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A MIXED FINITE ELEMENT METHOD FOR PLATE BENDING
WITH A UNILATERAL INNER OBSTACLE
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Summary. A unilateral problem of an elastic plate above a rigid interior obstacle is
solved on the basis of a mixed variational inequality formulation. Using the saddle point
theory and the Herrmann-Johnson scheme for a simultaneous computation of deflections
and moments, an iterative procedure is proposed, each step of which consists in a linear
plate problem. The existence, uniqueness and some convergence analysis is presented.

Keywords: unilateral plate problem, inner obstacle, mixed finite elements, Herrmann-
Johnson mixed model, fourth order variational inequality
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INTRODUCTION

In technical applications of elastic plates, the bending moments appear to be the
most required quantities very often. For instance, in optimal design, such as mini-
murm weight problems a frequent constraint function is an integral of a quadratic form
of the moment tensor. Therefore, mixed variational methods have been developed,
in which both the deflections and the moments are computed simultaneously.

One of the most effective mixed models is the so-called Herrmann-Johnson finite
element scheme, a thorough analysis of which was given by C. Johnson and then by
Brezzi and Raviart in [2]. The advantage of the latter method is the fact, that only
standard CP%-elements are needed for the approximation of deflections, whereas piece-
wise constant elements can be used to approximate the moment field. Comodi [7]
employed the mixed finite element model of Herrmann-Johnson to the plate bending
with unilateral displacements on the boundary.

The aim of the present paper is to extend the method and the analysis to inner

obstacle problems, i.e., to variational inequalities of the fourth order.
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Following some ideas of Glowinski, Lions and Trémoliéres ([4], Section 4.2.2, Ex-
ample 3) we introduce a saddle point problem and study its existence and uniqueness
in Section 1. We present a discretization of the previous problem by finite elements in
Section 2. Its unique solvability is proved and an algorithin of Uzawa’s type proposed
for the search of the discrete saddle point. In Section 3 we investigate the distance
between the discrete and original saddle points. Under some particular assumptions,
we prove the convergence of approximate bending moments in L? and displacements
in H!, as the mesh size tends to zero.

1. A SADDLE POINT PROBLEM

Let a p > 2 be chosen. Assume that Q is a bounded domain with polygonal
boundary and Z, is a triangulation of Q. Denote by h the maximal side in Z,.
We introduce the following function spaces on the domain Q.

S = {{njlij=1,2 | 7ij € L*(Q), 112 = mo1},
Q%) ={4€S | ajlr e H(T)VT € T, i,j = 1,2,

Mp(g) continuous at each interelement edge},
where
My (q) = qijvivj, v; are components of the unit normal to the edge.

The norm in Q(Z,) is defined by

o= ( X 5 talin)

TeIn i,j=1,2

Moreover, we introduce

F = WP (Q),
A={ne L@ |1 v)e >0 YoeL=(@),v> 0},

where (-, -}, denotes the bilinear form of the duality between [L“’(Q)]’ and L*®(Q).
Assume that f € 2’ and ¢ € L®(Q) is given, such that ¢ < 0 in a neighborhood
of the boundary 99.
Let as define the following functional

1

f(v)”) = 5 [) escviojkmv’ijv'kmdx - (fl E‘U) + (“) P IUU)oo
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for v € HZ(2) and p € A, where we denote by (., .) the duality between Z’ and Z,

E embedding HZ(Q) C, 2 and
Io embedding H3(Q) C, L*(R),

e —is the thickness of the plate (possibly variable),

CJikm are coefficients of the moment - curvature relations

— 2300 ;o —
gij = ¢ Cijkmw’kmy 4LJ]= 1,2,

f is the transversal loading and ¢ the interior obstacle.
The repeated index implies sunmation within the range 1,2; v;; = 8%v/8z;0z;.
Assume that positive constants enin, €max, Co €xist such that

0
€max > €(Z) > emin, CijxmTij Tkm 2 CoTijTij V{7ij}ij=1,2, T2 = T21,
0 — 0 — 0 ]
Ciikm = Cjikm = Cimij € L=(Q).

We define the following bilinear forms

a(P, (I) = / e_sBijkaij‘Ikmdf, P, q € Q(‘%'),
1]
where B = (C°)~!;
0z
b(p,z) = z (/ Pij’jz'idz —/ Mnl(p)a_tds)ype Q(‘%l)v z € 9‘,)
TEIn T or
where

Mp(p) = pijvit; and t; are components of the

unit tangential vector to 07T.

The last integral can be interpreted as the duality pairing between the Sobolev spaces
H'/?(8T) and H-/P(3T) (cf. [2]). (Note that z € W!=1/PP(3T) for z € W'P(T).)

The form a is continuous on [Q(Z4))? and positive definite on S. The bilinear
form b is continuous on Q(Z) x Z. Another property of b will be given later in

Lemma 1.1.

Theorem 1.1. There exists a unique solution w of the problem

1
(P) w= arg n]ill{ELesc'gknlv’ijvlkm ~(f, Ev) }

veEKyp

27



where
Ko={ve H}Q) | Iov > ¢}.

There exists A° € A such that {w, A%} is a saddle point of ¥ on HZ(Q) x A and
(1) (A%, Tow — ) =0,
(2) I2° = (Clikmwikm)is — f

holds, where I§ denotes the mapping adjoint to Iy, 1§ : [L°°(Q)]' — H™%(Q).

Proof. The first assertion follows from the fact that Ky is a nonempty, convex
and closed subset of HZ(2) and the functional is strictly convex, continuous and

coercive on HZ(€2). The second assertion is a consequence of Theorem 5.1 of [3],
(p. 66). a

Corollary 1.1. If we denote
§ij = € ChimWwikm, ,j = 1,2,
then
(3) ./x;qijvlijdz =(f,Ev) + </\°, Iov>m Yv € Hg(Q)

holds.

Proof is a direct consequence of the following condition of the saddle point

H(w,X°) < H(v,2°) Yv € HJ(Q).

Lemma 1.1. (cf. [2]). For any z € 2 we have

b(p, 2
sup 2235 Clllia

re@an) lIpllQ

with some positive constant C'.
Proof. If we choose p); = z4;;, then p° € Q() (since z € C() N H{ () by

Sobolev embedding theorem) and we obtain

b(p°,2) _ IVzll§ o
“POHQ ||2||1,n\/‘2

2 Clz|lia
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using the Friedrichs inequality.
Let us introduce the following subspace of 2 x Q.

W(Zh) = {[z,d] € 2 x Q(Z) | ala,p) + b(p,2) = 0 Vp € Q(Fh)}

and denote by
InZc, L>Q), I':[L°9Q)] -2

the above mentioned embedding and its adjoint mapping. a
Theorem 1.2. Assume that
(4) {2 Ciemwikm}ii=1,2 € Q(Th),

(where w is the solution of the problem (P)).
Then there exists a saddle-point {[z, ], A} of the following functional

2([2,03) = yale.0) ~ (/,2) + (A g - I2),,
on W(Z,) x A, Le.,
(5) 2([2,4,) < 2([2,4, ) < 2Z([2,4), )

holds for all [z,q) € W(Z,) and X € A.
Moreover, we have

(6) 2= Ew, §ij=eChimwim, I'X=(Gijij) - f,

where (§ij1ij) € 2 is the extension of the functional ;j:; € H~2 by continuity, and
the following optimality condition

L]

(7) (A1 —-go)oo =0

holds for any saddle point. The first component (2, q] is uniquely determined, whereas
the second components of the saddle points may difler by elements u € [L*° ()]’ such
that X+ € A and

(8) (yp—1I12), =0 Vze Z.

Proof. Obviously, # = Fw € Z and § € Q(Z,) by assumption. Let us set
X = A% where A? is the saddle-point component of ) from Theorem 1.1. Using (6),
(2) and the decomposition Iy = I E, we may write

(I62°,0) o = (A, 1Ev) | = (E*I"X°,v) o = (I*X°, Ev) .
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Hence
(I"X°, Ez) ,, = (ijuij — f, Zpz VzE€ H3(Q)
holds and
I'A=1")= (ij05) — f

follows.
Let us verify that [z,q] € W(Z,). Indeed, for any p € Q(F,) we have

a(q,p) + b(p,2) = / weijpijde + Z (/ pijrjwi dz —/ Mp(p)ow/ot ds)
Q 7 \Jr or

= Z /67‘ (pijujw'i - M,,,(p)f)w/(?t) ds =0,
T

by virtue of the continuity of M,(p) on the interelement boundaries.
The inequalities (5) imply that a point {[, ], ;\} € W(Zh) x A is a saddle point,
if and only if the following two conditions are satisfied:

(9) 0=D2(2d] X [z.q]) Vz,q] € W(F)
which is equivalent with

0=a(d,q)= (f,2) + (A ~Iz),,
= —b(d,2)=(f+I"),z) VzeZ

and
(10) 0>DZL([,d, 5A-X) =(A-Xp—-12)  VA€A.

Let us show that [2,7] and X defined by the formulas (6), satisfy (9) and (10). In
fact, using Corollary 1.1, we obtain

(11) —b(g,v) = (f,Ev) + (X, Iov)_, Vv € HJ(),

since

/ gijvijde = —=b(q, v).
Q

The set EHZ(Q) is dense in the space 2 and the mapping v — b(g, v) is contin-
uous in Z (cf. [1]). Consequently, the equation (11) yields that

b(tj,z)+(f,z)+(/i,lz>00 =0 Vze Z.
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Thus we obtain that the condition (9) is satisfied.
Since Ipw = [Ew = I, Theorem 1.1 implies that

(A1

(3]

_ <p>°° =0,
i.e., (7) holds. As Iqw > ¢, we obtain /Z > ¢ and
(A=X - 12)0o =(\e- IE)OO <O0VIeEA

follows. Consequently, also (10) is satisfied.

Next let us prove the uniqueness of the first component [%,¢]. Assume that
{[2,4), A} is another saddle point. Inserting z := £ — %, ¢ := § — § into the con-
dition (9), we obtain

a(d,q—-4) - (fz-2+(\-I1(z-2)_ =0.
Changing the role of the two saddle points, we arrive at
aq,§-¢) - (fZ-2+(X-1(:-2) =0
By addition we obtain that

(12) a(G-q,7-)+(A=X1:-1z)_=0.

(13) (A=Xe-15)_<0

and changing the role of the saddle points we obtain

(14) (A=Xe-1z)_ <0,

so that

(15) (

>
|
>~
~
—
™
|
d
~
~
3
N
<o

follows. Inserting (15) into (12) and using also positive definiteness of a, we arrive
at

aoll§ — qll: < a(i—q,4—§) <0.

Consequently, § = q a.e. in Q.

31




Since [2 — 2, — q] € W, we have
0=a(0,p)+b(p,2—2) VpeqQ.
From Lemma 1.1 we conclude that
12—zl a=0.

Consequently, the component [2, ] is unique. Combining the inequalities (13) and
(14), we obtain

(16) (A=A ep-1Iz)_ =0,

i.e., (7) is a necessary condition for any saddle point. Let us denote A=)+ . Let
us show that (8) is a necessary condition for the second component of the saddle
point. Indeed, since (9) is necessary condition and X satisfies it, we have

(17) 0=0b(q,2)+(f z) + (A +;t,Iz>0o =(u,Iz), Vz€ Z.

From (16) we conclude that

0= (“790_ Iz)oo = (“7 (p)oo

and (8) follows.
On the other hand, if (8) holds and A + p € A, then

0=(u, ) = (1, 12), VzEZ

so that (17) and (9) is fulfilled. Moreover,

<)\—(x+;t),<p—12>oo:(z\—x\,(p—lf)m <0 VieA

holds, which implies that (10) is fulfilled. Consequently, A4+ € A and (8) is sufficient
for X + y to be a second component. O

Remark 1.1. Note that the set /2 is not dense in L*®(Q2), due to the zero
boundary values of any z € 2. Hence (8) does not imply ¢ = 0.
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2. APPROXIMATE SADDLE POINT PROBLEM
Let us introduce the following approximate spaces of finite elements:

% ={2n€ Z|mlr € P(T) YT € %)

Qn = {an € Q(F) | anlr € [Po(T)]* VT € S},

Wi = {[zn, 1] € 25 x Qi | a(qn,pr) + b(pr,zn) =0 Vpn € Qn},
Kn = {[zn,98) € Wa | z(P) 2 (P) VP € E}},

where T} denotes the set of all vertices of 7, inside Q. Here we assume that ¢ is
defined everywhere in Q.

Next we introduce the following function

Jo([zn, qn]) = %a(‘lh»‘lh) —(f,zn) on 2% x Qp

and an auziliary problem

(%) [2n,qn] = arg min Jo([zh,q;,]).
[zn.qn)EKA

In order to prove the unique solvability of (:%%,) we need the following

Lemma 2.1. There exists a linear continuous mapping

Gp: 2%, —- S
such that
(2.1) gn = Ghzn <= (20, qn] € W,
5 o -2
(2.2) Clllzn, aalllzxq < llzallz < Ch=*(|Ghzalls, o= ”T

with some positive constants C, C, independent of h.

Proof. Since qgn € Qp is piecewise constant, we may write

a(qn,qn) > aollgnll:  Van € Qn,
[6(pn, zn)| < CllpallQllzall2 = Cllpalls|izall 2

Then for any given 2z € 25 there exists a unique element gn € @4, such that
a(qn,pr) = —b(ph,zn) Vpn € Qn.
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If we denote g, = Ghrzn, G}, is a linear mapping from 24 in S and
(2.3) IGhznlls < ag ' Cllznll2

holds. Consequently, we have

(2.4) (2h,qn) € Wi <> 2n € 25, qn = Ghzs.

Choosing pr = ,p°, where p?j = zp6;; and I} is the mapping from Lemma 4 of [2],
the following result can be proven (see also the proof of Lemma 1.1):

(2.5) sup (b(pa, zn)/llPallQ) = Bllzallin
PLEQR

holds for any z, € 2, with some positive constant 3.
If [zn, qn] € Wi, we may write

(2.6)  Bllznllz < h™*CBllznllia < Ch™ sup (= a(Grzn,pn)/llprllQ)

PhEQA
C/I.—a”(;;.::h”s,
since the interpolation theory yields
llzallip < Ch™lznlli 2 Vzn € 24

and
la(p, 9)l < ClIplisllalle Vp€E S, 9€Q.

Using (2.4), (2.3) and (2.6), we obtain
IGhznlle = IGhzalls < Cllzallz < ChC||Ghaalls,

iz, aullzx@ < llzallz + IGrzallg < (14 C)llznllz < Ch™°||Ghznlls.

Theorem 2.1. The problem (2?},) has a unique solution.

Proof. Obviously, the set Kj is convex and closed in 24 x Q). The function
Jo is continuous on Wj,. From Lemma 2.1 we easily derive that Jy is coercive on Wj,.

Indeed, we have

Jo((zn, ) = 3 a(Gzh, Gizn) = (f. 22)

1 Al
> 5 aollGazalls = Cllzall2 > C)lllzn, anllZr <@ = C(A)lI[zn, gnlll 2 x -
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Consequently, a minimizer (2, §s] of Jo exists on Kj. .
Next let [2,, ¢n] be another solution of (£2,). Then we may write (dropping the
subscripts “h”)

a(¢,4—- 9 —(f2-2) 20
By addition we obtain
a((i_(iv'i— ii) ; 07

so that
IG(z=2)IE <0
and
th=2n =0, gh—qn = Gn(Za —21) =0
follows from Lemma 2.1. ]

Remark 2.1. The uniqueness is also a consequence of the convexity of I
and strict convexity of Jyo on Wj.

Let us define
Av={M€EZ|M20inQ}

and

(2.7) (X,Y), Z A(P)X(P)Y(P)
PEE“

for all functions X, Y : £) — R™*  (where m; denotes the number of vertices in L)
with A(P) denoting the sum of the areas of the triangles in J}, which admit P as
common vertex.

By the bilinear form (2.7) a scalar product in R™* is defined. The convex cone
A, is isomorphic with the cone RT" of the vectors with non-negative coordinates, if
the nodal values A, (P), P € T) are taken into consideration.

Let us introduce the following Lagrangian

1
Zh ([zhv’l’l]v '\h) = 2 a(qn, qn) = (f,zn) + (An, 0 = Zh)p
for [zh,qs] € Wi and Ay € RT*.

Theorem 2.2. There exists a unique saddle point {[Z,3n),\s} of £ on Wy x
R'_,','“ . The first component [z, §s) coincides with the solution of the problem ($h).
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Moreover, the following “optimality condition” holds
(2.8) (Ao — z1), =0.

Proof. The existence of a saddle point {[Z4,qs], An}, the first component of
which is the solution of (£2,), can be proved on the basis of Theorem 5.1 of [3]
(p- 66), if we use Theorem 2.1.

Thus it remains to verify the uniqueness.

For brevity, let us drop the subscripts “h” in what follows. Let {[%,4],A} be

another saddle point. Arguing in the same way as in the proof of Theorem 1.2 (see
(12)~(15)), we obtain

(z((i—é,r}—ﬁ):(i—;\,f—z’)h

and

(A-Xz-1), <0.

Making use of Lemma 2.1, we may write
0> a(§—4,4—9) > allG(z - DI > Cllz ~ 2l

Consequently,

N>

—z2=0,4-q=0.

Let us denote A = X + . Since

Zh ([f,li],/_\-i-ﬂ) < Z ([21 (I];/_\+l‘) V[z,q] € W,

we have
(2.8) 0=a(d,q)— (f,2) = (X4 p,2), = —(p,2)
for all z € R™». (Note that 2}, is isomorphic with R™*.) As u € R™*  u = 0 follows.
a
To find the saddle point we employ the following algorithm of Uzawa's type:
Let us choose A\ =0, p € R.
If A7 is known, n = 0,1,2,..., we calculate {z}},q}] € W}, and /\;:+l € RY* as
follows: '
(2.9) a(gn,pn) +b(pn,25) =0 Vpn € Qn
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(2-10) bgh,zn) = = (f,2n) — (A, 2n)  V2n € 24,

+
(2.11) NP = [Xi(P) + elp(P) - ()] VP ez}
Theorem 2.3. For any n =0, 1,..., there exists a unique element [z}, q}], satis-

fying (2.9), (2.10).
If ¢ is positive and sufficiently small, then

Jim (llgk = dnllo +llzk — Zallz + 1A% = Xalla) = 0,

where {[Zn,qn), An} is the saddle point of £, on Wy x R},

Proof. For brevity, we drop the subscripts “h” in what follows. The conditions
(2.9), (2.10) are equivalent with [z",¢"] € W), and

(2.12) a(q",p)— (f,z) — (A", z), =0 Vl[z,p] € W,.

The both conditions are satisfied, if

(2.13) "\ q") = arg, min {3a(0.0) = (,2) - (",3), }

= argmin.%, ([z, q], A")~
Wa

We can easily show that the problem (2.13) has a unique solution. In fact, W} is
a closed subspace of 25, x @4, the function % (., A") is continuous and coercive on
W), (see the proof of Theorem 2.1). Since the latter function is also strictly convex
on W, (2.13) is uniquely solvable.

If we insert p:= ¢ —q", z := 2 — 2" into (2.12), we obtain

a(¢",q—q") - (f,2-2") - (,\",2 - z")h =0.

For the saddle point {[z, ), A} of £ (see the proof of Theorem 2.2) we can derive
that
a(q,¢" —q) - (f,z" —z) - (X,z" - z’)h =0.

Adding the two conditions we are led to the equation
(2.14) a(q"—(j,q"—ri)+(/\"—x,f—z”>h =0.

The second inequality, characterizing the saddle point of %} yields that
(2.15) (A-Xep—2), <0 VAeR
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Introducing the projection Pp: R™* — R with respect to the scalar product (2.7),

we may write

(2.16) A=Pr(A+olp—2), e>0

on the basis of (2.15). Moreover, we have

(2.17) [PAN(P) = [MP)]t YP€Z), V)eRm™.

If we denote 7™ = A" — X € R™* then using (2.11), (2.16) and (2.14) we obtain

7"+ HIR = 1A+ = XIE = 1PA(A" + elp = ) = Pa(X+ ee — 2)) I
I =X+ o2 = 2"l = 1" 117 + %112 = "1 + 2¢ (", 2 = "),
<P lIE + @°llz™ ~ 2lIi — 2ea(q™ — d,4" - 9).

From Lemma 2.1 we derive the following estimate
a(q” - 3,4" — §) 2 ao|G(z" = DIF > Cl|=" - 2|7 > Cll=" - 2|}
Hence we may write
P12 < 117 + (6 — 2eC)1I=" — 213

If o € (0,2C), the coefficient (o2 — 20C) is negative, the sequence {||r"||s} is non-
increasing and therefore converging. Consequently,

lim ||z" = 3|l» = 0.
n—00
Using again Lemma 2.1 and the well-known equivalence of norms, we arrive at

(2.18) lle* - dlle = IIG(z" - 2)lle

a

ClIG(=" = DlIs < Cll=" — 2|z
Cllz" = 2|ln — 0 as n — oo.

<
<

Since the sequence {||r"||s}5%, is non-increasing, the sequence {A"} is bounded
in R™» . There exists a vector A € R}* and a subsequence {A"*}{2,, such that

A" A as k — oo.
From (2.10) we get
b(g™,z) = — (f,2) — (A"*,2), VzeE .
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Passing to the limit with £ — oo and using the continuity of the form b (cf. [1])
together with (2.18), we arrive at

b((i,:):—(f,:)-—(z\,:)h Vz € Z.
Since the saddle point of &, fulfils an analogous condition, namely
b(iz):—(f,:)-(x,:)h Vz € %.

(cf. (2.8")) we obtain
(A= X,z), =0 VzeR™
and therefore

A=)2=0.

The uniqueness of X (see Theorem 2.2) implies that the whole sequence {A"} con-
verges to \. m

3. SOME CONVERGENCE ANALYSIS

A natural question arises, whether the approximate saddle points {[zp, qn], An}
tend to the “exact” one, if h tends to zero.

In the present section we give a partial answer to the latter question. Namely, we
prove an a priori error estimate for §—q in [L'“'(Q)]4 and z—Zj in H!, provided the
obstacle is represented by a continuous piecewise linear function. We employ some
ideas of Comodi [7].

Let us introduce the standard space of linear finite elements

Vi = {zx € C(Q) | 2| € P(T) VT € T}

If the following, we consider a regular family {Z,}, h — 04, of triangulations, which
refine an initial triangulation Jh,.
First we introduce two auxiliary lemmas.

Lemma 3.1. Assume that ¢ € C(Q) and ¢ < 0 on the boundary dQ. Given
any function z € 2 such that z > ¢ in Q, there exists a sequence {v,} such that
vp € C§°(N), vp 2 ¢ In Q and

(3.1) lon = zlip = 0 asn — oo.
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Proof. Let us consider a sequence {z,}, z, € C§2(Q),
(3.2) [lzn — 2|l1p — 0 asn—0.
If

;Iélfl_: (2(z) = p(z)) >0,

then the assertion follows for v, = z,,. Henceforth, let us assume that
min(z — ) = 0.
a
There exists a subset G C © and a positive integer ng such that G C Q and
(3.3) o(z) > 2p(z) = z€G VYn 2 no.
In fact, introducing

_ 1
7=z lagel

we can find ng such that for n > ng and for all z € Q

wn(2) > 2(2) - &
Let us define

0 = {z €0 2(z) - § - p(z) 3 0},
G=Q-Q".

If p(z) > zp(z), n > ng, then
p(z) > 2(z) -

so that € GG, which yields (3.3).
Since @ > 0 and z vanishes on the boundary, ¢ C Q holds.
Next let us introduce the following number

¢n = max{0, rynea}%( (2(y) - ~n(y))}.

There exists a function ¢ € C§°(§2) such that
Yv>20inQand v =1forallz ed.
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We define
Un = 2pn + cn'ﬁ

and show that v, > ¢ in Q. To this end, first let us consider any point z € § such
that o(z) > z,(z). Using (3.3), we may write z € G, ¥(z) = 1,
n(2) = 2n(2) + 0 > 2n(2) + max (:0) = a0) 2 2(2) > $()
Second, let z € Q be any point such that ¢(z) < z,(z). Then we have
0a(2) 3 2(2) 2 ()

by definition of ¢, and 1.
Finally, we have
lenl < l1zn = zllo,0 — 0

and therefore
[lvn — 2|l1,p < |l2n = z|l1p + leal “'/’”l,p -0 asn—0.
O

Lemma 3.2. The saddle point component (z,3] from Theorem 1.2 satisfies the
following conditions

(3.4) a(¢,p) + b(p,2) =0 Vpe Q(Z),
(3.5) =b(q,z2—2)2(f,z—2) VzeZXs.t z2¢pinQ.

Proof. Since [z,q] € W(Zh), (3.4) is fulfilled. To verify (3.5), we first realize
that 2 = Ew (cf. Theorem 1.2) and
(@i, (v = w)ij)g 2 (fiv—2) Vo€ Ko

follows from Theorem 1.1 and the definition of the problem (). Here we denote by
(u,v), the integral [ uv dz.
Using the assumption § € Q(Z,), we easily derive that

(Gsj, (v — w)iij)g = —b(q, Ev — Ew).
Inserting into the previous inequality, we obtain
(3.6) —b(q, Ev — Ew) 2 (f,Ev— Ew) VYv € K.

Next we consider any function z € 2 such that z 2> ¢ in  and apply Lemma 3.1.
We may insert v := v, € K, into (3.6) and pass to the limit with n — oco. Using
(3.1) and the continuity of b with respect to the second argument, we arrive at the
condition (3.5). a
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Theorem 3.1. Assume that ¢ € Y3, and
q= {esc?jkmw’km}i,j=l,2 € Q(Dh,) for some T, .

Then

3.7) 12 = zallia + 13 - dalls < C(2, 4, N)hV/2.

holds for all h < ho with some constant C(z,§, X) independent of h.

Proof. Let us realize that
7€ Q(%h)
holds for all triangulations %, refining Z,,.

Using the mapping I1, from Lemma 4 of [2] and the definitions of ¢, ¢n, W(Zh),
we may write

(3.9) aollg — gall3 < a(d — @, q — dn)
=a(q— qn, 7 — Mnq) = b(I1nq — qn, Z — Zn).
On the other hand, for the linear interpolate I,z € 2 we have
(3.10)  b(Mhqg —qn, 2~ 24) = b(Mpg —q,2 — Zn) + b(§ — qn, Z — Za)
=b(Mpg—q,z - In2)

+b(Myg— G, InZ — 21) + b(§ — qn, Z — Zn)
= —b(q,2— InZ) + b(q — qn, 2 — Z1),

since

(3.11) b(pn,z2— 1n2) =0 Vpa € Qh,

(see [7], Lemma 5.3) and

(3.12) b(p— lap,z) =0 Vp€ Q(Th), z» € Zi.

(see [2], Lemma 4).
Using (3.5) and (3.11), we obtain

(3-13) —b(q— g, 2 — 2n) = — b(q, 2 — zn) + b(dn, 2 — In2)
+ b(qh, InZ — Z1)
< (fi2—2n) —(f, InZ — 2n)
=(f,z- Ip2).
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In fact,
ZhEZLHCZ and zZ29in

by virtue of the assumption ¢ € Y},; moreover,
—b(qn, zn — 2n) 2 (f, 2n — Za)

for all z;, € 2 such that z,(P) > ¢(P) at the vertices P € X, follows from the
definition of the problem (22,).
Combining (3.9), (3.10), (3.13), we arive the inequality

(3.14) allg — aull% < a(@— n, 3 — 0ad) + b(3, 2 — In2) + (f, 2 — InZ).

In the proof of Theorem 1.2 we had the following relation (cf. (9))
b(§,2)+({f,2) == (I"X,2) = - (X,l(z))oo Vze Z.

Consequently, using also the interpolation theory, we obtain

(3.15) b(§,2— In2) + (f, 2 — In2) < CO)|IZ = Inz)lo,c0 < C(A)Ch|Z|22.

A slight modification of Lemma 4 in [2] yields

lg — Madlls < Chlldlle(sn)-
Thus we may write
(3.16) o(3 = @, 4 ~ 14d) < 3aolla — aalls +Cllg ~ Dadll3
< gaolld - 13 + Cih?liily.

Then (3.14), (3.15) and (3.16) imply
17 gaolld- @l < Ck?lally + C(Mhizlaz < C(2, 7, R)h

For any p, € Q(Z;), we may write

a(qn — 4,pn) = —=b(pn, Zn — 2) = —b(pa, 2 — In%)

if we use (3.11). From the inequality (2.5) and (3.17) we obtain the following estimate
(3.18) Blizn = Inzlh < sup b(pn, Zn — In2)/llpsllQ

PAEQM

= sup a(qn — q,pn)/llpnlls
PAEQA

< Cllgn = qlls < C1AY2.
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Finally, the standard interpolation estimate
1hz = 2|1 < Chlzlz,

(3.18) and the triangle inequality yield the O(h'/2) estimate for ||z — za]1- a

Remark 3.1. If a higher regularity of the solution 2 is assumed, the estimate
(3.7) can be improved, as follows from (3.15). Thus if e.g.

t|, € W**(T) VT € %,

then the embedding W32 C, W29 with any ¢ > 1 and the interpolation theory (8]
imply that
2 — Inzllo,c0 < Ch2"2/9 max |2|aq7.
I = Iodlloco < CH*2/% max Jolag

Using this in (3.15), the estimate (3.7) can be changed to O(h!~¢) with any positivee.
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