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Abstract. This paper is motivated by the paper [3], where an iterative method for the
computation of a matrix inverse square root was considered. We suggest a generalization
of the method in [3]. We give some sufficient conditions for the convergence of this method,
and its numerical stabillity property is investigated. Numerical examples showing that
sometimes our generalization converges faster than the methods in [3] are presented.
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1. Introduction

An inverse square root of a matrix A ∈ Cm,m is a solution X ∈ Cm,m of the

matrix equation AX2 = I, and is denoted by X = A−1/2. As was shown in [2] the
inverse square root X of A always exists for a nonsingular matrix A. The inverse

square root of a matrix has applications in the computation of an optimal symmetric
orthogonalization of a set of vectors [1], theory of oscillations [2], etc.

We consider the scalar equations

(1) az2 = 1,

where a ∈ C and a �= 0. The equation (1) is equivalent to the equation

(2) f(z) ≡ 1
az
− z = 0.

Applying Newton’s method

zn+1 = zn −
f(z)
f ′(z)
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to the equation (2) we obtain

(3) zn+1 =
zn

1
2 +

1
2az2n

.

The denominator in (3), it is the easy to see, is the arithmetic mean of the line
segment with the endpoints 1 and az2n. Having in mind this fact we can define the

following iterative method with a paremeter α ∈ (0, 1):

zn+1 =
zn

1− α+ αaz2n
.

For simplicity of further analysis let α = 1
1+ϕ , ϕ ∈ �. Then

(4) zn+1 =
(1 + ϕ)zn

ϕ+ az2n
.

2. Computation of A−1/2

We define the following matrix sequence {Xn} based on the scalar sequence defined
by (4).

Method (I):

X0 = I,

Xn+1 = (1 + r)Xn(rI +AX2n)
−1, r ∈ �.

First we give a theorem.

Theorem 1. Let w ∈ C, w �= 0, arg(w) �= �. We define the scalar sequence {zn}
by

z0 = 1,

zn+1 =
(1 + r)zn

r + wz2n
, r > 0.

Then lim
n→∞

zn = 1/
√

w, where
√

w is the principal square root of w.

�����. First we prove that the sequence {zn} is well defined, i.e.

r + wz2n �= 0, n = 0, 1, 2, . . . .
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For n = 0 if r+wz0 = 0, i.e. w = −r, we obtain arg(w) = � which is a contradiction.

If we set tn = wz2n and assume that r + wz2n = r + tn �= 0, then

r + wz2n+1 = r +
(1 + r)2tn
(r + tn)2

=
rt2n + (3r

2 + 2r + 1)tn + r3

(r + tn)2
.

We assume that r + wz2n+1 = 0, i.e.

rt2n + (3r
2 + 2r + 1)tn + r3 = 0.

The solutions of the preceding equation are given as follows:

tn = wz2n = −
3r2 + 2r + 1

2r


1±

√
1−

(
2r2

3r2 + 2r + 1

)2

 .

So wz2n < 0 and arg(wz2n) = �, a contradiction. Finally, r+wz2n �= 0 and the sequence
{zn} is well defined.
Now, we prove that Re(

√
wzn) > 0, i.e.

√
wzn lies in the right halfplane. For

n = 0,
√

wz0 =
√

w lies in the right halfplane because
√

w is the principal value. We

assume that
√

wzn lies in the right halfplane. Then
√

wzn �= 0 and r/
√

wzn lies in
the right halfplane. By the definition of the sequence {zn} we have

√
wzn+1 =

1 + r

r/
√

wzn +
√

wzn
,

which means that
√

wzn+1 lies in the right halfplane. Since
√

wzn lies in the right

halfplane, hence √
wzn �= −r, zn +

r√
w
�= 0.

Now we have

zn − 1√
w

zn + 1√
w

= −

(
zn−1 − 1√

w

)(
zn−1 − r√

w

)

(
zn−1 + 1√

w

)(
zn−1 + r√

w

)

= (−1)n
√

w − 1√
w + 1

n−1∏

i=0

zi − r√
w

zi + r√
w

.

Let ∣∣∣∣∣
zk − r√

w

zk + r√
w

∣∣∣∣∣ = max
0�i�n−1

∣∣∣∣∣
zi − r√

w

zi + r√
w

∣∣∣∣∣ (k ∈ {0, 1, . . . , n− 1}).
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Then ∣∣∣∣∣
zn − 1√

w

zn + 1√
w

∣∣∣∣∣ �
∣∣∣∣
√

w − 1√
w + 1

∣∣∣∣
∣∣∣∣
zk
√

w − r

zk
√

w + r

∣∣∣∣
n

.

Since r > 0 and zk
√

w lies in the right halfplane, hence

∣∣∣∣
√

wzk − r√
wzk + r

∣∣∣∣ < 1

and

lim
n→∞

∣∣∣∣
√

wzk − r√
wzk + r

∣∣∣∣
n

= 0.

Finally,

lim
n→∞

∣∣∣∣∣
zn − 1√

w

zn + 1√
w

∣∣∣∣∣ = 0, lim
n→∞

zn =
1√
w

.

�

In the sequel we need the following definition: The matrix A is diagonaliz-
able if there exists a nonsingular matrix V such that V −1AV = D where D =

diag{a1, . . . , an}.

Theorem 2. Let A ∈ Cm,m be nonsingular and diagonalizable. We assume that

A has no negative real eigenvalues and r > 0. Then lim
n→∞

Xn = A−1/2, where A−1/2

is the matrix principal inverse square root of A.

�����. We define Kn = V −1XnV . From (I) it follows that

K0 = I,

Kn+1 = (1 + r)Kn(rI +DK2n)
−1.(5)

The sequence (5) is a sequence of diagonal matrices Kn = diag{k(n)1 , . . . , k
(n)
m }. The

equation (5) is equivalent to m scalar equations

k
(0)
i = 1,

k
(n+1)
i =

(1 + r)k(n)i

r + ai(k
(n)
i )

2
.

Application of Theorem 1 yields lim
n→∞

k
(n)
i = 1/

√
ai. Now,

lim
n→∞

Kn = D−1/2 and lim
n→∞

Xn = A−1/2.

�
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Stability analysis.
We apply a technique presented in [3] and assume that in the iterative step n of

method (I), we compute an approximation Yn of the exact matrix Xn. From the

proof of Theorem 2 we conclude that there exists εi such that

k
(n)
i = εi + 1/

√
ai.

We will assume that

En = Yn −Xn = O(ε),

where ε � max
i
|εi|.

Using the following result in [4]:

(A+B)−1 = A−1 −A−1BA−1 + O(‖B‖2),

we have

Yn+1 = (1 + r)(Xn + En)(rI +A(Xn + En)
2)−1

= (1 + r)(Xn + En)((rI +AX2n)
−1 − (rI +AX2n)

−1A(XnEn + EnXn)

× (rI +AX2n)
−1) +O(ε2).

If we define Fn = V −1EnV , then

Fn+1 = (1 + r)Fn(rI +DK2n)
−1 − (1 + r)Kn(rI +DK2n)

−1D(KnFn + FnKn)

× (rI +DK2n)
−1 +O(ε2).

Writing the above equation elementwise we get

f
(n+1)
ij =

1 + r

r + aj(k
(n)
j )

2
f
(n)
ij −

(1 + r)k(n)i ai(k
(n)
i + k

(n)
j )

(r + ai(k
(n)
i )

2)(r + aj(k
(n)
j )

2)
f
(n)
ij +O(ε2).

Moreover,

f
(n+1)
ij = c

(n)
ij f

(n)
ij +O(ε2), where c

(n)
ij =

r −
√

ai/aj

1 + r
.

To ensure the numerical stability of the method (I) we require

(6)

∣∣∣∣r −
√

ai/aj

∣∣∣∣ � 1 + r.
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If the eigenvalues of A are real and positive then (6) is equivalent to

(7) 0 <
ai

aj
� (2r + 1)2.

The method (I), it is easy to see, is one parameter generalization of the method
in [3]. Namely, for r = 1 we obtain the following method considered in [3].

Method SH1:

X0 = I,

Xn+1 = 2Xn(I +AX2n)
−1.

Since the method SH1 is not stable in [3] the following alternative locally stable

method is proposed.
Method SH2:

T0 = I,

S0 = (I −A)(I +A)−1,

Tn+1 = Tn(I + Sn),

Sn+1 = S2n(2I − S2n)
−1,

Tn → A−1/2.

In the sequel we are concerned with a choice of r (r �= 1) to ensure better stability
and faster convergence than for the method SH1.

Choice of r. Let A ∈ Cm,m be diagonalizable and let us assume that the eigen-

values of A are real and ai � 1, (ai ∈ σ(A)).
For the scalar sequence

{
k
(n)
i

}
in Theorem 2 we have

(8)

∣∣∣∣k
(n)
i − 1√

ai

∣∣∣∣ =

∣∣∣√aik
(n−1)
i − r

∣∣∣
r + ai(k

(n−1)
i )2

∣∣∣∣k
(n−1)
i − 1√

ai

∣∣∣∣ .

Now, we consider the case r �
√

�(A). First we prove that

1√
ai

� k
(n)
i � 1.

For n = 0 it is obvious. From the induction hypothesis and the inequalities

r �
√

�(A) � √
ai � 1
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we have
1√
ai

� k
(n)
i � 1 � r√

ai
, i.e.

1√
ai

� k
(n)
i � r√

ai
.

Now
k
(n+1)
i � 1√

ai
.

Since ai(k
(n)
i )

2 � 1 and k
(n)
i � 1, we have

k
(n+1)
i � 1 + r

r + ai(k
(n)
i )

2
, k

(n)
i − r√

ai
� 0.

Finally,

(9)
r −√aik

(n)
i

r + ai(k
(n)
i )

2
� r − 1

r + 1
= f(r).

Since the matrix A is diagonalizable, there exists a matrix norm such that

‖Xn −A−1/2‖ = �(Xn −A−1/2) = �(Kn −D−1/2) = max
i

∣∣∣∣k
(n)
i − 1√

ai

∣∣∣∣ .

Using (8) and (9) we obtain

‖Xn −A−1/2‖ � f(r)‖Xn−1 −A−1/2‖ � . . . � (f(r))n‖I −A−1/2‖.

From the last inequality we see that the method (I) has the best rate of convergence

if we minimize f(r). Since f is increasing on the interval
[√

�(A),∞
)
, hence f

attains its minimum on this interval for r =
√

�(A). It is easy to see that for

r =
√

�(A), ai � 1 the inequality (7) is also valid because ai/aj � �(A). So, this
choice of r ensures the local stability of the method (I), which is not the case for

r = 1. In the next section we shall show some other adwantages of this choice of r.
The operation counts for one stage of each iteration, measured in flops are given

in the following table:

flops per stage general hermitian pos. definite
method (I) 3m3 3m3/2

From [3], if the matrix A is hermitian positive definite, then the costs for the

methods SH1 and SH2 are approximately 3m3/2 and 2m3 flops per iteration, respec-
tively. If the matrix A is general the costs for the methods SH1 and SH2 are 3m3

and 4m3 flops per iteration, respectively. We see that the costs per iteration for the
method (I) are equal to the costs per iteration for the method SH1, and the costs

per iteration for the method (I) are less than the costs per iteration for the method
SH2.
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������. If the eigenvalues of A ∈ Cm,m are real and

0 < a1 � a2 � . . . � am,

where a1 �= 1, then for the eigenvalues b1, . . . , bm of the matrix B = 1
a1

A we have

1 = b1 � b2 � . . . � bm.

We define the following method:

Method (II):

Y0 = I,

Yn+1 = (1 + r)Yn(rI +BY 2n )
−1,

Xn =
1√
a1

Yn,

where a1 = min
i

ai, ai ∈ σ(A). Then the matrix sequence {Xn} converges to A−1/2

and

‖I −BY 2n ‖ = ‖I −AX2n‖.

3. Numerical examples

In this section we have used the Frobenius matrix norm

‖A‖ =

√√√√
m∑

i=1

m∑

j=1

|aij |2,

and the error en = ‖I −AX2n‖.
	
����� 1. Let A be the inverse Hilbert matrix of order 4,

A = invhilb(4) =




16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800


 ,

σ(A) = {0.66657, 5.9122, 148.40596, 10341.0524},

In this example the method SH1 is not stable and diverges.
For the method SH2 we have obtained e9 = e10 = e11 = . . . = 0.5 and the error

cannot be decreased by further iterating.
For the method (II) where B = 1

0.66657A, r =
√

�(B) = 124.55, after 450 iterations

we have e450 = 9.8E − 4. In this example the method (II) is more precise than the
method SH2, while the method SH1 diverges.
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����� 2. Let A be the Pascal matrix of order 6,

A = pascal(6) =




1 1 1 1 1 1

1 2 3 4 5 6
1 3 6 10 15 21

1 4 10 20 35 56
1 5 15 35 70 126

1 6 21 56 126 252




,

σ(A) = {0.003, 0.064, 0.489, 2.044, 15.55, 324.4}.

In this example the method SH1 is not stable and diverges.

For the method SH2 we obtain e6 = e7 = e8 = . . . = 0.168 and the error cannot

be decreased by further iterating.

For the method (II) whereB = 1
0.003A, r =

√
�(B) = 332.868, after 1000 iterations

we have e1000 = 4.84E − 3.

	
����� 3.

A = 3I + hadamard(4) =




4 1 1 1

1 2 1 −1
1 1 2 −1
1 −1 −1 4


 ,

σ(A) = {1, 5}

where hadamard (4) is the Hadamard matrix of order 4. The method (I) where

r =
√

�(A) =
√
5 converges within 1 iteration and e1 = 5.41E−7, while the method

SH1 converges within 5 iterations and e5 = 5.27E − 7. In this example the method
(I) converges faster than the method SH1.

	
����� 4.

A =




0.003 0.01 1.5 0.5
0 0.003 0.5 0.5

0 0 0.003 1
0 0 0 0.0033


 ,

σ(A) = {0.003, 0.0033}.

The method (II) where B = 1
0.003A, r =

√
�(B) = 1.0488 converges within 6 itera-

tions and e6 = 4.26E − 3, while the method SH1 converges within 9 iterations and
e9 = 8.96E − 3. In this example the method (II) converges faster than the method
SH1.
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Single precision calculations were used for all the four examples.

Acknowledgment. I thank the referee for his suggestions.

References

[1] A.J. Hoffman, K. Fan: Some metric inequalities in the space of matrices. Proc. Amer.
Math. Soc. 6 (1955), 111–116.

[2] P. Lancaster: Theory of Matrices. Academic Pres, New York, 1969.
[3] N. Sherif: On the computation of a matrix inverse square root. Computing 46 (1991),
295–305.

[4] G.W. Stewart: Introduction to Matrix Computation. Academic Pres, New York, 1974.

Author’s address: Slobodan Lakić, University of Novi Sad, Technical Faculty “Mihajlo
Pupin”, 23000 Zrenjanin, Yugoslavia.

410


		webmaster@dml.cz
	2020-07-02T09:26:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




