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SEQUENTIAL ESTIMATION OF SURVIVAL FUNCTIONS 

WITH A NEUTRAL TO THE RIGHT PROCESS PRIOR* 

DOMINGO MORALES, LEANDRO PARDO, VICENTE QUESADA, Madrid 

(Received April 27, 1991) 

Summary. In this work, a parametric sequential estimation method of survival functions 
is proposed in the Bayesian nonparametric context when neutral to the right processes are 
used. It is proved that the mentioned method is an 1-SLA rule when Dirichlet processes 
are used; furthermore, asymptotically pointwise optimal procedures are obtained. Finally, 
an example is given. 

Keywords: Survival analysis, Bayesian nonparametric inference, neutral to the right pro­
cesses, Dirichlet processes, sequential analysis, stopping rules, 1-SLA rule, asymptotically 
pointwise optimal procedures 

AMS classification: Primary 62L20, secondary 62F15, 62G05 

1. INTRODUCTION 

Let 5 be a survival function on the positive real line and let T\,..., Tn be a random 
sample from S. There is a positive cost c > 0 each time the statistician looks at a 
new observation. We consider the following loss function 

(1-1) L(5 ,5)=/ (S(t)-S(t))2dW(t), 
JR+ 

where W is some finite measure on R+ not having common atoms with the probability 
measure given by the survival function So, which represents the prior knowledge. The 
purpose of this article is to investigate a sequential nonparametric problem from a 
Bayesian viewpoint using a neutral to the right process prior (N.R.P.), and the 

* The research in this paper was supported in part by DGICYT Grant N. PB91-0387. 
Their financial support is gratefully acknowledged. 
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estimation of survival functions on the real line. See Ferguson [4] and Doksum [2] 

for definitions and properties of the random survival functions. 

After each observation, the statistician must decide whether to take another ob­

servation or to stop sampling and choose an estimate S. In this work, we present 

a sequential estimation method based on a parametric technique given by Morales, 

Quesada and Pardo [6], We prove that if a Dirichlet process prior (D.P.) is used, then 

the parametric procedure is equal to the l-SLA method (1-stage-look-ahead) pro­

posed by Ferguson [5]. Furthermore, asymptotically pointwise optimal rules (A .P.O.) 

in the sense of Bickel and Yahav [1] are given. 

Only in very exceptional parametric cases it happens that an optimal Bayes stop­

ping rule can be found explicitly. In the Bayesian nonparametric context, approxi­

mation to the optimal rule must be found. 

2 . 1-SPLA ESTIMATION WITH N . R . P . PRIOR 

In this section, we give a parametric sequential method to estimate survival func­

tions: 1-stage parametric look ahead method (1-SPLA). 

Let T ^ 0 represent the time taken for an event of interest to occur. We suppose 

that the prior distribution over the space of survival functions is given by a N.R.P. 

S(t) = exp ( — Y(t)), where Y(t) is a stochastic process with independent incre­

ments verifying: (1) Y(t) is non-decreasing a.e., (2) Y(t) is right continuous a.e., 

(3) \imY(t) = 0 a.e., (4) lim Y(t) = oo a.e. We will denote the moment generating 

function of Y(t) by Mt(a) = F(exp ( - aY(t))). 

Note that, for each fixed t > 0, S(t) is a random variable which can be represented 

by 0t G [0,1], and whose probability distribution function can be obtained as a 

marginal distribution of the N.R.P. prior. Let X* be a random variable such that 

X% = 1 if T > t and Xf = 0 if T ^ t, then X* has a Bernoulli distribution with 

parameter 0t. After observing a sample T\,..., Tn from the random variable T, we 

have immediately a sample A'} , . . . , Xn of X1. Consequently, for each fixed t > 0, we 

have a parametric Bayesian estimation problem where we observe a random sample 

from a Bernoulli (0t) distribution and 0t is a random variable whose prior distribution 

is a marginal distribution from the N.R.P. prior. 

Under these hypotheses, we state the problem of sequentially estimating 9t with 

quadratic error loss, L(9t,9t) = (0t — 0t)
2, and constant cost function c > 0. So the 

problem is to find a stopping rule ip, and a terminal decision rule 0t, such that (tp, 0t) 

is Bayes with respect to the prior distribution of 0t. See Ferguson [3] for elementary 

facts about sequential and Bayesian decision theory. 
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For each positive integer n, the Bayes terminal decision rule is the Bayes rule in the 
problem with fixed size sample A'{, . . . , Xn. The likelihood function of A'{, . . . , Xn is 

f(x\,...,Xn\9t) = o<(\-etr->'«, 

n n 
where sn = J~] x\ is the realization of the sufficient statistic nSn(t) = Yl Xf. 

t = i 1 = 1 

For ease of exposition we omit index t when it is not essential. More concretely, 
we will write 0 instead of 0t in what follows. Let g(0) be the prior distribution of 0, 
then the posterior distribution is 

9io\x\,...,Xn) = 9(o\sn)= g Q W . - X I * ) 
1 " ti9(0)f(x\,...,xn\0)d0' 

and the Bayes rule for fixed size sample under squared-error loss is 

£(>i,l 4 ) - ^ K ) - ^ , w / ( , { ' ' ' ^ - y ' r 1 ' ' ! . 
1 J0

19(6)f(*\,...,*n\e)d9 T(n,sn,0,t)' 

where 

T(n,sn,k,l)= ~ ^ " ( - l ) " - ' : ' - - ' ' ( n ~ S n ) A I < ( " - J + *), * = 0 ,1 ,2 , . . . . 

The expression Sn(t) = T(n, -J,, 1, t)/T(n, sni 0, /) is a survival function when t 
varies in (0,oo) as can be seen in Morales, Quesada and Pardo [6]. 

For some known N.R.P., the expressions of Sn(t) are: 
(a) For Dirichlet process with parameter a(t): 

r(M)r(M-a(t) + a) 
< W ~ r(M-a(t))r(M + a)' 

5n(<) ~ M T ~ 5 O ( < ) + ~7T~5n(<)' where M ~ a ( + o o ) 

and 

So(t) = E(S(t)) = ^ l . 

Sn(t) is equal to the Bayes estimator. See Ferguson [4]. 
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(b) For Gamma-exponential process with parameter (A(t),c): 

a \ - c A (0 
Mt(a)= (l + £)' 

_ E У - f r - i Г - ^ Г / O + (»+1 -j)/ç)-tm 

Ľľ_ó<"(-i)"---Ҷn7'")(i + (» - i)A)' 
Ą . ( 0 = ' , \ м , c > 0 . 

(c) For Homogeneous simple process with parameter (A(_)»_»): 

a - 1 . 

Af.(a) = exp { - 6A(0 £ T - J - - } , a _ N, 6 > 0, 

s U) _ E;:,'-(-iy r/-) «p (- »A<Qn_. &) 
E;:,,"(-iy(n7")exP(-6A(0Er=7-i-ii)' 

For a fixed t > 0, the posterior risk is 

ft,(*i,-...*„,0 = *.(«.., 0 = E(e'/nSn(t) = s'n) - [E{0/nSn(l) = sn)]2 = 

T(n,sn,2,t) (T(n,sn,l,t)Ý = T(n,sn,-г,t) _ ҐГ(n,sn,l,t)y 

T(n,sn,0,t) \T(n,sn,0,t)) 

In order to obtain global estimators, in the sense of not depending on ,, we give 

the following definition: 

Definition 2.1. The global posterior parametric Bayes risk is 

«n(«i,. . .,*»)= / Qn(sn,t)dW(t), 
Jo 

where (t\,..., tn) is a realization of (T\,..., Tn) and W(t) is a finite measure on R+ 

not having common atoms with 5o(0 = E(S(t)). 

Our purpose is to obtain a stopping rule of the kind 1-SLA; i.e., such a rule 

for stopping or continuing sampling, which is optimal among those rules taking at 

most one more observation at each stage. We need to calculate, for each t > 0, the 

expected Bayes risk when x\,..., xn has been observed and when it has been decided 

to observe the next Kn+1. The marginal density function of X\,..., Xn is 

f(x\,...,xn)= f f(x\,...,xn\O)g(0)dO = / V - ( l - H ) " - - « ( . ) < „ = 
JO JO 

= T(n,s'n,0,t), 
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and the marginal density of Xn+l | X\ = x\t..., Xn = xn is 

fix* lx< _M-.>Vi.--.*U.) r(n+l,4+1,0,0 ., . _ . 

and 
«_* i_ ť

 M _ ___________________ i f , _ 
/(-V. + 1 1*1. • • , * » ) - T ( „ i S « i 0 i í ) tf*» + l - 0 . 

By taking expectations with respect to / ( 4 + i I XD • • • > xn)> w e define, for a fixed 
- > 0, the expected parametric Bayes risk 

A(tu.-..ttntt) = E[9n(X\t...tXntXn+vt)\X\=x\t...tXn^ 

= T ( n + l , 5 n , 2 , Q T ( n + l , 5 T O , 0 , Q - T 2 ( n + l , 4 , l , 0 
T(n+\tsnt0tt)T(ntsnt0tt) 

T(n + 1,4 + l, 2, QT(n + l , 4 + 1 , 0 , Q - T 2 ( n + 1 , 4 + 1,1,Q 
T(n + 1 , 4 + l ,0,0T(n, 4 , 0 , 0 

Now, we define the global expected parametric Bayes risk, when t\,..., tn has been 
observed and when it has been decided to observe the next T n +i, in the following 
way: 

, 0 0 
REn(tlt...ttn)= / A(tlt...ttntt)dW(t)t Jo 

which is smaller than or equal to Rn(t\,..., tn)t because for every fixed t ^ 0, we have 
a different sequential decision problem to estimate the one dimensional parameter 
5(0- Therefore, we get 

g(x\t...txntt)>E[g(x\t...txntXn+\tt)\X\=x\t...tX
i
n = xi

n]t 

for every fixed t ^ 0 (see Ferguson [3], chapter 7). Finally, by integrating on (0, oo) 
with respect to VV(0, the statement follows. Intuitively, the meaning is that the more 
observations we have the smaller risk we get. We now give the following definition: 

Definition 2.2. If T_ = t\t...tTn = tn has been observed, we define 1-SPLA 
stopping rule as the rule that stops sampling at stage n if and only if 

Rn(t\t..., tn) — REn(t\t.. .ttn) ^ c. 

Intuitively, 1-SPLA rule stops sampling when, through the infinitely many decision 
problems for each t > 0, the mean risk decrease is smaller than the cost of looking 
at a new observation. Furthermore, as 

lim Rn(t\ t...ttn) = 0 a.e. and Rn(t\,..., tn) - REn(t\ , . . . , ! „ ) ) 0 a.e., 
n—->co 
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1-SPLA rule stops with probability one. However, we can not state that 1-SPLA 
rule equals to Bayes rule; for this it is necessary that if 1-SPLA rule stops at stage 
7io, then for each posterior stage n: 

Rn(tl} • • • ,<n) — REn(t\, . . . ,tn) ^ C. 

3. 1-SPLA ESTIMATION WITH D .P . PRIOR 

In this section we prove that if the N.R.P. is a D.P. then 1-SPLA rule equals to 
1-SLA rule. Furthermore, we prove that 1-SLA rule and Bayes rule (oo-SLA) can 
be found among the truncated rules at a certain fixed stage n0. Analyzing the risks 
that appear in 1-SPLA and 1-SLA method, we observe that integral symbols can be 
interchanged because we have bounded nonnegative measurable functions and finite 
measures. 

Let 5 (0 . t ^ 0, be a D.P. with parameter a ( ) , where a ( ) is a finite non-null 
measure on R+ and M = a(R+). Let 9 be the probability measure given by the 
D.P. We write 9 e .^(a(-)), and similarly, we will denote by ^e( - , •) the family of 
Beta distributions. For each t J> 0, a(t) = a((0,*]) = MS0(t) and S(t) e &e(M -
a(t),a(t)); furthermore, after observing T\ = t\,... ,Tn = tn, &tx,...,tn € &(<*(•) + 

n 
^2 ^ti)> where 6tl is a probability measure giving mass one to the point /,-. Finally, 
f = i 
for each t ^ 0 

5(01 £ ®e(M - a ( 0 + 7i5n(0, a(t) + n - 7i5n(0) • 
l ( T i = t i , . . . , T n = f n ) 

Using the loss function (1.1), we obtain the following expression for the Bayes risk: 

Rn(&, Sn) = J ...J [J (S(t)-Sn(t))2 &3»ti tn (5(0)) MV(t) clP(/,,..., <„), 

where 5 n ( 0 *s the Bayes estimate of 5 (0 based on (t\y..., tn) and dP(t\,..., tn) is 
the unconditional density of the random sample. 

The Bayes stopping rule minimizes the inner integral, then 

Sn(t) = £7(5(0 I Tx = * , , . . . ,Tn = tn) = - r ^ 5 o ( 0 + T T ^ — Sn(t). 
Jvl + 71 JV'l + 71 

Consequently, after observing T\ = t\, . . . , Tn = f.n, the posterior Bayes risk is 

r„ (<i , . . . ,*n)= / V a r ( 5 ( 0 | T i = < i , . . . , T n = /n)dVV(0. 
JR + 
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Furthermore 

Rn(ti,...,tn)= ( ft,(xi,...,*j;,OdlV(0 = 

= J (J\s(t)-Sn(t))2(x\,...,xn)d<?t> ti(S(t)))dW(t), 

where S(t)(x\,..., xn) is the parametric Bayes estimate of S(t) based on (x\,..., xn) 
and d£?xtiXt (S(t)) is the distribution of the marginal random variable at the time 
t, when it is calculated according to the parametric method, i.e., 

d<?x{_)Xn (S(t)) = g(0 | x\,...,xn)d0, with 0 = S(t). 

Now, as & e &((*()), then 

d^,,...,x< (5(f)) = d&tl im (S(t)), Sn(t) = S(t)(x\ *B) 

and 

r„((i,. . . ,g = fln(«1,..,g = 7 r r T 7 / &(0(--&.(0)<w(0 
M + n + l Jn+ 

= (M + n)HM + n+l) / B + <M " "(<> + " 5 " ( ' » ( a ( < ) + » " 'lS»{t» d W ^ 

Similarly REn(t\,..., tn) can be obtained either by 1-SPLA method or by 1-SLA 

method; hence, both methods give the same stopping rule. To finish this section, we 
find a bound for the Bayes stopping rule. First, we observe that the loss function 
is bounded in the decision problem with t > 0 fixed. So lim VQ = V^' (Fergu-

n—»oo 

son [3]), i.e. the Bayes risk of the truncated problem at stage n approximates the 
Bayes risk of the sequential problem. Furthermore, it is easy to prove that for each 
(t\,...,£n) 

Rn(t\,..., tn) — REn(t\,..., tn) = 

= (A,+ ), + .)* /B+
 S ^ 1 - S ^ dW^ < 4(M + n + i r 

where k = VV(R+) is a positive constant proportionally related to the severity of the 
errors in estimating S(t). 

The problem can be truncated at the stage n such that 

( 3 1 ) A(M + n + l)^C-
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Finally, conditions for rules 1-SLA to be equal to Bayes rules can be found in 
Ferguson [5]. 

4. ASYMPTOTICALLY POINTWISE OPTIMAL (A.P.O.) PROCEDURES 

IN SEQUENTIAL ANALYSIS WITH N .R .P. 

Bickel and Yahav [1] give the following definitions and results: 

Definition 4.1 (B.Y.). Let Vn, n € N, be a sequence of random variables on 
a probability space (ft, F, P), where Yn is Fn-measurable and Fn C Fn+1 C F for 
n ^ 1. Let P(Yn > 0) = 1, Urn Yn = 0 a.e. and Xn(c) = Yn + tic. Let & be the 

M—*00 

class of all stopping times defined on the ^-fields Fn. Abusing our notation, in a 
fashion long used in large sample theory, use the words "stopping rule" to denote 
also a function 1(c) belonging to the class Q of functions from (0,oo) to 2?. We say 

q(c) £ Q is A.P.O. if and only if for any other 1(c) £ Q 

lmisup(K^c)(c)/X/(c)(c)) <£ 1 a.e. 

Theorem 4.2 (B.Y.). If conditions of Definition 4.1 hold and lim nYn = V a.e., 
n—>oo 

where V is a random variable such that P(V > 0) = 1, then the stopping ru/e, which 
is determined by "stop the first time (Yn/n) ^ c" is A.P.O. 

Our purpose is to adapt these results to the parametric model that we have given 
to estimate sequentially a survival function with D.P. prior. Let (Q,s/,P) be a 
probability space; u> E ft determines P-a.e. a survival function S = Sw, which is a 
sample of the D.P., and a sample realization; i.e., (T\,..., Tn)(u) = (t\,..., tn). Let 
(R+,.#+, W) be a measurable space where .3?+ is the Borel <r-field on R+ and W has 
been defined in (1.1). 

Analyzing the decision problem for a fixed t > 0 and noting that 0 = S(t) and 
X\ = /(t,oo)(<«), we observe that f(x\ \ 0) = ^ ( l - t f ) 1 - * ! is the Bernoulli probability 

function with parameter 0 = S(t), which belongs to the one parameter exponential 
family. From the properties of the Beta distribution, we have that 

5(01 e &e(M - ot(t) + nSM), c*(t) + n- nSn(t)) 

and 

gn(X{,. ..,Xn,t)= Var (5(ť) | A'{,..., „Y«) 
_ (M - a(t) + nSn(t))(g(t) + n- nSn(t)) 

( M + n ) 2 ( M + n - 1 ) 
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Now, from the properties of the Dirichlet processes, we have that &tl}...,tn £ 
n 

_*(a() + ^2 ^t.)> where Stt is a probability measure giving mass one to the point /, . 
i = l 

Then, we also have that 

5 ( 0 | £ 3St(M - a(t) + nSn(t), a(t) + n - n5„(0) 
l (Ti=t i , . . . ,T n -=t» ) 

and 
v (q(..lT r x ( M - t t ( 0 + n5 B (0 ) ( a (0 + n - n S B ( 0 ) 
V*r(S(t)\Tu...,Tn) = _ _ _ _ _ _ _ . 

Let us define Yn(t,u>) = Var (5(0 | Ti(w),... ,T„(w)); hence, P(At.) = 0, for each 

t > 0, where At» is the section of 

N = {(t,u) £ R+ x Q | nVn(0 7^ (5(0(1 - S(t))(u))}, 

which belongs to the product (T-field .#+ x tc/. Consequently, (W x P)(N) = 0. 

Observe that there exists a set D £ &/ such that P(D) = 1, and for each u) £ D, 

S()(u)) is a survival function. So, the following results are obtained for any u) £ D: 

(a) lim nYn(t,u>) = [5(0(1 - S(t))](u>) \/t > 0. 

(b) [5(0(1 - S(t))](u)) ^ I V* £ 0, hence [5 ( ) ( l - 5 ( ) ) ] (_ ) is IV-integrable. 
We now prove that for each u) £ D, [nYn(t)}N is uniformly bounded. 

Lemma 4 .1 . For each u) £ D, n ^ 2, am/ < ^ 0, we have that nYn(t,u)) ^ 2. 

P r o o f . The result follows from the inequality 

n [ A / - t t ( 0 ] + n S B ( 0 o ( 0 + n [ l - 5 B ( 0 ] 

" M l ' ' ' - JW + n - 1 M + n M + n ^ 

Theorem 4 .3 . Let us define Y„(w) = f£° Yn(t,u)dW(t). For any w € D, we 
have 

Ihn nУ„И = У°° (.9(0(1 - 5(0) И ) dИҶO. 

P r o o f . Let u) £ D fixed. As the sequence ri>„({,u;) is uniformly bounded, 

applying the dominated convergence theorem we obtain the result. • 

Consequently, by Theorem 4.2, in sequential sampling with N.R.P. prior, the rule 
"stop at the stage n such that: 

-f V&r(S(t)\Tl,...,Tn)dW(t)^cn 

n JO 

is A.P.O. 
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5. AN EXAMPLE 

The purpose of this section is to show an application of the Bayes and 1-SPLA---T-

SLA procedures to a particular case where the prior distribution on the space of 
survival functions is given by a Dirichlet process. We suppose: So(0 = 1 — '. 
W(t) = 40<, a(t) = t,te [0, I], M = a(R) = 1, k = tV(R) = 40, c = 1. Let us define 
F(t) = 1 - 5(0-

First we obtain the Bayes stopping rule. To do this, we make some previous 
calculations. We consider a sequential random sample T\,..., Tn drawn at random 
according to the above Dirichlet process {F(t)}t>Q- Remember t»a t t»e cumulative 
distribution function of T\,..., Tn is 

P(Ti ^tu...,Tn^tn) = E(F(tl),...,F(tn)), n € N . 

Distribution of T2/T\ = t\. 

If 0 < tx < t2 < 1, then 

(n .y^MFM^ ^ 

and 
^ T(M)y»^y^-^y^-^ 

y > ' , , y ' 3 W ' w " r ( A / < i ) r ( M ( < 2 - « , ) ) r ( A / ( i - < 2 ) ) 

in the set S = {(yi, y3) € R2 | yi £ 0, y3 > 0, yi + y3 <. 1}, where y2 = 1 - y, - y3, 
and zero otherwise. Also observe that 

£(V'iV3) = B(F(£t)(l - F(t3)j) = -j—t^l - h), 

P(T, $ l i ) = E ( F ( . i ) ) = £ , and P(Tt < .i,T2 <<2) = F(F(/i)F(<2)). 

Consequently for any (<i,<2) 6 R+, we obtain 

P(Tt< .< i ,T 2 <.* 2 )=0 if ( , < 0 o r / 2 < 0 , 
«,(l+A/<2) 

Л/ + 1 
if O^ťi $ ť 2 < 1, 

-ЩЌт1«•«.<«.<•• 
= <i if 0 < . ť , < l, ť 2 ^ 1, 

= <2 Іf 0 < ť 2 < 1, ťi > 1, 

= 1 if <1 ^ l, ť 2 ^ 1. 
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Furthermore, for M = 1 and any t\ E (0, 1), we have that / ( / 2 / / i ) = ^I(o,\)(h) and 
P(T2 = /2/Fi = t\) = ^ if /2 = t\, i.e., To/T\ = /i is a mixed random variable giving 
probability ^ to the point t\ and with a uniform absolutely continuous part in (0,1). 

Truncation rule. 

Truncation is at the first n verifying 4 ( A / A , ̂ 2 ^ c. In this example we obtain 

n = 2. 

Calculation of Q->(x\, ar2, / ) . 

Remember that 

£n (* i , . . . , x n , 0 = 
(nSnŕO + Л/ - o(0) (n + «(<) - nS„(/)) 

(Л/ + n)2(Л/ + n + l ) 

_ ( n 5 „ ( / ) + l -/)(?» + < - n 5 „ ( 0 ) 

( n + l ) 2 ( n + 2 ) 

where nSn(t) = __ A'/. Now , we get that 
i = l 

if/ ^ Z2 > /i, then x} = x 2 = 0 and £2(0,0,/) = ""'Vs'"1"2* 
if/2 > / ^ / i , then x\ = 0 , 4 = 1 and £2(0. V/) = ^ i ^ ± 2 , 

if/2 > / i > / , then x\ = x2 = 1 and $2(1 ,1 ,0= '^J*• 

Calculation of /?2(/i,/2) when t\ < /2 . 

/<_•(<.,<2) = J o ' t T a W . ^ a . O d ^ O = 3§ [ / o ' H 2 + 3t)<lt + f£(-t' + / + 2)d/ + 

/ t * ( - / 2 - / + 2)d/] = ^ ( / 2 + / i - 2 / , + | ) = (a). 

Symmetrically, if/2 < / , , then ft2(/,,/2) = ^ ( / ^ + /? - 2/2 + | ) = (b). 

Table for n = 2 (see nomenclature in Ferguson [3]). 

(7ì,Ta) 52(0 /г2(<ь<2) V2

(2) = f/ 2( jь< 2) 

<i <t2 
ì ( l - / ) + §52(/) (a) Ä2(<i,<2) + 2 

<1 > < 2 Ì ( І - 0 + . | 5 2 ( 0 (b) Я2(<i,<г) + 2 

Calculation of E(V2,"' \T\ = / |) (nonparametric method). 

£(V2
(2) | T, = / , ) = 2 + P(T2 = /, | T, = /,)«.(*,,<2) + / ' {-J-dl = 

- • + ? ( « . - . . + £-<'>• 
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Observe that for making this last calculation we need to know the distributions of 
the variables Tn | Ti = <i, . . . , T„_i = / „_] . This point represents a serious obstacle 
for large values of n. Alternatively, an easier way of making this calculation is given 
by 1-SPLA procedure. 

Calculation of _7(V2
(2) | T, = t\) (Parametric method). 

It is easy to prove that 

PIX* - 0 1 Y' -_-< V* -x* • - ° ( 0 + » - ^ - ( n - l ) - ? n - i ( Q n A „ - U | A , - * , A n _ _ - _ „ _ , ) - Af + n - 1 ' 

Furthermore 

_7(K2
(2) | T, = <,) = 2 + E(g2(X\, A'.) | A'{ = x\) = 2 + (d). 

Now, we obtain that 

ir< < <,, then £7(_>2(1, A'',/) | A'{ = l) = P(A'< = 1 | A'{ = \)e(l, 1,1) + P(A'< = 

0 | A'{ = l)t>(l,0,/) = ( - / 2 + 2/)/18 = (e), and 

ir <i < <, then E(Q2(0, A'.,<) | A'{ = 0) = P(A'2 = 1 | A'{ = 0)g(0,1,<) + P(:*_ = 
0 | A"{ = 0)Q(0, 0, <) = (-<2 +1) /18 = (f). 

Hence, (d) = 4 0 [ / / » < . < + Jt\ (f)d<] = f (<? - <, + §). 

Finally, E(V™ \ T, = <,) = (c). 

Calculation of Q\(x\, <), R\(t\) and Ui(<i). 

ir< <:/i , then £.,(l,/) = ( - / 2 + 2/)/12. 

If/ > <i, then £>i(0,/) = ( - < 2 + 1)/12. 

R\(tx) = f*e\(x\,t)d\V(t) = M[/0 ' ' (-<2 + 2<)d< + / (
,
i ( - / 2 + l)d<] = f ( < 2 -

<, + §)• 
U\(t\) = g\(h) + (c) = ^ ( / 2 - / , + §) + ! = (g). 

Table for n = 1. 

T, _?,(<) <?l(«l) řll(<l) £ľ(V 2
( 2 ) |T,=/,) V ( 2 ) 

tf 
0 ( i - O , S i ( 0 

2 ' 2 ( g ) - l (g) (c) (/,(/) 1 (STOP) 

As (g) < (c) because <i G (0, 1), we stop sampling at stage n = 1. 

Table for n = 0. 

[Data 5o(/) Єo Uo £ľ(V,(2)) v*(2) V? 
— l - < 3.33 3.33 2.11 2.11 0 (CONTINUE) 
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C o n c l u s i o n . 

The Bayes sequential rule is a fixed sample size rule with n = 1, and the Bayes 

risk of the example is 2.11. 

We now solve the same problem using 1-SPLA procedure: 

If n = 0, then we have to stop sampling if and only if 

M 
l— j 5 0 ( í ) ( l - 5o(<)) áW{t) $ c(M + 1). 

As the numerical values of the right and left hand sizes are -^ and 2 respectively 

and 4^ > 2, we look at a new observation. 

If 7i = 1, then we have to stop sampling if and only if 

M +
1 „ + . f &(00 - 5»(0) <w(0 ̂  <M + » + i); 

i.e., if and only if ^{t\ — <i + §) ^ 3 . This last inequality is true if t\ £ (0, 1); hence 

stop sampling . 

Finally, the optimality condition given by Ferguson [5] for the 1-SLA rule, with 

Dirichlet processes, to be a Bayes rule can be easily checked. So, in this example, 

1-SLA rule is equal to Bayes rule. We already know this fact as we have calculated 

the Bayes rule earlier. 
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