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Abstract. In this paper we propose a procedure to construct approximations of the
inverse of a class of Cm differentiable mappings. First of all we determine in terms of the
data a neighbourhood where the inverse mapping is well defined. Then it is proved that
the theoretical inverse can be expressed in terms of the solution of a differential equation
depending on parameters. Finally, using one-step matrix methods we construct approximate
inverse mappings of a prescribed accuracy.
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1. Introduction

The aim of this paper is to propose a constructive method to provide continuous

approximate functions and error bounds of the local inverse of a class of differentiable
mappings acting between finite-dimensional Banach spaces. More precisely, we con-

sider mappings f : Ω ⊂ E → E, which are Cm continuously differentiable in an open
set Ω containing a disk centered at the origin of the finite-dimensional Banach space

E, satisfying the conditions

(1.1) f(0) = 0, and Df(0) is an isomorphism.

The paper is organized as follows. In Section 2 we determine, in terms of the data,

a neighbourhood where a mapping f of a clas Cm in Ω and satisfying (1.1) is invertible
and its inverse mapping is expressed in terms of the solution of a differential initial

*This work has been supported by the D.G.I.C.Y.T. grant PB93-0381 and the Generalitat
of Valencia grant GV1118/93.
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value problem depending on parameters. In Section 3, using one-step matrix methods

for the numerical solution of initial value matrix differential problems, we construct
an approximate inverse mapping whose error in the predetermined neighbourhood is
uniformly upper bounded by a prescribed admissible error ε.

If A is a matrix in �
r×q we denote by ‖A‖ its operator norm which may be

computed by the square root of the maximum of the set

{
|z| : z eigenvalue of AHA

}

where AH denotes the conjugate transpose of A, see [13, p. 21]. If f is a differentiable

mapping f : E → E, where E is a finite-dimensional Banach space, we denote by
‖Df(x)‖ the supremum of the set

{‖(Df(x))(v)‖ ; v ∈ E, ‖v‖ � 1} .

The open disk of radius r > 0 centered at the origin of E is denoted by Ur and
the corresponding closed disk is denoted by Dr. The set of all continuous linear

mappings u : E → E, endowed with the operator norm ‖u‖ = sup {‖u(x)‖ ; ‖x‖ � 1}
is a Banach space denoted by L(E, E).

If A is a matrix in �
p×q , then it follows from [5, p. 14] that

(1.2) max |aij | � ‖A‖ � √
pq|aij |

2. The inverse mapping as the solution of a differential equation

depending on parameters

We begin this section with a lemma which determines the neigbourhood where
the differential equation satisfied by the inverse mapping is well stated.

Lemma 2.1. Let E be a finite dimensional Banach space, let Ω be an open set
in E containing a closed disk Dr of radius r > 0 centered at the origin of E, and let

f : Ω→ E be a differentiable mapping of class C2 such thatDf(0) is an isomorphism.
(i) Let M0 = sup

{
‖D2f(y)‖ ; ‖y‖ � r

}
and let r′ > 0 be defined by

r′ = min
{
r,

[
2‖(Df(0))−1‖M0

]−1}
.

Then for x ∈ Ur′ , Df(x) is an isomorphism and

(2.1) sup
{
‖(Df(z))−1‖ ; ‖z‖ < r−1

}
� 2‖(Df(0))−1‖.
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(ii) Let us consider the mapping H : Ur′ −→ L(E, E) defined by H(x) =

(Df(x))−1. Then

(2.2) sup {‖H(x)‖ ; ‖x‖ < r′} � 4M0‖(Df(0))−1‖2

where M0 is defined in (i).
Let γ > 0 and let G : Ur × Uγ → E be defined by

(2.3) G(x, v) = (Df(x))−1 (v).

Then G satisfies the Lipschitz condition

(2.4)
∥∥G(x, v) −G(y, v)

∥∥ � 4γM0

∥∥(
Df(0)

)−1∥∥2‖x− y‖; x, y ∈ Ur′ , v ∈ Uγ .

�����. (i) From the Mean Value Theorem [2, p. 158], if x ∈ Ur one gets

‖Df(x)−Df(0)‖ � ‖x‖M0.

From the definition of r′, if ‖x‖ < r′ it follows that

‖Df(x)−Df(0)‖ <
∥∥(Df(0))−1

∥∥−1 .

The perturbation lemma [3, p. 584] and the last inequality imply the invertibility of

Df(x). �

From the Banach lemma, the Mean Value Theorem and the definition of r′ it

follows that

∥∥(Df(x))−1 − (Df(0))−1
∥∥ � ‖(Df(x))−1‖‖(Df(0))−1‖‖Df(x)−Df(0)‖

< ‖(Df(x))−1‖‖(Df(0))−1‖r′M0,∣∣‖(Df(x))−1‖ − ‖(Df(0))−1‖
∣∣ < ‖(Df(x))−1‖‖(Df(0))−1‖r′M0,

‖(Df(x))−1‖
(
1− r′M0

∥∥(Df(0))−1
∥∥)

< ‖(Df(0))−1‖,
‖(Df(x))−1‖ <

(
1− r′M0

∥∥(Df(0))−1
∥∥)−1 ‖(Df(0))−1‖

< 2‖(Df(0))−1‖.

Thus (2.1) is proved.
(ii) Note that H(x) = (g2 ◦g1)(x), where g1 : Ur′ −→ L(E, E) and g2 : L(E, E)→

L(E, E) are defined by g1(x) = Df(x) and g2(y) = y−1, respectively. From Theorem
8.2.1 of [2, p. 149] it follows that H ′(x) = g′2(g1(x)) · g′1(x). Hence, from Theorem
8.3.2 of [2, p. 151] it follows that

(2.5) ‖g′2(g1(x))‖ = ‖g′2(Df(x))‖ �
∥∥(Df(x))−1

∥∥2 .
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Taking into account that g′1(x) = D2f(x), from (2.5) we obtain that

(2.6) ‖H ′(x)‖ �
∥∥(Df(x))−1

∥∥2 ‖D2f(x)‖.

From (2.6) and (2.1) one gets (2.2).

Note that G(x, v) = (Df(x))−1(v) = H(x)(v). From the Mean Value Theorem
and (2.2) it follows that

‖G(x, v) −G(x, y)‖ = ‖H(x)(v)−H(y)(v)‖ = ‖[H(x)−H(y)](v)‖
� ‖H(x)−H(y)‖‖v‖ � ‖H(x)−H(y)‖γ
� sup {‖H ′(z)‖ ; ‖z‖ < r′} γ‖x− y‖.

From (2.6) and (2.1) one gets (2.4).

Theorem 2.1. Let E be a finite-dimensional Banach space, let Ω be an open set
in E containing a closed disk Dr of radius r > 0 centered at the origin of E. Let

f : Ω → E be a differentiable mapping of class Cm, m � 2, such that f(0) = 0 and
Df(0) is an isomorphism.

(i) Let r′ > 0 be defined by Lemma 2.1 and let us consider the differential system
depending on parameters

(2.7)
dx
dt
= G(x, v) ; x(0, v) = 0, ‖v‖ < γ

where G(x, v) is defined by (2.3) and γ > 0. Let δ be defined by

(2.8) δ = 2‖(Df(0))−1‖r′
[
1 + 2r′M0γ‖(Df(0))−1‖

]
.

Then the system (2.7) has only one solution in the interval ]−δ, δ[.
(ii) Let δ be defined by (2.8) and let ε = γδ/2. Then the function f : Ur′ → Uε

admits an inverse mapping g : Uε → Ur′ , defined by

g(v) = X(δ/2, 2v/δ), v ∈ Uε

where x(t, v) is the solution of (2.7).

�����. (i) From Lemma 2.1, Df(x) is an isomorphism for x ∈ Ur′, and thus

problem (2.7) is well stated. From Theorem 10.7.1, 10.7.3 and 10.7.4 of [2], for every
x ∈ Uγ there exists a unique solution t → x(t, v) of problem (2.7) of class Cm−1

defined in ]−δ, δ[ such that

df(x(t, v))
∂x(t, v)

∂t
= v.
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Consequently, df(x(t,v))dt = v, and then f(x(t, v)) = tv + Φ(v). Taking t=0, we
conclude that Φ = 0 and

(2.9) f(x(t, v)) = tv.

(ii) Let δ be defined by (2.7) and let g(v) = x(δ/2, 2v/δ) for v ∈ Uε with ε = γδ/2.

From (2.9) it follows that

(f ◦ g)(v) = f (x(δ/2, 2v/δ)) = v

and f ◦ g = Id. Thus, g is a right inverse mapping of f of class Cm−1, where

g : Uε → Ur. Otherwise, as (Df)−1 is of class Cm−1, the identity Dg = (Df)−1 ◦ g

shows that g is of class Cm indeed. Furthermore, the equality f ◦g = Id, implies that

Df(0) ◦Dg(0) = Id. Since Df(0) is an isomorphism, we conclude that Dg(0) is also
an isomorphism. Thus we can apply the first part of the proof to the mapping g,

obtaining a right inverse h for it, i.e., g ◦ h = Id, in an appropiate neigbourhood of
the origin. From the equations f ◦ g, g ◦ h = Id, it follows that f = h and the result

is proved. �

The following example shows the utility of the above theorem in the case where
the inverse mapping is known.

�����	
 2.1. Let f : �n → �n be the function f(x) = Ax, where x ∈ �n

and A is an invertible square matrix of order n. Since f ′(x) = A, the corresponding
differential system (2.7) takes the form

dx(t, v)
dt

= A−1(v), x(0, v) = 0.

Integrating one gets x(t, v) = A−1vt, and the solution x(t,v) is defined on the whole
real line. Taking any values of r and of the corresponding δ given by Theorem 2.1,

the inverse mapping is

g(v) = x

(
δ

2
,
2v
δ

)
= A−1v
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3. Approximate inverse mappings and error bounds

For the sake of clarity of presentation we summarize some results about the nu-
merical solution of initial value matrix problems recently given in Section 2 of [9].

Let us consider the problem

(3.1) Y ′(t) = f(t, Y (t)), Y (0) = Y0 ∈ �
r×q , 0 � t � b

where f : [0, b] × �
r×q −→ �

r×q is bounded, continuous and satisfies the Lipschitz
condition

(3.2) ‖f(t, P )− f(t, Q)‖ � L‖P −Q‖,

which guarantees the existence of a unique continuously differentiable matrix function
Y (t), a solution of (3.1), [4, p. 99].

A one-step matrix method is a relationship of the form

(3.3) Yn+1 − Yn = h {B1fn+1 +B0fn} , n � 0

where B0, B1 are matrices in �
r×r and Yn, fn = f(tn, Yn) ∈ �

r×q , tn = nh ∈ [0, b],
h > 0 and

(3.4) B0 +B1 = I.

Let Cs be the matrix in �
r×r defined by

(3.5) C0 = 0; C1 = I − (B0 +B1) = 0; . . . ; Cs =
I

s!
− B1
(s− 1)! ; s = 2, 3, . . .

The method (3.3)–(3.4) is said to be of order p, if in (3.5) we have C0 = C1 =

. . . = Cp = 0 and Cp+1 �= 0.

Theorem 3.1. ([9]) Let us consider a one-step matrix method of the type (3.3)–
(3.4) of order p � 1, and let h, Γ∗ be positive constants defined by

(3.6) h < (L‖B1‖)−1 , Γ∗ = (1− hL‖B1‖)−1 ,

where L is the Lipschitz constant given by (3.2). If G and D are given by

(3.7) G = ‖Cp+1‖, D � max
{
‖Y p+1(t)‖; 0 � t � b

}
,
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where Y (t) is the theoretical solution of (3.1), then the discretization error, en =

Y (tn)− Yn, is upper bounded by the inequality

(3.8) ‖en‖ � Γ∗hpGDtn exp(Γ∗LB∗tn), n � 0.

�����	
 3.1. Let us consider the one-step matrix method

(3.9) Yn+1 − Yn = hfn ; n � 0, Y0 = Ω

where A0 = I, B0 = I, B1 = 0. From (3.5) it follows that C0 = C1 = 0 and
C2 = I/2 and thus the method (3.9) is of order p = 1. In accordance with the

notation of Theorem 3.1, we have C = ‖C2‖ = 1/2, Γ∗ = 1,

(3.10) D2 �
{
‖Y (2)(t)‖ ; t ∈ [0, b]

}

and the discretization error en verifies

(3.11) ‖en‖ � htnD2
2
exp(Ltn), n � 0, tn = nh

From a practical point of view it is important to obtain the constant D2 in terms
of the data because the theoretical solution Y (t) of problem (3.1) is not known. For

the sake of clarity of presentation we recall the concept and some properties of the
Kronecker product of matrices. If A = [aij ] ∈ �

m×n and B = [bij ] ∈ �
r×s , then the

Kronecker product of A and B, denoted by A⊗B, is the block matrix defined by

A⊗B =




a11B . . . a1nB
...

...
...

am1B . . . amnB


 .

The column vector operator acting on the matrix A ∈ �
m×n is defined by

vec(A) =




A.1
...

A.n


 , A.k =




a1k
...

amk


 .

If A ∈ �
m×n , Y ∈ �

n×r and B ∈ �
r×s , then [6, p. 25], implies that

vec(AY B) = (BT ⊗A) vecY
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where BT is the transpose matrix of B. If Y = [yij ] ∈ �
p×q and X = [xrs] ∈ �

m×n ,

then [6, p. 62 and p. 81], yields

∂Y

∂xrs
=




∂y11
∂xrs

. . .
∂y1q

∂xrs

...
...

...
∂yp1

∂xrs
. . .

∂ypq

∂xrs


 ; ∂Y

∂X
=




∂Y
∂x11

. . . ∂Y
∂x1n

...
...

...
∂Y

∂xm1
. . . ∂Y

∂xmn


 .

The chain rule for the derivative of a matrix Z = Y (X) with respect to a matrix X ,
with X ∈ �

m×n , Y ∈ �
n×r , Z ∈ �

p×q , takes the form [6, p. 88], [14]

(3.12)
∂Z

∂X
=

[
∂[vecY ]T

∂X
⊗ Ip

] [
In ⊗

∂Z

∂ vecY

]
.

If we consider the theoretical solution x(t, v) of problem (2.7) in an interval [0, δ∗]

where δ∗ < δ and δ is defined by (2.8), then by virtue of (3.12) the second derivative
of the solution x(t, v) of problem (2.7) takes the form

(3.13)
d2x(t, v)
dt2

=
([
vec(Df(x(t, v)))−1(v)

]T ⊗ In

) ∂ (Df(x(t, v))−1 (v)
∂ vecX

where n is the dimension of the Banach space E. Taking into account that [11,
p. 439] yields

(3.14) ‖A⊗B‖ = ‖A‖‖B‖

we obtain from Lemma 2.1, Theorem 2.1 and (3.12), (3.13), (3.14), that

(3.15) sup

{∥∥∥∥
d2x(t, v)
dt2

∥∥∥∥ ; 0 � t � δ∗ < δ, ‖v‖ < γ

}
� 8

∥∥(Df(0))−1
∥∥3M0γ

2.

Thus for the problem (2.7), the constant D2 appearing in (3.11) takes the form

(3.16) D2 = 8γ
2
∥∥(Df(0))−1

∥∥3M0.

The following result summarizes the procedure for constructing approximate in-
verse mappings and its proof is a direct consequence of Lemma 2.1, Theorem 2.1 and

(3.11), (3.16).

Theorem 3.2. Let γ > 0 and let E be a finite-dimensional Banach space, let Ω
be an open set in E containing a closed disk Dr of radius r > 0 centered at the

origin of E. Let f : Ω → E be a differentiable mapping of class Cm, m � 2, such
that f(0) = 0 and Df(0) is an isomorphism. Let δ∗ < δ where δ is defined by (2.8),
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let L = 4γM0‖(Df(0))−1‖2 and D2 = 8γ2
∥∥(Df(0))−1

∥∥3M0. Let us consider the

one step method

(3.17) Yn+1 − Yn = h [Df(Yn)]
−1 (v) ; Y0 = 0, 0 � n � N − 1

where γ > 0, h > 0, v ∈ E, ‖v‖ < γδ∗/2 and N = [δ∗/h] = 2p is an even integer.

Let us define the approximate inverse mapping ĝ(·, h, γ) : Uγδ∗/2 → Ur′ by the

expression

(3.18) ĝ(v, h, γ) = YN/2(2v/δ∗)

where r′ is given by Lemma 2.1.

The error of ĝ with respect to the theoretical inverse mapping f−1 of f is upper

bounded by the inequality

(3.19) ‖f−1(v)− ĝ(v, h, γ)‖ � hγ‖(Df(0))−1‖K(γ) exp[K(γ)]; ‖v‖ < γδ∗/2

where

(3.20) K(γ) = 4γM0‖(Df(0))−1‖3(1 + 2r′M0γ)‖(Df(0))−1‖)r′.

Given an admissible error ε > 0, taking h < ε
[
γK(γ)‖(Df(0))−1‖ exp(K(γ))

]−1
,

the corresponding approximate mapping ĝ(., h, γ) satisfies

(3.21) ‖f−1(v) − ĝ(v, h, γ)‖ < ε, v ∈ Uγδ∗/2.

�
���� 3.1. Note that by Theorem 3.2, for a given admissible error ε > 0, the
error bound (3.19) as well as the domain of the inverse f−1 and of the approximate

inverse ĝ(., h, γ) depend on the parameter γ. So, the required size of h and the
domain of the inverse change if the parameter γ changes. This fact is illustrated by

the next example.

�����	
 3.2. Let us consider the mapping f : �2×2 → �2×2 defined by

(3.22) f(X) = X2 +X.

By Theorem 8.14 of [2, p. 148] it is easy to show that

Df(X) : �2×2 → �2×2,
(Df(X))(V ) = XV + V X + V, V ∈ �2×2, X ∈ �2×2,(3.23)
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It is clear that f(0) = 0 and (Df(0))(V ) = V . Thus Df(0) is an isomorphism,

and the condition (1.1) is satisfied. Let us take r = 1, then in accordance with the
notation of Lemma 2.1, Theorem 2.1 and Theorem 3.2 we have (Df(0))−1(V ) = V

and

‖(Df(0))−1‖ = 1, M0 = 3, r′ = 1/6, L = 4‖(Df(0))−1‖2M0 = 12γ

δ =
1
3
(1 + γ), D2 = 24γ2, K(γ) = 2γ(1 + γ).

Note that to compute the constant δ appearing in (2.8) we need the expression of
(Df(0))−1 which, by Lemma 2.1, is well defined for ‖X‖ < 1/6. From (3.22), if X ,

T are matrices in �2×2 and ‖X‖ < 1/6, it follows that

(Df(X))(T ) = TX +XT + T = (X + I)T + TX

(Df(X))−1((X + I)T + TX) = T

and in view of linearity

(X + I)(Df(X))−1(T ) + (Df(X))−1(T )X = T.

If we denote A = (Df(X))−1(T ), then it follows that A satisfies the Sylvester matrix

equation

(3.24) (X + I)A+AX = T.

Taking into account [8] and [1] or [12], we can write

A = (Df(X))−1(T )(3.25)

= [(1 + trX)T + TX −XT ]
[
(1 + trX + |X |)I + (2 + trX)X +X2

]−1

where trX denotes the trace of X and |X | denotes the determinant of X . The

one-step method (3.9) takes the form

Xn+1 = h
n∑

j=0

(Df(Xj))−1(V ), ‖V ‖ < δ∗γ/2.(3.26)

Taking N = 10, Table 1 shows the results obtained for different values of the pa-
rameter γ where E(γ, h) = 2h(1 + γ)γ2 exp(2γ(1 + γ)). The approximate inverse
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mapping for different values of h is given by ĝ(V, h, γ) = 2
δ X5.

γ δ h Error bound E(γ, h)

0.1 0.366666 0.036666 1.0051685×10−3

0.2 0.400000 0.040000 6.205725×10−3

0.3 0.433333 0.043333 2.212012×10−2

0.4 0.466666 0.046666 6.407588×10−2

0.5 0.500000 0.050000 1.680633×10−1
Table 3.1. Example 3.2

Using Mathematica, [15], for h = 0′0400, δ = 0′4 and V =

[
0.01 0.01

0 0.01

]
from

(3.25) one gets the value of the approximate inverse at V ,

ĝ(V, 0′04, 0′2) =
2
0′4

X5 = 5× 10−3
[
1.99681 1.99363

0 1.99681

]
.
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