvalues and eigenvectors of

D−1(σ(s))BA−Lδ(s)−I and (4.7) is equivalent to (4.2) for any s ∈ �. Particularly,
this means by the definition of µp(d), Up(d) that µp(σ(s)) and Up(σ(s)) is an eigen-

value and an eigenvector of D−1(σ(s))BA−Lδ(s)− I for any s ∈ (s0 − η, s0 + η) or
s ∈ (s0 − η, s0] in the case d0 ∈ Cp \ T or d0 ∈ Cp ∩ T , respectively.
If i /∈ I(d0) ∪ {p} then d0 and also σ(s) for any s ∈ (s0 − η, s0 + η) lie to the right
from Ci. (Recall that d0 ∈ C.) It follows from Observation 4.1 that if d0 ∈ Cp \ T ,
i /∈ I(d0)∪{p} then the sign of both µ1i (σ(s)) �= µ2i (σ(s)) is constant on (s0−η, s0+η),
and if d0 ∈ Cp ∩ T , i /∈ I(d0) ∪ {p} then µ1i (σ(s)) �= µ2i (σ(s)) are both positive or

negative on (s0 − η, s0) and complex on (s0, s0 + η). Further, for i = p, µp(σ(s))
changes its sign at s0 and the sign of the corresponding second root is constant on

(s0−η, s0+η) in the case d0 ∈ Cp \T . In the case d0 ∈ Cp∩T we have µp(σ(s)) > 0
and the second root is negative on (s0−η, s0), both roots are complex on (s0, s0+η).
Let i ∈ I(d0). Notations 4.1, 4.2 yield that µi(σ(s)) − δξ(s) = µp(σ(s)) − δξ(s) is

an eigenvalue of D−1(σ(s))BA − Lδ(s) − I and one of the roots of (4.7). It follows

from Notation 4.1 and Observation 4.1 that we can choose δ > 0 and η > 0 such
that µi(σ(s))− δξ(s) < 0 on (s0− η, s0+ η). The roots of (4.7) depend continuously
on s ∈ �, δ � 0 and therefore the choice of δ > 0 and η > 0 can be such that the
second root has the constant sign on (s0 − η, s0 + η) in the case d0 ∈ Cp \ T and it
is negative on (s0 − η, s0] and complex on (s0, s0 + η) in the case d0 ∈ Cp ∩ T . (See
Observation 4.1.)

It follows from the relation of eigenvalues of the operatorD−1(σ(s))BA−Lδ(s)−I
and the roots of (4.7) mentioned above that there are no further eigenvalues and

eigenvectors besides those discussed.

Let us show that for i ∈ �, r = 1, 2 and s ∈ (s0 − η, s0 + η) or s ∈ (s0 − η, s0)

in the case d0 ∈ Cp \ T or d0 ∈ Cp ∩ T , respectively, the algebraic and geometric
multiplicity of the eigenvalue µr

i (σ(s)) coincide. (In fact, we need this information

only for positive eigenvalues.) The adjoint equation to (4.1) is

B∗D−1(d)AU − U = µU

and similar considerations as in Observation 4.1 imply that the eigenvectors of this
equation corresponding to µ1,2i (d) are

Ũ1,2i (d) =
[d1
d2

d2κi − b22 + µ
1,2
i (d)d2κi

b12
ei, ei

]
=
[d1
d2

b21
b12

α1,2i (d)ei, ei

]
.
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(Recall that U1,2i (d) =
[
α1,2i (d)ei, ei

]
—see Observation 4.2.) We have

〈L∗δ(s)Ũ r
i (σ(s)), V 〉 = 〈Ũ r

i (σ(s)), Lδ(s)V 〉 = 0 for i /∈ I(d0), r = 1, 2, V ∈ �,

that means

L∗δ(s)Ũ
r
i (σ(s)) = 0 for all i /∈ I(d0), r = 1, 2, s ∈ (s0 − η, s0 + η).

It follows that Ũ r
i (σ(s)) is simultaneously an eigenvector of the adjoint operator(

D−1(σ(s))BA
)∗ − L∗δ(s) − I corresponding to µr

i (σ(s)), r = 1, 2. An elementary
calculation gives

|〈U r
i (d), Ũ

r
i (d)〉| =

√
ω(d)
d2

�= 0 for i = 1, 2, . . . , r = 1, 2, d ∈ U \ T ,

〈U r
i (d), Ũ

r
j (d)〉 = 0 for any i �= j, r = 1, 2.

Hence, det
(
〈Ũ r

i (d), U
r
j (d)〉

)
i,j∈J

�= 0 for any J ⊂ �, r = 1, 2, d ∈ U \ T . It follows
that the algebraic and geometric multiplicity of µr

i (d) coincide for i ∈ �, r = 1, 2,

d ∈ U \T (see e.g. [18]). Particularly, this holds for d = σ(s) with s ∈ (s0−η, s0+η)
or s ∈ (s0 − η, s0) if d0 ∈ Cp \ T or d0 ∈ Cp ∩ T , respectively.
Our considerations lead to the following conclusion. If d0 ∈ Cp\T then µp(σ(s)) is

the only eigenvalue of the operator D−1(σ(s))BA−Lδ(s)− I changing its sign at s0
and it is algebraically simple. The other eigenvalues have constant signs and multi-
plicities on (s0−η, s0+η). If d0 ∈ Cp∩T then µp(σ(s)) is a real positive algebraically

simple eigenvalue on (s0− η, s0). The other possible positive eigenvalues (which can
correspond only to i /∈ I(d0)) form pairs µ1,2i (σ(s)), µ

1
i (σ(s)) �= µ2i (σ(s)) where

µ1i (σ(s)), µ
2
i (σ(s)) have the same algebraic multiplicity, i.e. the sum of algebraic

multiplicities for any such pair is even. All eigenvalues are complex for (s0, s0 + η).

The assertion of Lemma 4.1 follows. �

Further, let δ > 0 and η > 0 be from Lemma 4.1. Consider a penalty equation

(4.8) D(σ(s))U −BAU +
τ

1 + τ
N(U) +

D(σ(s))
1 + τ

Lδ(s)U + P
τ (U) = 0

where τ is an additional parameter and the operator Lδ is from Notation 4.2. It can

be understood as a homotopy joining the perturbed linearized equation (obtained
for τ = 0) with our inclusion (obtained for τ → +∞—see Lemma 4.4).
The penalty equation (4.8) will be supplemented by the norm condition

(4.9) ‖U‖2 = �τ

1 + τ
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where � > 0 is a given small number.

The proof of Theorem 3.1 is similar to that of Theorem 2.1 in [11]. The idea is

to prove, for any � > 0 small, the existence of a branch of triplets [s, U, τ ] satisfying
(4.8), (4.9) which starts at s0 and is unbounded in τ . By the limiting process

τ → +∞ along this branch we obtain a solution U�, ‖U�‖2 = � of (3.3) with some
s�. Any accumulation point of s� for � → 0+ is a bifurcation point of (3.3). In

[11], the situation was simpler because variational inequalities (a special case of
inclusions) were considered and therefore the penalty term was simpler. Moreover,

it was supposed that dimEB(d0) = 1 and no operator Lδ was necessary.

Lemma 4.2. If there exists U0 ∈ EB(d0), U∗0 ∈ K− then EI(d0) = EB(d0) ∩K.

�
��� can be done analogously as the proof of Lemma 3.3 in [13]. �

Lemma 4.3. If [sn, Un, τn] ∈ � × �̃ × �
+ , sn → s, Un ⇀ U , τn → τ ∈ [0,+∞],

(4.10) D(σ(sn))Un −BAUn +
τn
1 + τn

N(Un) +
D(σ(sn))
1 + τn

Lδ(sn)Un + P τn(Un) = 0

then Un → U . If, moreover, ‖U‖ = 0, Wn = [wn, zn] = Un

‖Un‖ ⇀W then Wn → W .

�
��� can be done similarly as in [13], Remark 3.1 on the basis of the as-

sumption (2.20). (Note that Lδ is compact and the term containing Lδ vanishes for
τ → +∞.) �

Lemma 4.4. Let sn → s, Un ⇀ U , τn → +∞ and (4.10) hold. Then Un → U and

s, U satisfy the inclusion (3.3). If, moreover, ‖Un‖ → 0, Un

‖Un‖ ⇀W then Un

‖Un‖ →W

and s, W satisfy (2.12) with d = σ(s).

�
��� can be done similarly as that of Lemma 3.2 in [13] on the basis of the
assumptions (2.20) and (2.21). �

����
� 4.3. It follows from the assumption (2.19) that if P τn (Un)
‖Un‖ ⇀ Z then

(4.11) 〈Z, V 〉 = lim 〈P τn(Un), V 〉
‖Un‖

� 0 for any V ∈ K.

Further, if Z �= 0 then 〈Z, V 〉 < 0 for all V ∈ K−. Otherwise we would have V ∈ K−

such that 〈Z, V 〉 = 0 and the definition of K− would imply the existence of F ∈ �̃
such that 〈Z,F 〉 > 0, V ± F ∈ K. This means V + F ∈ K, 〈Z, V + F 〉 > 0, which
contradicts (4.11).

441



�
��� �� ����
�� 3.1. Let � > 0 be fixed. Let Up = Up(d0) be the element

from Remark 4.1. The equations (4.8), (4.9) are equivalent to

(4.12) x− T (s)x+G(s, x) = 0

in the space � = �̃×� (with points x = [U, τ ] and the norm |||x||| = ‖U‖+ |τ |) where

T (s) =
[
D−1(σ(s))BAU − Lδ(s)U, 0

]
for all s ∈ �, x = [U, τ ] ∈ �

G(s, x) =
[
D−1(σ(s))

( τ

1 + τ
N(U) + P τU

)
− τ

1 + τ
Lδ(s)U,

1 + τ
�

‖U‖2
]

for all s ∈ �, x = [U, τ ] ∈ �

with P τU = P−τU for τ < 0. It follows from (2.1), (2.21), (2.22) that T , G satisfy
the following conditions:

T,G : � × �→ � are completely continuous,(4.13)

T (s) : �→ � is linear for any fixed s ∈ �,(4.14)

lim
|||x|||→0

|||G(s, x)|||
|||x||| = 0 uniformly on bounded s-intervals.(4.15)

It is easy to see that λ is an eigenvalue of T (s)− I with the algebraic multiplicity k
(for some s ∈ �) and x = [U, τ ] is a corresponding eigenvector if and only if λ is an
eigenvalue of D−1(σ(s))BA−Lδ(s)− I with the algebraic multiplicity k and U is a
corresponding eigenvector, τ = 0. (The symbol I denotes the identity operators in

the corresponding spaces.) Particularly, Lemma 4.1 implies that

(4.16) Ker(T (s0)− I) = Lin{x0} with x0 = [Up, 0].

For any compact linear operator T in a Banach space we have ind(I−T ) = (−1)γ(T )
where ind denotes the Leray-Schauder index, γ(T ) is the sum of the multiplicities of
all positive eigenvalues of T − I (see e.g. [18]). It follows from Lemma 4.1 that

(4.17) ind(I − T (s0 − ε)) �= ind(I − T (s0 + ε)) for all ε ∈ (0, η).

Set

C = {[s, x] ∈ � × �; |||x||| �= 0, (4.12) holds} = {[s, U, τ ]; τ �= 0, (4.8), (4.9) hold}

and let C0 be the component of C containing [s0, 0, 0]. Analogously as in [1] we can
define subcontinua C+0 and C

−
0 of C0 starting at [s0, 0, 0] in the direction of x0 and
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−x0, respectively, with x0 = [Up, 0]. More precisely, let us choose ϑ ∈ (0, 1) and set

Kϑ = {[s, x] ∈ � × � ;
|〈x, x0〉|
|||x0|||

> ϑ|||x|||}

= {[s, U, τ ] ∈ � × �̃ × � ;
|〈U,Up〉|
‖Up‖

> ϑ‖U‖},

K+ϑ = {[s, x] ∈ Kϑ ; 〈x, x0〉 > 0} = {[s, U, τ ] ∈ Kϑ ; 〈U,Up〉 > 0},
K−

ϑ = {[s, x] ∈ Kϑ ; 〈x, x0〉 < 0} = {[s, U, τ ] ∈ Kϑ ; 〈U,Up〉 < 0}

(cf. [9]). As in [21], Lemma 1.24 there exists R > 0 such that

(C \ {[s0, 0, 0]}) ∩BR(s0, 0, 0) ⊂ Kϑ,

where BR(s0, 0, 0) = {[s, U, τ ] ∈ � × �̃ × � ; |s − s0| + ‖U‖ + |τ | � R}. For each
r ∈ (0, R] denote byD±

r the components of the sets {[s0, 0, 0]}∪(C∩Br(s0, 0, 0)∩K±
ϑ ),

respectively, containing [s0, 0, 0]. Denote by C
+
0,r and C

−
0,r the components of C0 \D−

r

and C0 \D+r , respectively, containing [s0, 0, 0]. Set

C+0 =
⋃

0<r�R

C+0,r, C−0 =
⋃

0<r�R

C−0,r.

The sets C+0 and C
−
0 are independent of the choice of ϑ ∈ (0, 1), both C+0 and

C−0 are connected and C0 = C+0 ∪ C−0 (see [1] and Lemma 1.24 in [21]). Under
the assumptions (4.13)–(4.17), considerations from the proof of the global Dancer’s
bifurcation theorem ([1], Theorem 2) can be used and an analogue of this theorem

for the equation (4.12) can be proved (cf. [9], Theorem 4.1). That means

(4.18) either C+0 ∩ C−0 �= {[s0, 0, 0]} or both C+0 and C−0 are unbounded

(cf. [1], [9] for details). It follows from the definition that C+0 and C
−
0 contain [s0, 0, 0]

and

there are [sn, Un, τn] ∈ C+0 , [sn, Un, τn]→ [s0, 0, 0],
Un

‖Un‖
→ Up

‖Up‖
,(4.19)

there are [sn, Un, τn] ∈ C−0 , [sn, Un, τn],→ [s0, 0, 0],
Un

‖Un‖
→ − Up

‖Up‖
.(4.20)

We will write C�, C�,0, C
+
�,0, C

−
�,0 instead of C, C0, C

+
0 , C

−
0 in order to emphasize

the role of �. We shall prove successively that the following statements hold for all
� ∈ (0, �0) if �0 is small enough:

(4.21)

{
if [sn, Un, τn] ∈ C+�,0, [sn, Un, τn]→ [s0, 0, 0], Un

‖Un‖ →
Up

‖Up‖
then lim sup sn−s0

τn
< 0,
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(4.22)

{
if [sn, Un, τn] ∈ C−�,0, [sn, Un, τn]→ [s0, 0, 0], Un

‖Un‖ → − Up

‖Up‖
then lim inf sn−s0

τn
> 0

(the branch C+�,0 starts downwards from s0, C
−
�,0 starts upwards from s0),

(4.23) [s0, U, τ ] ∈ C�,0 =⇒ τ = 0

(C�,0 can intersect the level s = s0 only at the initial point [s0, 0, 0]),

(4.24) [s, U, τ ] ∈ C�,0 =⇒ s � c (with some c > 0).

Suppose for a moment that (4.21)–(4.24) hold. It follows from (4.21), (4.22), (4.23)
and the definition of C+�,0 and C

−
�,0 that C

+
�,0 and C

−
�,0 remain below and above s0,

respectively, with the exception of [s0, 0, 0] and therefore C
+
�,0 ∩ C−�,0 = {[s0, 0, 0]}.

Hence (4.18) implies that C+�,0, C
−
�,0 are unbounded. But (4.9) together with (4.24)

(and the fact that C−�,0 lies above s0) imply the boundedness of C
−
�,0 in ‖U‖ and s

and therefore C−�,0 is unbounded in τ . It follows from (4.9), the connectedness and

the fact that [s0, 0, 0] ∈ C�,0 that τ � 0 for all [s, U, τ ] ∈ C�,0. Particularly, there
exists a sequence [sn, Un, τn] ∈ C−�,0 with sn > s0, τn → +∞. We have (4.10) and

(4.25) ‖Un‖2 =
�τn
1 + τn

.

We can suppose sn → s�, Un ⇀ U� with some s� � s0, U� and Lemma 4.4 implies

that Un → U�, U� is a solution of (3.3) with s = s�. We would like to know that

(4.26) s� � s0 + ε for all � > 0 small enough with some ε > 0.

Suppose by contradiction that there are �n → 0, s�n → s0, ‖U�n‖ → 0, U�n

‖U�n‖ ⇀W ,

(4.27) D(σ(s�n))U�n −BAU�n +N(U�n) ∈ −M(U�n).

Dividing (4.27) by ‖U�n‖ and using the assumptions (2.1) and (2.17) we obtain
U�n

‖U�n‖ → W and W is a solution of (2.12) with d = d0. We get W ∈ EB(d0) ∩ K
by the second part of the assumption (2.25) and Lemma 4.2 but this contradicts the

first part of the assumption (2.25). Hence, (4.26) holds. Thus, any accumulation
point sI of s� for �→ 0+ is a bifurcation point of (3.3) and sI ∈ [s0 + ε, c].
For the completeness of the proof it is sufficient to show that (4.21)–(4.24) hold.
Proof of (4.21): Let (4.10) hold, [sn, Un, τn]→ [s0, 0, 0] and Un

‖Un‖ →
Up

‖Up‖ . Multiply

(4.10) by
U∗p
‖Un‖ , and

(4.28) D(σ(s0))U∗p −B∗AU∗p = 0
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by Un

‖Un‖ and subtract. A simple calculation using (4.6) yields

Rn(sn − s0) +
〈 τn
1 + τn

N(Un)
‖Un‖

+
P τn(Un)
‖Un‖

, U∗p
〉
= 0,

Rn = σ
′
1(s̄n)

〈 un

‖Un‖
, u∗p

〉
+ σ′2(s̃n)

〈 vn

‖Un‖
, v∗p

〉

with some s̄n, s̃n between s0 and sn where Un = [un, vn], Up = [up, vp], U∗p = [u
∗
p, v

∗
p].

Further, it follows from the formula for up, u
∗
p, vp, v

∗
p (see Observation 4.2 and Remark

2.1) and the equations defining Cj , C (by using the transversality assumption and

the orientation of σ given by (3.1)) that

Rn → R = σ′1(s0)
〈up, u

∗
p〉

‖Up‖
+ σ′2(s0)

〈vp, v
∗
p〉

‖Up‖
=
(σ2(s0)κp − b22)

2

b12b21‖Up‖
σ′1(s0) +

σ′2(s0)
‖Up‖

< 0.

We have Up ∈ EB(d0), Up /∈ K, U∗0 = U∗p ∈ K− by the assumption (2.25) and

Remark 4.1. Hence, it follows by using (2.1) and (2.23) that

lim sup
n→∞

sn − s0
τn

= − 1
R
lim sup

n→∞

〈P τn(Un)
τn‖Un‖

, U∗p
〉
< 0.

Proof of (4.22) is the same but we have Un

‖Un‖ → − Up

‖Up‖ and R > 0.
Proof of (4.23): suppose by contradiction that there are �n → 0 and [s0, Un, τn] ∈

C�n,0, τn > 0. Then ‖Un‖ → 0,

(4.29) D(σ(s0))Un −BAUn +
τn
1 + τn

N(Un) +
D(σ(s0))
1 + τn

Lδ(s0)Un + P
τn(Un) = 0.

We can suppose without loss of generality that Un

‖Un‖ ⇀W and τn → τ ∈ [0,+∞].
If τ < +∞ then we obtain from (4.29) by using Lemma 4.3 that Un

‖Un‖ → W .

Hence, it follows from (4.29) divided by ‖Un‖ and (2.1) that P τn Un

‖Un‖ → Z,

(4.30) D(σ(s0))W −BAW +
D(σ(s0))
1 + τ

Lδ(s0)W + Z = 0.

If τ = 0 then Z = 0 by the assumption (2.22). If τ ∈ (0,+∞), multiply (4.30) by
U∗p , (4.28) by W and subtract. We get 〈Z,U∗p 〉 = 0 by using (4.6) and Remark 4.3
implies Z = 0 again. In both cases we obtain by using Lemma 4.1 (with δ replaced
by δ

1+τ ) and Proposition 2.1 that W = ± Up

‖Up‖ ∈ EB(d0). The assumption (2.25)

implies W /∈ K. Multiply (4.29) by U∗p
‖Un‖ , (4.28) by

Un

‖Un‖ and subtract. We get

(4.31)
〈 τn
1 + τn

N(Un)
‖Un‖

+
D(σ(s0))
1 + τn

Lδ(s0)Wn +
P τn(Un)
‖Un‖

, U∗p
〉
= 0.
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By using the assumptions (2.1) and (4.6), dividing (4.31) by τn and letting n → ∞
we obtain lim 〈P τn (Un)

τn‖Un‖ , U
∗
p 〉 = 0, which is excluded by (2.23) for W /∈ K. This is a

contradiction.
If τ = ∞ then (4.29) and Lemma 4.4 imply that Un

‖Un‖ → W , W satisfies (2.12)

with d = d0. Lemma 4.2 gives W ∈ EB(d0) ∩ K and this is a contradiction with
(2.25).

For the proof of (4.24) see [13], Lemma 3.4 or [5]. Note that no operator Lδ is
considered in [13], but we have Lδ(s) ≡ 0 for s > s0 + η. �

5. Another example

In the situation from Examples 2.1–2.3, the homogeneous problem (2.12) is equi-
valent to the variational inequality

(5.1) U ∈ K; 〈D(d)U −BAU, V − U〉 � 0 for any V ∈ K,

where the cone K is defined by (2.15). In the following example we will show a
boundary condition such that the corresponding homogeneous problem (2.12) is not

equivalent to (5.1).

�����
� 5.1. Let Ω = (0, 1), � = {ϕ ∈ W 1
2 (0, 1); ϕ(0) = 0}. Let x1, x2 ∈

(0, 1) be fixed. Let us consider the multivalued mappings m1,m2 : � → 2� defined
by

m1(ξ) = 0 for ξ < 0,

m1(ξ) � 0 for ξ > 0, lim
ξ→0+

m1(ξ) = m01,

m1(0) = [0,m
0
1] with some m01 ∈ [0,+∞]





m2(ξ) = 0 for ξ > 0,

m2(ξ) � 0 for ξ < 0, lim
ξ→0−

m2(ξ) = m02,

m2(0) = [m02, 0] with some m02 ∈ [−∞, 0].





Set
mj(ξ) = mj(ξ) = mj(ξ) for ξ �= 0
m1(0) = 0, m1(0) = m01

m2(0) = m
0
2, m2(0) = 0.





Define the corresponding mapping M : �̃ → 2�̃, M(U) = [M1(u),M2(v)] for U =
[u, v] by

(5.2)
Mj(ψ) = {z ∈ � ; mj(ψ(xj))ϕ(1) � 〈z, ϕ〉 � mj(ψ(xj))ϕ(1)

for all ϕ ∈ �, ϕ(1) � 0}
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for any ψ ∈ �, j = 1, 2. Then a solution of (2.9) is a weak solution of the stationary
problem corresponding to (1.1) with the boundary conditions

(5.3) u(0) = v(0) = 0, −d1ux(1) ∈ m1(u(x1)), −d2vx(1) ∈ m2(v(x2)).

The multivalued condition in (5.3) describes for example a semipermeable membrane

on the boundary like in Example 2.2 but with sensors in the interior of the domain;
particularly, the sensors are at different points than the source. In the situation from

Example 2.2, we had x1 = x2 = 1 (for Ω = (0, 1)), i.e. the sensors were at the same
point as the source (membrane). From this point of view, the multivalued condition

in Example 5.1 is more general.

Let us define convex cones Kx1 = {ϕ ∈ � ; ϕ(x1) � 0}, Kx2 = {ϕ ∈ � ; ϕ(x2) �
0} and K1 = {ϕ ∈ � ; ϕ(1) � 0}. The corresponding homogeneous mapping M0 is
M0(U) = [M01(u),M02(v)] with

M01(ψ) = {0} if ψ(x1) < 0,

M01(ψ) = {z ∈ � ; 〈z, ϕ〉 � 0 for all ϕ ∈ K1} if ψ(x1) = 0,
M01(ψ) = ∅ if ψ(x1) > 0,

M02(ψ) = {0} if ψ(x2) > 0,

M02(ψ) = {z ∈ � ; 〈z, ϕ〉 � 0 for all ϕ ∈ K1} if ψ(x2) = 0,
M02(ψ) = ∅ if ψ(x2) < 0.

Then the set K from (2.15) is Kx1 ×Kx2 . A solution of (2.12) is a weak solution of
(2.5) with λ = 0 and with the boundary conditions

u(0) = v(0) = 0,

ux(1) � 0, u(x1) � 0, ux(1) · u(x1) = 0, vx(1) � 0, v(x2) � 0, vx(1) · v(x2) = 0.

A suitable penalty operator for M is P τU = [P τ
1 u, P

τ
2 v] with

〈P τ
j u, ϕ〉 = pτ

j (u(xj))ϕ(1)

for all u, ϕ ∈ �, where pτ
j are the same functions as in Example 2.2. Set K =

((−K1) ∩Kx1)× (K1 ∩Kx2) and consider the condition

(5.4) EB(d0) ∩K = {0} and there exists U0 ∈ EB(d0), U∗0 ∈ K−

instead of (2.25). It is easy to see by using Proposition 2.1 that the condition (5.4)
is fulfilled for d0 ∈ Cp if the eigenfunction ep of −uxx with the boundary conditions
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u(0) = ux(1) = 0 corresponding to κp satisfies ep(x1) > 0, ep(x2) > 0 and ep(1) > 0.

(Note that the eigenvalues κj are simple in the one-dimensional case.) Replacing K
by K in the appropriate places and (2.25) by (5.4), we can go through the whole
procedure used in Section 4 and prove the assertion of Theorem 3.1 or Corollary

3.1, respectively, also in this situation. The proofs of all assertions from Section 4
can be done analogously as above with the exception of the proof of (4.24) where

the condition 〈P τ (U), U〉 � 0 from (2.19) is used. But now 〈P τ (U), U〉 � 0 is not
satisfied for all U ∈ �̃. We have to strengthen the condition (3.1) by

lim
s→+∞

σ2(s) = +∞

and prove (4.24) analogously as in [5].
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