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EQUIVARIANT MAPS BETWEEN CERTAIN G-SPACES

WITH G = O(n− 1, 1).
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Abstract. In this note, there are determined all biscalars of a system of s � n linearly
independent contravariant vectors in n-dimensional pseudo-Euclidean geometry of index
one. The problem is resolved by finding a general solution of the functional equation
F (Au

1
, Au
2
, . . . , Au

s
) = (sign(det A))F (u

1
, u
2
, . . . , u

s
) for an arbitrary pseudo-orthogonal matrix

A of index one and the given vectors u
1
, u
2
, . . . , u

s
.
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1. Introduction

For n � 2 consider the matrix E1 = [eij ] ∈ GL(n,�), where

eij =





0 for i �= j

+1 for i = j �= n

−1 for i = j = n

Definition 1. A pseudo-orthogonal group of index 1 is a subgroup of the group
GL(n,�) satisfying

G = O(n− 1, 1) = {A : A ∈ GL(n,�) ∧AT ·E1 · A = E1}.

Denoting ε(A) = sign(detA) = detA we have ε(A · B) = ε(A) · ε(B).
The class of G-spaces (Mα, G, fα), where fα is an action of G on the space Mα,

constitutes a category if we take as morphisms equivariant maps Fαβ : Mα −→ Mβ,
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i.e. the maps which satisfy the condition

(1)
∧

α,β

∧

x∈Mα

∧

A∈G

Fαβ(fα(x, A)) = fβ(Fαβ(x), A).

In particular, among the objects of this category are: the G-space of contravariant

vectors

(2) (�n , G, f1), where
∧

u∈�n

∧

A∈G

f1(u, A) = A · u,

the G-space of scalars

(3) (�, G, f2), where
∧

x∈�

∧

A∈G

f2(x, A) = x,

and the G-space of biscalars

(4) (�, G, f3 ), where
∧

x∈�

∧

A∈G

f3(x, A) = ε(A) · x.

For s = 1, 2, . . . , n, let a system of linearly independent vectors u
1
, u
2
, . . . , u

s
be given.

Every equivariant map F of this system intoM2 = � satisfies the equality (1), which

applying the transformation rules (2) and (3) may be rewritten in the form

(5)
∧

A∈G

F (Au
1
, Au
2
, . . . , Au

s
) = F (u

1
, u
2
, . . . , u

s
).

For a pair u, v of contravariant vectors the map p(u, v) = uT · E1 · v satisfies (5),
namely p(Au, Av) = (Au)T ·E1 · (Av) = uT (AT E1A)v = uT E1v = p(u, v).

In [6] it was proved that the general solution of the equation (5) is of the form

(6) F (u
1
, u
2
, . . . , u

s
) = Θ(p(u

i
, u

j
)) for i � j = 1, 2, . . . , s � n

where Θ is an arbitrary function of s(s+1)
2 variables.

In this paper we are going to determine all equivariant maps F of this system of

vectors intoM3 = �. The problem is equivalent to finding the general solution of the
functional equation (1), which applying the transformations rules (2) and (4) may

be rewritten in the form

(7)
∧

A∈G

F (Au
1
, Au
2
, . . . , Au

s
) = ε(A)F (u

1
, u
2
, . . . , u

s
).
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2. Type of a subspace

Let be given a sequence u
1
, u
2
, . . . , u

s
, . . . , u

n
of linearly independent vectors. Let

Ls = L(u
1
, u
2
, . . . , u

s
) denote the linear subspace generated by the vectors u

1
, u
2
, . . . , u

s

and p | Ls the restriction of the form p to the subspace Ls.

Definition 2. The subspace Ls is called:

1. Euclidean subspace if the form p | Ls is positive definite,

2. pseudo-Euclidean subspace if the form p | Ls is regular and indefinite,
3. singular subspace if the form p | Ls is singular.
If we denote

pij = p(u
i
, u

j
) for i, j = 1, 2, . . . , n,

and

P (s) = P (u
1
, u
2
, . . . , u

s
) =

∣∣∣∣∣∣∣∣

p11 p12 . . . p1s

p21 p22 . . . p2s
. . . . . . . . . . . .

ps1 ps2 . . . pss

∣∣∣∣∣∣∣∣
= det [pij ]s1 for s = 1, 2, . . . , n,

then the above three cases are equivalent to P (s) > 0, P (s) < 0 and P (s) = 0,
respectively.

Let us consider an isotropic cone K0 = {u : u ∈ �
n ∧ p(u, u) = 0 ∧ u �= 0}. It

is an invariant and transitive subset. Every isotropic vector v ∈ K0 determines an

isotropic direction, which is, according to vn �= 0 and v = vn[ v
1

vn , v2

vn , . . . , vn−1

vn , 1]T =

un[q1, q2, . . . , qn−1, 1]T with
n−1∑
i=1
(qi)2 = 1, equivalent to a point q belonging to the

sphere Sn−2.

Let us recall that for A ∈ G

(8) W ′ = det(Au
1
, . . . , Au

n
) = ε(A) det(u

1
, . . . , u

n
) = ε(A) ·W.

Therefore, for s = n the mapping det satisfies the functional equation (7).

Let be given a system u
1
, u
2
, . . . , u

n−1
of n− 1 linearly independent vectors for which

P (n− 1) = 0. The singular subspace L(u
1
, . . . , u

n−1
) determines exactly one isotropic

direction q ∈ Sn−2 whose representative is of the form v = vn·[q1, . . . , qn−1, 1]T ∈ K0.

From p(u
i
, v) = 0 for i = 1, 2, . . . , n− 1 it follows that each vector u

i
is of the form

(9) u
i
=

[
u
i

1, . . . , u
i

n−1,
n−1∑

k=1

u
i

kqk
]T

where det [u
i

j ]n−11 �= 0.
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Let us consider the two 1-forms det(u
1
, . . . , u

s−1
, v, u

s+1
, . . . , u

n−1
, x) and p(v, x). Both

these forms vanish on the subspace L(u
1
, . . . , u

n−1
), and consequently there exists

uniquely determined number Bs(u
1
, . . . , u

s
, . . . , u

n−1
) such that

(10) det(u
1
, . . . , u

s−1
, v, u

s+1
, . . . , u

n−1
, x) = −Bs(u

1
, . . . , u

s
, . . . , u

n−1
) · p(v, x).

Taking in mind the properties of the mappings p and det from (10) it follows imme-
diately that for arbitrary A ∈ G it holds that

(11) B′
s = Bs(Au

1
, Au
2
, . . . , A u

n−1
) = ε(A) ·Bs(u

1
, u
2
, . . . , u

n−1
) = ε(A) · Bs.

From (9) and (10) we get in terms of coordinates the formula

(12) Bs(u
1
, . . . , u

n−1
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
1

1 . . . u
1

n−1

. . . . . . . . .

u
s−1
1 . . . u

s−1
n−1

q1 . . . qn−1

u
s+1

1 . . . u
s+1

n−1

. . . . . . . . .

u
n−1

1 . . . u
n−1

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for s = 1, 2, . . . , n− 1.

We have B2s(u1
, . . . , u

s
, . . . , u

n−1
) = P (u

1
, . . . , u

s−1
, u
s+1

, . . . , u
n−1
), so at least one of the

quantities Bs is different from zero (see [6], Theorem 15 ).

3. General solution of the functional equation (7)

Theorem 3. The general solution of the functional equation (7) in the case s = n

is of the form

F (u
1
, u
2
, . . . , u

n
) = Θ(p(u

i
, u

j
)) · det(u

1
, u
2
, . . . , u

n
)

where i � j = 1, 2, . . . , n and Θ is an arbitrary function of n(n+1)
2 variables.

�����. If F (u
1
, u
2
, . . . , u

n
) is the general solution of the functional equation (7),

then also F (u
1
, . . . , u

n
) · [det(u

1
, . . . , u

n
)]−1 is the general solution of the equation (5).

By virtue of (6) the statement of the theorem is true. �

Theorem 4. The general solution of the functional equation (7) in the case
s = n− 1 and P (n− 1) = 0 is of the form

F (u
1
, . . . , u

n−1
) = Θ(p(u

i
, u

j
)) · B(u

1
, . . . , u

n−1
)
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where i � j = 1, 2, . . . , n− 1, Θ is an arbitrary function of n(n−1)
2 variables and B is

any nonzero equivariant among B1, B2, . . . , Bn−1.

�����. The proof runs analogously as the proof of Theorem 3. �

Theorem 5. The general solution of the functional equation (7) is trivial,

F (u
1
, u
1
, . . . , u

s
) ≡ 0,

if s < n− 1 or s = n− 1 and P (n− 1) �= 0.

�����. If P (n − 1) �= 0, there exists a vector v such that p(v, v) �= 0, and v

is orthogonal (with respect to p) to the subspace W generated by u
1
, u
2
, . . . , u

n−1
. The

whole space coincides with the direct sum [v] ⊕W. If s < n − 1 then there exists a
vector v such that p(v, v) �= 0 and v is orthogonal to the vectors u

1
, u
2
. . . , u

s
. Let W

denote this time the orthogonal complement of the vector v. Obviously, u
1
, u
2
. . . , u

s
∈

W, and the whole space coincides with the direct sum [v] ⊕ W. Now, we take A ∈
O(n − 1, 1) defined by A · v = −v and A |W = id. We have ε(A) = −1. Then we get
either

F (u
1
, u
2
, . . . , u

n−1
) = F (Au

1
, Au
2
, . . . , A u

n−1
) = −F (u

1
, u
2
, . . . , u

n−1
)

or

F (u
1
, u
1
, . . . , u

s
) = F (Au

1
, Au
2
, . . . , Au

s
) = −F (u

1
, u
2
, . . . , u

s
).

In both cases we obtain F ≡ 0. �

The statements proven in this section we can formulate in the following

Theorem 6. The general solution of the functional equation (7) is of the form

F (u
1
, . . . , u

s
) =





0 if s < n− 1 or s = n− 1 and P (n− 1) �= 0
n−1∑
k=1
Θk(p(u

i
, u

j
)) ·Bk(u

1
, . . . , u

n−1
) if s = n− 1 and P (n− 1) = 0

Θ(p(u
i
, u

j
)) · det(u

1
, . . . , u

n
) if s = n

where i � j = 1, 2, . . . , s and Θ,Θ1, . . . ,Θn−1 are arbitrary functions of
s(s+1)
2

variables.
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