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Abstract. The paper shows that commutative Hilbert algebras introduced by Y.B. Jun
are just J. C.Abbot’s implication algebras.
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1. Introduction

Hilbert algebras are important tools for certain investigations in algebraic logic
since they can be considered as fragments of any propositional logic containing a

logical connective implication and the constant 1 which is considered as the logical
value “true”. As usual, the operation is denoted by “·” instead of “⇒” although it
has the same meaning.
The concept of Hilbert algebra was introduced in the 50-ties by L.Henkin and

T. Skolem for investigations in intuitionistic and other non-classical logics. A.Diego
[5] proved that Hilbert algebras form a variety which is locally finite.

They were studied from various points of view. Concerning congruence properties
it is shown in [2] that Hilbert algebras form a congruence distributive variety the

congruences in which are in a 1-1 correspondence with ideals [4]. Pseudocomplements
as well as relative pseudocomplements of elements in lattices of ideals of Hilbert

algebras were then described and studied in [3].
In [6] the notion of a commutative Hilbert algebra was introduced and studied.

The aim of this short note is to show that this paper contains non-valid theorems as
well as that commutative Hilbert algebras are exactly implication algebras treated

by J. C.Abbott [1].
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2. Preliminaries

Definition 1. A Hilbert algebra is a triplet H = (H ; ·, 1), where H is a non-

empty set, · is a binary operation on H and 1 is a fixed element of H (i.e. a nullary
operation) such that the following axioms hold in H:

(HA1) x · (y · x) = 1,

(HA2) (x · (y · z)) · ((x · y) · (x · z)) = 1,

(HA3) x · y = 1 and y · x = 1 imply x = y.

For the proof of the following result, see e.g. [5].

Proposition 1. Every Hilbert algebra satisfies the following properties:
(1) x · x = 1,

(2) 1 · x = x,

(3) x · 1 = 1,

(4) x · (y · z) = (x · y) · (x · z),
(5) x · (y · z) = y · (x · z),
(6) x 6 y ⇒ y · z 6 x · z,

(7) x 6 y ⇒ z · x 6 z · y.

It can be easily verified that the relation 6 defined in a Hilbert algebra H =
(H ; ·, 1) by

x 6 y if and only if x · y = 1

is a partial order relation on H with 1 as the greatest element. This order relation
is called the natural ordering on H .

� �����������
1. It is of great importance that every partially ordered set (P, 6, 1)

with the greatest element 1 can be regarded as a Hilbert algebra, namely, if we define
for x, y ∈ P

x · y = 1 whenever x 6 y, and x · y = y otherwise,

then (P, ·, 1) is a Hilbert algebra the natural ordering on which coincides with the
relation 6.

Hilbert algebras generalize properties of implicative reducts of Boolean algebras
(i.e. algebras corresponding to a classical logic), the so called implication algebras,

treated by J.C.Abbott in [1]:

Definition 2. An implication algebra (IA) is an algebra (A, ·, 1) of type (2,0)
satisfying the following conditions:
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(I1) x · x = 1,

(I2) (x · y) · x = x,

(I3) x · (y · z) = y · (x · z),
(I4) (x · y) · y = (y · x) · x.
Of course, since implication algebras are a special case of Hilbert algebras, one

can define a natural ordering 6 on A in the same way as for Hilbert algebras.

Abbott has shown that implication algebras are a natural generalization of Boolean
algebras in the following sense:

Proposition 2. (i) Let (A, ·, 1) be an implication algebra. Then each interval
[p, 1] in A is a Boolean algebra w.r.t. operations defined by

x ∨ y = (x · y) · y,

x ∧ y = ((x · p) ∨ (y · p)) · p,

x′ = x · p.

(ii) Conversely, if (A,∨) is a ∨-semilattice each interval in which is a Boolean
algebra w.r.t. the induced order, then A with the operation · defined by

x · y = (x ∨ y)y,

where (x∨y)y is the relative pseudocomplement of x∨y in the Boolean algebra [y, 1],
is an implication algebra.

Proposition 2 says that there is a 1-1 correspondence between implication algebras
and join semilattices having Boolean algebras for intervals.

By [6], a Hilbert algebra H is said to be commutative if it satisfies the axiom (I4).
Hence H is then an implication algebra if and only if also (I3) is satisfied in H.
Theorem 3.3. in [6] claims that commutative Hilbert algebras are just those which

are join semilattices w.r.t. the natural ordering. A simple inspection shows that this

does not hold:
� �����������

2. Let us consider a 4-element Boolean algebra A = {0, 1, a, a′} with
the corresponding order relation 6. By Example 1, the operation · defined on A by

x · y = 1 if and only if x 6 y, x · y = y otherwise,

defines on A a Hilbert algebra which is surely a join semilattice. On the other hand,

it is not commutative, since e.g. 1 = (a · 0) · 0 6= (0 · a) · a = a.

In the next section we will show by using Proposition 2 that commutative Hilbert
algebras are just the implication ones.
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3. Commutative Hilbert algebras

First we show that commutative Hilbert algebras form a join semillatice w.r.t. the

natural ordering:

Lemma 1. If H = (H, ·, 1) is a commutative Hilbert algebra then the natural
ordering 6 on H is a semilattice and x ∨ y = (x · y) · y.
�����
�! 

. According to (HA1) and commutativity it is clear that the element

(x · y) · y = (y · x) · x is an upper bound of x and y. Suppose that x 6 q, y 6 q for
some q ∈ H . Then Proposition 1(6) yields q · y 6 x · y and (x · y) · y 6 (q · y) · y =
(y · q) · q = 1 · q = q, proving that (x · y) · y is the least upper bound of x and y. �

Lemma 2. Let H = (H, ·, 1) be a commutative Hilbert algebra and let a, b, p ∈ H .

Then

(1) p 6 a yields (a · p) · a = a;

(2) p 6 b yields a · b = (a · p) ∨ b.
�����
�! 

. (1) Suppose p 6 a. Then p · a = 1 and

(p · a) · a = 1 · a = a = a ∨ p = (a · p) · p.

Hence

(a · p) · a = (a · p) · [(a · p) · p] = [(a · p) · (a · p)] · [(a · p) · p] = 1 · [(a · p) · p] = a.

(2) We compute

(a · p) ∨ b = [b · (a · p)] · (a · p) = [a · (b · p)] · (a · p) = a · [(b · p) · p] = a · (b ∨ p) = a · b.

�

The foregoing theorem describes intervals in commutative Hilbert algebras:

Theorem. Let H = (H, ·, 1) be a commutative Hilbert algebra. For every p ∈ H

the interval [p, 1] is a Boolean algebra where for a, b ∈ [p, 1] we have a∨ b = (a · b) · b,
a ∧ b = [a · (b · p)] · p, and the complement of a is ap = a · p.
�����
�! 

. The first assertion follows from Lemma 1. Let us prove that a ∧ b =
[a · (b · p)] · p. Evidently, [a · (b · p)] · p ∈ [p, 1]. By Lemma 2(2) we have a · (b · p) =
(a · p) ∨ (b · p). Since a · p 6 (a · p) ∨ (b · p), by using Proposition 1(7) we get

[a · (b · p)] · p = [(a · p) ∨ (b · p)] · p 6 (a · p) · p = a ∨ p = a,
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thus (a·(b·p))·p 6 a. Analogously we can show (a·(b·p))·p 6 b and hence (a·(b·p))·p
is a lower bound of both a and b. Suppose q ∈ [p, 1], q 6 a, q 6 b. Then applying
Proposition 1(6) again we have a · p 6 q · p, b · p 6 q · p, hence (a · p) ∨ (b · p) 6 q · p.
Further, this gives

q 6 q ∨ p = (q · p) · p 6 [(a · p) ∨ (b · p)] · p = [a · (b · p)] · p,

thus [a · (b · p)] · p is the least upper bound of a and b in [p, 1]. Let us prove that
ap = a · p is a complement of a ∈ [p, 1] in this interval. By Lemma 2(1) we have also

a ∨ (a · p) = [(a · p) · a] · a = a · a = 1.

Since p 6 a · p, we have

a ∧ (a · p) = [a · ((a · p) · p)] · p = (a · a) · p = 1 · p = p.

Moreover,

app = (a · p) · p = a ∨ p = a.

If we prove that ap is simultaneously a pseudocomplement of a in [p, 1], then by the
previous property every element of this interval is Boolean and so [p, 1] is a Boolean
algebra. Suppose that b ∈ [p, 1] is such that a∧ b = p, hence [a · (b · p)] · p = p. Then

ap = a · p = a · [(a · (b · p)) · p] = [a · (b · p)] · (a · p) = a · [(b · p) · p] = a · (b∨ p) = a · b,

henceforth b · ap = b · (a · b) = 1, or b 6 ap. �

Comparing this Theorem with Proposition 2 we immediately get

Corollary. Every commutative Hilbert algebra is an implication algebra.
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