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Abstract

We study the existence of one-signed periodic solutions of the equa-
tions

x′′(t)− a2(t)x(t) + μf(t, x(t), x′(t)) = 0,

x′′(t) + a2(t)x(t) = μf(t, x(t), x′(t)),

where μ > 0, a : (−∞,+∞) → (0,∞) is continuous and 1-periodic, f is
a continuous and 1-periodic in the first variable and may take values of
different signs. The Krasnosielski fixed point theorem on cone is used.

Key words: Positive solutions; boundary value problems; cone;
fixed point theorem.

2000 Mathematics Subject Classification: 34G20, 34K10, 34B10,
34B15

1 Introduction

Nonnegative solutions to varius boundary value problems for ordinary differ-
ential equations have been considered by several authors (see for instance in

119
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[1]–[8]). This paper deals with existence of positive (negative) periodic solu-
tions of the nonlinear differential equations of the form

(1.1) x′′(t)− a2(t)x(t) + μf(t, x(t), x′(t)) = 0,
(1.2) x′′(t) + a2(t)x(t) = μf(t, x(t), x′(t)),

where a : (−∞,+∞) → (0,∞) is continuous, 1-periodic, μ > 0, f is a continu-
ous, 1-periodic function in t and may take values of different signs. Existence in
this paper will be established using Krasnosielski fixed point theorem in a cone,
which we state here for the convenience of the reader.

Theorem 1.1 (K. Deimling [4], D. Guo, V. Laksmikannthan [5]). Let E =
(E, ‖ · ‖) be a Banach space and let K ⊂ E be a cone in E. Assume Ω1

and Ω2 are bounded and open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let
A : K ∩ (Ω2 \ Ω1) → K be continuous and completely continuous. In addition
suppose either ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for K ∩ ∂Ω2 or
‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2 hold. Then A
has a fixed point in K ∩ (Ω2 \ Ω1).

2 Preliminary results

First, we shall give some notation. We define Pm1 (R) (m ∈ N) to be the subspace
of BC(R) (bounded, continuous real functions on R) consisting of all 1-periodic
mapping x such that x(m) is an 1-periodic and continuous function on R. For
x ∈ P 1

1 (R) we define
‖x‖1 = sup

t∈[0,1]

[|x(t)|+ |x′(t)|].

Note P 1
1 (R, ‖ · ‖1) is a Banach space.

Let us consider the boundary value problems

(2.1) − (x′′(t)− a2(t)x(t)) = 0, x(0) = x(1), x′(0) = x′(1);
(2.2) x′′(t) + a2(t)x(t) = 0, x(0) = x(1), x′(0) = x′(1),

In this paper we assume conditions under which the only solution of the problem
(2.1) or (2.2) is the trivial one. In the proofs of theorems we will make use the
Green functions G1 and G2 of the boundary value problems (2.1) and (2.2).

Remark 2.1 If a ∈ C[0, 1] and a(t) > 0 for all t ∈ [0, 1], then the problem (2.1)
has only the trivial solution and G1(t, s) > 0 for all t, s ∈ [0, 1] (see [7]).
If a ∈ C[0, 1], a(t) > 0 for t ∈ [0, 1] and supt∈[0,1] a(t) < π, then the problem

(2.2) has only the trivial solution and G2(t, s) > 0 for all t, s ∈ [0, 1] (see [7]).

Remark 2.2 If a(t) ≡ k > 0 for t ∈ [0, 1], then

G1(t, s) =
1

2k(ek − 1)

{
ek(1−s+t) + ek(s−t), 0 ≤ t ≤ s ≤ 1
ek(t−s) + ek(1+s−t), 0 ≤ s ≤ t ≤ 1.
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Remark 2.3 If a(t) ≡ k > 0 for t ∈ [0, 1] and k �= 2lπ for all l ∈ N, then

G2(t, s) =
1

2k sin k/2
cos k[1/2− |s− t|].

Before giving the lemmas we shall introduce some notation. We denote

Mi = sup
t,s∈[0,1]

Gi(t, s), mi = inf
t,s∈[0,1]

Gi(t, s),

Mi
′
= sup

t,s∈[0,1]

∣∣∣∣
∂Gi
∂t

(t, s)
∣∣∣∣ , mi

′ = inf
t,s∈[0,1]

∣∣∣∣
∂Gi
∂t

(t, s)
∣∣∣∣

for i = 1, 2.
The properties of the functions Gi (i = 1, 2) needed later on are described

by the following lemmas.

Lemma 2.4 Suppose that

(2.3) f : R3 → R is continuous, a ∈ C[0, 1] and a(t) > 0 for t ∈ [0, 1].

Then x ∈ C2[0, 1] is a solution of the problem

(2.4)

{
x′′(t)− a2(t)x(t) + μf(t, x(t), x′(t)) = 0
x(0) = x(1), x′(0) = x′(1)

if and only if x satisfies the integral equation

(2.5) x(t) = μ

∫ 1

0

G1(t, s)f(s, x(s), x′(s)) ds.

Lemma 2.5 Suppose that a ∈ C[0, 1], a(t) > 0 for t ∈ [0, 1], supt∈[0,1] a(t) < π

and f : R3 → R is continuous. Then x ∈ C2[0, 1] is a solution of the problem

(2.6)

{
x′′(t) + a2(t)x(t) = μf(t, x(t), x′(t))
x(0) = x(1), x′(0) = x′(1)

if and only if x satisfies the integral equation

(2.7) x(t) = μ

∫ 1

0

G2(t, s)f(s, x(s), x′(s)) ds.

Lemma 2.6 Let a ∈ C[0, 1] and a(t) > 0 for t ∈ [0, 1]. Then

(2.8) inf
t,s∈[0,1]

G1(t, s) = inf
t∈[0,1]

G1(t, 1), (see [7])

(2.9)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0G1(t, s)−
∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s− 0, s)

∣∣
for s, t ∈ [0, 1] and
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s+ 0, s)

∣∣
for s, t ∈ [0, 1] where ∂G1

∂t (s− 0, s)
(
∂G1
∂t (s+ 0, s)

)

denote the left-hand (the right-hand) side derivative of G1

at the point (s, s) and d0 ≥ 2M1
′
+M1

m1
,
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(2.10) G1(s, s) +
∣∣∣∣
∂G1

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣
∂G1

∂t
(t, s)

∣∣∣∣
)

for s, t ∈ [0, 1] and M0 ∈
(
0, m1+m1

′

M1+M1
′

]
,

(2.11) G1(s, s) +
∣∣∣∣
∂G1

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣
∂G1

∂t
(t, s)

∣∣∣∣
)
,

where s, t ∈ [0, 1].

Lemma 2.7 Let a ∈ C[0, 1] and a(t) > 0 for t ∈ [0, 1] and supt∈[0,1] a(t) < π.
Then

(2.12) sup
t,s∈[0,1]

G2(t, s) = sup
t∈[0,1]

G2(t, 1) (see [7]),

(2.13) d0G2(t, s)−
∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣
∂G2

∂t
(s− 0, s)

∣∣∣∣

for t, s ∈ [0, 1] and d0 ≥ 2M2
′
+M2

m2
,

(2.14) d0G2(t, s)−
∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣
∂G2

∂t
(s+ 0, s)

∣∣∣∣ ,

where s, t ∈ [0, 1],

(2.15) G2(s, s) +
∣∣∣∣
∂G2

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣
)

for s, t ∈ [0, 1], M0 ∈
(
0, m2+m2

′

M2+M2
′

]
and

(2.16) G2(s, s) +
∣∣∣∣
∂G2

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣
)
,

where s, t ∈ [0, 1].

It is not difficult to prove the following

Corollary 2.8 Let a(t) ≡ k > 0 for t ∈ [0, 1]. Then

(2.8)′

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

supt,s∈[0,1]G1(t, s) = ek+1
2k(ek−1)

,

inft,s∈[0,1]G1(t, s) = ek/2

k(ek−1) ,

G1(s, s) ≥ G1(t, s) for s, t ∈ [0, 1], supt,s∈[0,1]

∣∣∂G1
∂t (t, s)

∣∣ = 1
2 ,

inft,s∈[0,1]

∣∣∂G1
∂t (t, s)

∣∣ = 0,
∫ 1

0
G1(t, s) ds = 1

k2 for t ∈ [0, 1],

supt∈[0,1]

∫ 1

0 G1(t, s) ds+ supt∈[0,1]

∫ 1

0

∣∣∂G1
∂t (t, s)

∣∣ ds = m1 ≤ 1
k2 + 1

2 ,
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(2.9)′

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d0G1(t, s)−
∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s− 0, s)

∣∣
for s, t ∈ [0, 1] and

d0G1(t, s)−
∣∣∂G1
∂t (t, s)

∣∣ ≥ G1(s, s) +
∣∣∂G1
∂t (s+ 0, s)

∣∣

for s, t ∈ [0, 1] and d0 ≥ ek+1+2k(ek−1)
2ek/2 ,

(2.10)′ G1(s, s) +
∣∣∣∣
∂G1

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣
∂G1

∂t
(t, s)

∣∣∣∣
)

for s, t ∈ [0, 1] and M0 ∈
(
0, 2ek/2

ek(1+k)+1−k

]
,

(2.11)′ G1(s, s) +
∣∣∣∣
∂G1

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G1(t, s) +

∣∣∣∣
∂G1

∂t
(t, s)

∣∣∣∣
)
,

where s, t ∈ [0, 1].

Corollary 2.9 Let a(t) ≡ k for t ∈ [0, 1] and let 0 < k < π. Then

(2.12)′

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

inft,s∈[0,1]G2(t, s) = cot k/2
2k ,

supt,s∈[0,1]G2(t, s) = 1
2k sink/2 , supt,s∈[0,1]

∣∣ ∂G2
∂t(t,s) (t, s)

∣∣ = 1
2 ,

inft,s∈[0,1]

∣∣∂G2
∂t (t, s)

∣∣ = 0,
∫ 1

0 G2(t, s) ds = 1
k2 for t ∈ [0, 1],

supt∈[0,1]

∫ 1

0
G2(t, s) ds+ supt∈[0,1]

∫ 1

0

∣∣∂G2
∂t (t, s)

∣∣ ds
= m2 ≤ 1

k2 + 1
2 ,

(2.13)′ d0G2(t, s)−
∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣
∂G2

∂t
(s− 0, s)

∣∣∣∣

for t, s ∈ [0, 1] and

(2.14)′ d0G2(t, s)−
∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣ ≥ G2(s, s) +
∣∣∣∣
∂G2

∂t
(s+ 0, s)

∣∣∣∣ ,

where s, t ∈ [0, 1] and d0 ≥ 2k tank/2 + 1,

(2.15)′ G2(s, s) +
∣∣∣∣
∂G2

∂t
(s− 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣
)

for s, t ∈ [0, 1], M0 ∈
(
0, cosk/2

1+k sin k/2

]
and

(2.16)′ G2(s, s) +
∣∣∣∣
∂G2

∂t
(s+ 0, s)

∣∣∣∣ ≥M0

(
G2(t, s) +

∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣
)
,

where s, t ∈ [0, 1].
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Throughout the paper

D = (−∞,∞)× [0,∞)× (−∞,∞), D̃ = (−∞,∞)× (−∞, 0]× (−∞,∞),
μ > 0, a : (−∞,∞) → (0,∞) is continuous and 1-periodic, L > 0,

φi(t) = μL

∫ 1

0

Gi(t, s)ds for i = 1, 2, t ∈ [0, 1],

φi : (−∞,∞) → (−∞,∞), φi ∈ P 2
1 (R), φi(t) = φi(t) for i = 1, 2 and t ∈ [0, 1],

mi = sup
t∈[0,1]

∫ 1

0

Gi(t, s) ds+ sup
t∈[0,1]

∫ 1

0

∣∣∣∣
∂Gi
∂t

(t, s)
∣∣∣∣ ds

for i = 1, 2.

3 Positive periodic solutions

In this section we present results on existence of positive 1-periodic solutions of
the equations (1.1) and (1.2).

Theorem 3.1 Suppose that

(3.1)

⎧
⎪⎪⎨
⎪⎪⎩

f : D → (−∞,∞) is continuous,
f(t+ 1, v0, v1) = f(t, v0, v1) for all (t, v0, v1) ∈ D,
there exists a constant L > 0 with
f(t, v0, v1) + L ≥ 0 for all (t, v0, v1) ∈ D,

(3.2) there exists a function ψ(u) such that f(t, v0, v1)+L ≤ ψ(v0 + |v1|) on D,
where ψ : [0,∞) → [0,∞) is continuous and nondecreasing and ψ(u) > 0 for
u > 0,

(3.3)

{
there exist C1 > 0 and r > 0 such that r ≥ μLC1d0,∫ 1

0 G1(t, s)ds ≤M0C1 for t ∈ [0, 1] and r
ψ(r+‖φ1‖1) ≥ μm1,

where d0,M0 and m1 have properties (2.9)–(2.11),

(3.4)

⎧
⎨
⎩

f(t, v0, v1) + L ≥ τ(t)g(v0) on D, where τ : (−∞,∞) → [0,∞)
is continuous and 1-periodic and g : [0,∞) → [0,∞) is continuous,
g(u) > 0 for u > 0 and g is nondecreacing,

(3.5) there exists R > 0 such that R > r and

d0R ≤ μ

∫ 1

0

τ(s)
[
d0G1

(
1
2
, s

)
−

∣∣∣∣
∂G1

∂t

(
1
2
, s

)∣∣∣∣
]
g

(
εM0R

d0

)
ds,

where ε > 0 is any constant such that

1− μLC1d0

R
≥ ε.

Then (1.1) has a positive solution x ∈ P 2
1 (R).
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Proof The proof of Theorem is similar to that of Theorem 2.1 in the paper
[1]. To show (1.1) has a positive 1-periodic solution we will look at

(3.6) x(t) = μ

∫ 1

0

G1(t, s)f∗+(s, x(s)− φ1(s), x′(s)− φ′1(s)) ds,

where

f∗+(t, v0, v1) =

{
f(t, v0, v1) + L, if (t, v0, v1) ∈ D
f(t, 0, v1) + L, if (t, v0, v1) ∈ D̃.

We will show that there exists a solution x1 to (3.6) with x1(t) ≥ φ1(t) for
t ∈ [0, 1]. If this is true then u(t) = x1(t) − φ1(t) is a positive solution of (3.6)
since for t ∈ [0, 1] we have

u(t) = μ

∫ 1

0

G1(t, s)[f∗+(s, x1(s)− φ1(s), x′1(s)− φ′1(s)) ds − μL

∫ 1

0

G1(t, s) ds

= μ

∫ 1

0

G1(t, s)f(s, u(s), u′(s)) ds.

We concentrate our study on (3.6). Let E = (P 1
1 (R), ‖ · ‖1) and

K1 = {u ∈ P 1
1 (R) : min

t∈[0,1]
[d0u(t)− |u′(t)| ≥M0‖u‖1}.

Obviously K1 is a cone of E. Let

(3.7) Ω1 = {u ∈ P 1
1 (R) : ‖u‖1 < r}

and

(3.8) Ω2 = {u ∈ P 1
1 (R) : ‖u‖1 < R}.

Now let A1 : K1 ∩ (Ω2 \ Ω1) → P 1
1 (R) be defined by

A1ϕ = xϕ, where ϕ ∈ K1 ∩ (Ω2 \ Ω1)

and xϕ is the unique 1-periodic solution of the equation

(3.9) x′′(t)− a2(t)x(t) + μf∗+(t, ϕ(t) − φ1(t), ϕ′(t)− φ1
′
(t)) = 0.

First we show A1 : K1 ∩ (Ω2 \ Ω1) → K1. If ϕ ∈ K1 ∩ (Ω2 \ Ω1) and t ∈ [0, 1],
then by Lemma 2.4 we have

(3.10) (A1ϕ)(t) = μ

∫ 1

0

G1(t, s)f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds.
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The relations (2.8)–(2.11) imply

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0(A1ϕ)(t) − |(A1ϕ)′(t)| =
= μd0

∫ 1

0
G1(t, s)f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1

′
(s)) ds

− μ
∣∣∣
(∫ 1

0 G1(t, s)f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

)′ ∣∣∣
≥ μ

∫ t
0

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

+ μ
∫ 1

t

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

≥ μ
∫ t
0

(
G1(s, s) +

∣∣∂G1
∂t (s+ 0, s)

∣∣) f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

+ μ
∫ 1

t

(
G1(s, s) +

∣∣∂G1
∂t (s− 0, s)

∣∣) f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

≥ μM0

∫ t
0

(
G1(t, s) +

∣∣∂G1
∂t (t, s)

∣∣) f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

+
∫ 1

t

(
G1(t, s) +

∣∣∂G1
∂t (t, s)

∣∣) f∗+(s, ϕ(s)− φ1(s), ϕ′(s)− φ1
′
(s)) ds

≥ μM0

(∫ 1

0

(
G1(t, s) +

∣∣∂G1
∂t (t, s)

∣∣)
)
f∗+(s, ϕ(s) − φ1(s), ϕ′(s)− φ1

′
(s)) ds

≥M0

(
(A1ϕ)(t) + |(A1ϕ)′(t)|

)
, where t ∈ [0, 1].

Hence

(3.11) d0(A1ϕ)(t) ≥ d0(A1ϕ)(t)− |(A1ϕ)′(t)| ≥M0‖A1ϕ‖1.

Consequently A1ϕ ∈ K1. So A1 : K1 ∩ (Ω2 \ Ω1) → K1. We now show

(3.12) ‖A1ϕ‖1 ≤ ‖ϕ‖1 for ϕ ∈ K1 ∩ ∂Ω1.

To see this let ϕ ∈ K1 ∩ ∂Ω1. Then

‖ϕ‖1 = r and ϕ(t) ≥ M0r

d0
for t ∈ R.

From (3.2)–(3.3) we have

(A1ϕ)(t) + |(A1ϕ)′(t)| ≤ μψ(r + ‖φ1‖1)m1 ≤ r ≤ ‖ϕ‖1.

So (3.12) holds. Next we show

(3.13) ‖A1ϕ‖1 ≥ ‖ϕ‖1 for ϕ ∈ K1 ∩ ∂Ω2.

To see it let ϕ ∈ K1 ∩ ∂Ω2. Then ‖ϕ‖1 = R and d0ϕ(t) ≥ RM0 for t ∈ R. Let
ε be as in (3.5). From (3.3) we have

ϕ(t)− φ1(t) = ϕ(t)− μL

∫ 1

0

G1(t, s)ds ≥ ϕ(t)− μLC1M0Rd0

d0R

≥ ϕ(t)
(

1− μLC1d0

R

)
≥ εϕ(t) ≥ εRM0

d0
> 0.
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This together with (3.4)–(3.5) yields

d0‖A1ϕ‖1 ≥ d0(A1ϕ)
(

1
2

)
−

∣∣∣∣(Aϕ)′
(

1
2

)∣∣∣∣

≥ μ

∫ 1

0

(
d0G1

(
1
2
, s

)
−

∣∣∣∣
∂G1

∂t

(
1
2
, s

)∣∣∣∣
)
τ(s)g(ϕ(s) − φ1(s)) ds

≥ μ

∫ 1

0

τ(s)
(
d0G1

(
1
2
, s

)
−

∣∣∣∣
∂G1

∂t

(
1
2
, s

)∣∣∣∣
)
g

(
εM0R

d0

)
ds ≥ d0R.

Hence we have (3.13). We will show that A1 is continuous and compact. To see
it let

G1(t, s) =

{
a1(s)y1(t) + a2(s)y2(t), 0 ≤ t ≤ s ≤ 1

b1(s)y1(t) + b2(s)y2(t), 0 ≤ s ≤ t ≤ 1

where (y1, y2) is a fundamental system of equation (2.1) and ai, bi : [0, 1] → R
are continuous for i = 1, 2. From relations (3.1)–(3.3) and properties of the
function G1 it follows that A1 is a bounded and continuous operator. Notice
that for y ∈ K1 ∩ (Ω2 \ Ω1); t1, t2 ∈ [0, 1] and t1 < t2 that

|A1y)(t2)− (A1y)(t1)| ≤
∫ 1

0

|G1(t2, s)−G1(t1, s)|ψ(R + ‖φ1‖1) ds

and

|(A1y)′(t2)− (A1y)′(t1)| ≤

≤
∫ t1

0

|b1(s)(y′1(t2)− y′1(t1)) + b2(s)(y′2(t2)− y′2(t1))|ψ(R + ‖φ1‖1) ds

+
∫ t2

t1

|b1(s)y′1(t2)− a1(s)y′1(t1) + b2(s)y′2(t2)− a2(s)y′2(t1)|ψ(R + ‖φ1‖1) ds

+
∫ 1

t2

|a1(s)(y′1(t2)− y′1(t1)) + a2(s)(y′2(t2)− y′2(t1))|ψ(R + ‖φ1‖1) ds

≤
∫ 1

0

(|y′1(t2)− y′1(t1)|+ |y′2(t2)− y′2(t1)|)h(s)ψ(R + ‖φ1‖1) ds

+ 2
∫ t2

t1

(‖y1‖1 + ‖y2‖1)h(s)ψ(R + ‖φ1‖1) ds,

where h(s) = |a1(s)|+ |a2(s)|+ |b1(s)|+ |b2(s)|.
Using the Arzela–Ascoli theorem we conclude that A1 : K1∩(Ω2\Ω1) → K1

is compact. Theorem 1.1 implies A1 has a fixed point x ∈ K1 ∩ (Ω2 \ Ω1),
i.e. r ≤ ‖x‖1 ≤ R and x(t) ≥ M0r

d0
for t ∈ R. This completes the proof of

Theorem 3.1. �
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Theorem 3.2 Suppose that
(3.14) f : D → [0,∞) is continuous

(3.15) f(t+ 1, v0, v1) = f(t, v0, v1) for all (t, v0, v1) ∈ D,

(3.16)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

there exist a function ψ(u) such that
f(t, v0, v1) ≤ ψ(v0 + |v1|) on D,
where ψ : [0,∞) → [0,∞) is continuous and nondecreasing and
ψ(u) > 0 for u > 0,

(3.17) there exists r such that r ≥ ψ(r)μm1,

(3.18)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

there exist function τ and g such that f(t, v0, v1) ≥ τ(t)g(v0)
for all (t, v0, v1) ∈ D, where g : [0,∞) → [0,∞), g(u) > 0
for u > 0, g is continuous and nondecreasing and
τ : (−∞,∞) → [0,∞) is continuous and 1-periodic,

(3.19) there exists R > 0 such that R > r and

d0R ≤ μ

∫ 1

0

τ(s)
[
d0G1

(
1
2
, s

)
−

∣∣∣∣
∂G1

∂t

(
1
2
, s

)∣∣∣∣
]
g

(
M0R

d0

)
ds.

Then (1.1) has a positive solution x ∈ P 2
1 (R).

Proof The proof of Theorem 3.2 is similar to that of Theorem 3.1. LetE,Ω1,Ω2

andK1 be as in Theorem 3.1. Now let ϕ ∈ K1∩(Ω2\Ω1) and let xϕ be the unique
1-periodic solution of the equation (3.9) and let A2 : K1∩(Ω2 \Ω1) → P 1

1 (R) be
defined by A2ϕ = xϕ. It is easy to check that A2 : K1 ∩ (Ω2 \ Ω1) → K1, A2 is
continuous and compact, ‖A2ϕ‖1 ≤ ‖ϕ‖1 for ϕ ∈ K1 ∩ ∂Ω1 and ‖A2ϕ‖ ≥ ‖ϕ‖1

for ϕ ∈ K1 ∩ ∂Ω2. Applying Theorem 1.1 we can show that the equation (1.1)
has a positive solution x ∈ P 2

1 (R) which implies our assertion. �

Example 3.3 To illustrate the applicabillity of Theorem 3.2 we consider the
following equation

(3.20) x′′(t)− x(t) + μ(x(t) + |x′(t)|)2 = 0.

Fix

a(t) ≡ 1, τ(t) = 1, d0 =
3e− 1
2
√
e
, M0 =

1√
e
, g(u) = ψ(u) = u2,

We claim that (3.17) holds for r ≤ 2
3μ . To see this notice that μm1 ≤ 3

2μ.
Clearly

g

(
RM0

d0

)
=
RM2

0

d2
0

=
4R2

(3e− 1)2
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and

μ

∫ 1

0

τ(s)
[
d0G1

(
1
2
, s

)
−

∣∣∣∣
∂G1

∂t

(
1
2
, s

)∣∣∣∣
]
g

(
M0R

d0

)
ds

=
4μR2

(3e− 1)2

∫ 1

0

[
(3e− 1)

2
√
e

G1

(
1
2
, s

)
−

∣∣∣∣
∂G1

∂t

(
1
2
, s

)∣∣∣∣
]
ds ≥ (3e− 1)

2
√
e

R

for sufficiently large R. Thus all conditions of Theorem 3.2 are satisfied and the
equation (3.20) has a positive solution x ∈ P 2

1 (R).
It is not difficult to verify that x(t) = 1

μ is a periodic and positive solution
of the equation (3.20).

Theorem 3.4 Assume conditions (3.1)–(3.2) and (3.4). Suppose that

(3.21) 0 < a(t) < π for t ∈ [0, 1],

(3.22)

⎧
⎪⎨
⎪⎩

there exists C2 > 0 and r > 0 such that r ≥ μLC2d0,∫ 1

0
G2(t, s) ds ≤ C2M0 for t ∈ [0, 1] and r ≥ ψ(r + ‖φ2‖1)μm2,

where d0 and M0 have properties (2.13)–(2.16),

(3.23)

⎧
⎪⎪⎨
⎪⎪⎩

there exists R > 0 such that R > r and

d0R ≤ μ
∫ 1

0 τ(s)
[
d0G2

(
1
2 , s

)
−

∣∣∂G2
∂t

(
1
2 , s

)∣∣] g
(
εM0R
d0

)
ds,

where ε > 0 is any constant such that 1− μLC2d0
R ≥ ε.

Then (1.2) has a positive solution x ∈ P 2
1 (R).

Proof Let E,Ω1 and Ω2 be as in Theorem 3.1. Let

K2 = {u ∈ P 1
1 (R) : min

t∈[0,1]
[d0u(t)− |u′(t)|] ≥M0‖u‖1}.

Then K2 is a cone of E. Now let ϕ ∈ K2 ∩ (Ω2 \ Ω1) and let xϕ be the unique
1-periodic solution of the equation

x′′(t) + a2(t)x(t) = μf∗+(t, ϕ(t)− φ2(t), ϕ
′(t)− φ

′
2(t)),

where f∗+ is defined by (3.6). Finally let A3 : K2∩(Ω2 \Ω1) → P 1
1 (R) be defined

by A3ϕ = xϕ. It is not difficult to prove that A3 : K2 ∩ (Ω2 \ Ω1) → K2, A3 is
continuous and compact. The similar arguments as in Theorem 3.1 gurantee
that ‖A3ϕ‖1 ≤ ‖ϕ‖1 for ϕ ∈ K2 ∩ ∂Ω1 and ‖A3ϕ‖1 ≥ ‖ϕ‖1 for ϕ ∈ K2 ∩ ∂Ω2.

Theorems 1.1 implies that A3 has a fixed point x ∈ K2∩(Ω2\Ω1) i.e. x(t) ≥ M0r

d0
for t ∈ R. This completes the proof of Theorem 3.4. �
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In a similar way we can prove

Corollary 3.5 Assume conditions (3.14)–(3.16) and (3.18). Suppose that
(3.24) there exists r > 0 such that r ≥ ψ(r)μm2,

(3.25) there exists R > 0 such that R > r and

d0R ≤ μ

∫ 1

0

τ(t)
[
d0G2

(
1
2
, s

)
−

∣∣∣∣
∂G2

∂t

(
1
2
, s

)∣∣∣∣
]
g

(
M0R

d0

)
ds.

Then (1.2) has a positive solution x ∈ P 2
1 (R).

Example 3.6 We consider the equation

(3.26) x′′(t) + x(t) = μ| sinπt|[(x(t) + |x′(t)|)2 − 1].

It is not difficult to verify that the equation (3.26) for 0 < μ ≤ 1/5 has a
solution x such that x(t) > 0 for t ∈ R and x ∈ P 2

1 (R). To see this we
apply Theorem 3.4 with a(t) ≡ 1, L = 1, τ(t) = | sinπt|, d0 = 2(tan1

2 + 1),
M0 = cos 1/2

1+sin 1/2 , g(u) = ψ(u) = u2, φ2 = μ, C2 = 2, r = 1 and with sufficiently
large R (R > 1).

4 Negative periodic solutions

In a similar way we can prove theorems on existence of negative periodic solu-
tions of the equations (1.1) and (1.2).

Theorem 4.1 Suppose that

(4.1)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f : D̃ → (−∞,∞) is continuous,
f(t+ 1, v0, v1) = f(t, v0, v1) for (t, v0, v1) ∈ D̃,
there exists a constant L > 0 with
f(t, v0, v1)− L ≤ 0 for (t, v0, v1) ∈ D̃,

(4.2)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

there exists a function ψ(u) such that
−f(t, v0, v1) + L ≤ ψ(|v0|+ |v1|) for (t, v0, v1) ∈ D̃,
where ψ : [0,∞) → [0,∞) is continuous
and nondecreasing and ψ(u) > 0 for u > 0,

(4.3) L − f(t, v0, v1) ≥ τ(t)g(|v0|) for (t, v0, v1) ∈ D̃, where τ and g have
property (3.4),

(4.4) there exist R > 0 and r > 0 such that (3.3) and (3.5) hold.

Then (1.1) has a negative solution x ∈ P 2
1 (R).
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Proof Let

f∗−(t, v0, v1) =

{
f(t, v0, v1)− L, if (t, v0, v1) ∈ D̃
f(t, 0, v1)− L, if (t, v0, v1) ∈ D.

We will show that there exists a solution x2 to the following equation

(4.5) x(t) = μ

∫ 1

0

G1(t, s)f∗−(s, x(s) + φ1(s), x
′(s) + φ

′
1(s)) ds

with x2(t) + φ1(t) < 0 for t ∈ [0, 1]. If this is true, then u(t) = x2(t) + φ1(t) is
a negative solution of the equation (1.1) since for t ∈ [0, 1] we have

u(t) = μ

∫ 1

0

G1(t, s)f(s, u(s), u′(s)) ds.

Let Ω1,Ω2 and E be as in Theorem 3.1. Now let

K3 = {u ∈ P 1
1 (R) : max

t∈[0,1]
[d0u(t) + |u′(t)|] ≤ −M0‖u‖1}.

Then K3 is a cone of E. Let ϕ ∈ K3 ∩ (Ω2 \ Ω1) and let xϕ be the unique
1-periodic solution of the equation

x′′(t)− a2(t)x(t) + μf∗−(t, ϕ(t) + φ1(t), ϕ
′(t) + φ

′
1(t)) = 0.

Finally let A4 : K3 ∩ (Ω2 \ Ω1) → P 1
1 (R) be defined by A4ϕ = xϕ. Then

(A4ϕ)(t) = μ

∫ 1

0

G1(t, s)f∗−(s, ϕ(s) + φ1(s), ϕ
′(s) + φ

′
1(s)) ds

for t ∈ [0, 1]. By Lemma 2.6 we have.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0(A4ϕ)(t) + |(A4ϕ)′(t)|
≤ μ

∫ 1

0

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗−(s, ϕ(s) + φ1(s), ϕ
′(s) + φ

′
1(s)) ds

= μ
∫ t
0

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗−(s, ϕ(s) + φ1(s), ϕ′(s) + φ1
′
(s)) ds

+ μ
∫ 1

t

[
d0G1(t, s)−

∣∣∂G1
∂t (t, s)

∣∣] f∗−(s, ϕ(s) + φ1(s), ϕ′(s) + φ1
′
(s)) ds

≤ μ
∫ t
0

[
G1(s, s) +

∣∣∂G1
∂t (s+ 0, s)

∣∣] f∗−(s, ϕ(s) + φ1(s), ϕ′(s) + φ1
′
(s)) ds

+ μ
∫ 1

t

[
G1(s, s) +

∣∣∂G1
∂t (s− 0, s)

∣∣] f∗−(s, ϕ(s) + φ1(s), ϕ
′(s) + φ

′
1(s)) ds.

Hence, by (2.10)–(2.11) we get

d0(A4ϕ)(t) + |(A4ϕ)′(t)|

≤ −μM0

∫ 1

0

[
G1(t, s) +

∣∣∣∣
∂G1

∂t
(t, s)

∣∣∣∣
]

(−f∗−(s, ϕ(s) + φ1(s), ϕ
′(s) + φ

′
1(s))) ds,

where t ∈ [0, 1]. So

d0(A4ϕ)(t) + |(A4ϕ)′(t)| ≤ −M0‖A4ϕ‖1.
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Consequently A4 : K3 ∩ (Ω2 \ Ω1) → K3. Using arguments similar to those in
the proof of Theorem 3.1 we conclude that A4 is continuous and compact. Let
ϕ ∈ K3 ∩ ∂Ω1. Then ‖A4ϕ‖1 ≤ ‖ϕ‖1. If ϕ ∈ K3 ∩ ∂Ω2, then ‖ϕ‖1 = R and
d0ϕ(t) ≤ −RM0.
Now let ε be as in (3.5). Then by (3.3) we have

⎧
⎨
⎩

ϕ(t) ≤ ϕ(t) + φ1(t) ≤ ϕ(t) + μL
∫ 1

0 G1(t, s) ds ≤ ϕ(t) + μLM0C1

≤ −RM0
d0

+ μLM0C1Rd0
d0R

= −RM0
d0

(
1− μLC1d0

R

)
≤ − εRM0

d0
< 0.

(for t ∈ [0, 1]). This together with (3.5) and (4.3) yields
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−d0‖A4ϕ‖1 ≤ d0(A4ϕ)
(

1
2

)
+

∣∣(A4ϕ)′
(

1
2

)∣∣

≤ μ
∫ 1

0

[
d0G1

(
1
2 , s

)
−

∣∣∂G1
∂t

(
1
2 , s

)∣∣]
[
f(s, ϕ(s) + φ1(s), ϕ

′(s) + φ
′
1(s))− L

]
ds

≤ −μ
∫ 1

0

[
d0G1

(
1
2 , s

)
−

∣∣∂G1
∂t

(
1
2 , s

)∣∣] τ(s)g(|ϕ(s) + φ1(s)|) ds
≤ −μ

∫ 1

0

[
d0G1

(
1
2 , s

)
−

∣∣∂G1
∂t

(
1
2 , s

)∣∣] τ(s)g
(
εRM0
d0

)
ds ≤ −d0R.

So ‖A4ϕ‖1 ≥ R = ‖ϕ‖1. By Theorem 1.1 the operator A4 has at least one fixed
point in the set K3 ∩ (Ω2 \Ω1), which means that (1.1) has a negative solution
x such that x ∈ P 2

1 (R). This completes the proof of Theorem 4.1. �

By the same way we can prove the following

Corollary 4.2 Suppose that

(4.6) f : D̃ → (−∞, 0] is continuous

(4.7) f(t+ 1, v0, v1) = f(t, v0, v1) for all (t, v0, v1) ∈ D̃,
(4.8) there exists a function ψ such that

|f(t, v0, v1)| ≤ ψ(v0 + |v1|) on D̃,

where ψ : [0,∞) → [0,∞) is continuous and nondecreasing and ψ(u) > 0
for u > 0,

(4.9) there exist functions τ and g such that

−f(t, v0, v1) ≥ τ(t)g(|v0|) for (t, v0, v1) ∈ D̃,

where τ and g have property (3.4),

(4.10) there exist constants r and R having properties (3.17) and (3.19).

Then (1.1) has a negative solution x ∈ P 2
1 (R).

Theorem 4.3 Assume that conditions (4.1)–(4.3), (3.21)–(3.23) are satisfied.
Then (1.2) has a negative solution x ∈ P 2

1 (R).
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Proof The proof of Theorem 4.3 is similar to that of Theorem 4.1. Let Ω1,Ω2,
f∗− and E be as in Theorem 4.1. Let

K4 =
{
u ∈ P 1

1 (R) : max
t∈[0,1]

[d0u(t) + |u′(t)|] ≤ −M0‖u‖1

}
.

Obviously K4 is a cone of E. We will show there exists a solution x3 of the
equation

x(t) = μ

∫ 1

0

G2(t, s)f∗−(s, x(s) + φ2(s), x
′(s) + φ

′
2(s)) ds

with x3(t) + φ2(t) < 0 for t ∈ [0, 1]. Let ϕ ∈ K4 ∩ (Ω2 \ Ω1) and let xϕ be the
unique 1-periodic solution of the equation

x′′(t) + a2(t)x(t) = μf∗−(t, ϕ(t) + φ2(t), ϕ
′(t) + φ

′
2(t)).

Finally, let A5 : K4 ∩ (Ω2 \ Ω1) → P 1
1 (R) be defined by A5ϕ = xϕ. Then

(A5ϕ)(t) = μ

∫ 1

0

G2(t, s)f∗−(s, ϕ(s) + φ2(s), ϕ
′(s) + φ

′
2(s)) ds

for t ∈ [0, 1]. By Lemma 2.7 we have

d0(A5ϕ)(t) + |(A5ϕ)′(t)|

≤ −μM0

∫ 1

0

[
G2(t, s) +

∣∣∣∣
∂G2

∂t
(t, s)

∣∣∣∣
] (
−f∗−(s, ϕ(s) + φ2(s), ϕ

′(s) + φ2(s))
)
ds,

where t ∈ [0, 1]. So

d0(A5ϕ)(t) + |(A5ϕ)′(t)| ≤ −M0‖A5ϕ‖1.

Consequently A5 : K4 ∩ (Ω2 \ Ω1) → K4. Also A5 is continuous and compact.
Let ϕ ∈ K4∩∂Ω1. Then ‖A5ϕ‖1 ≤ ‖ϕ‖1. If ϕ ∈ K4∩∂Ω2, then d0ϕ(t) ≤ −RM0

and

ϕ(t) ≤ ϕ(t) + φ2(t) ≤
−RM0

d0

(
1− μLC2d0

R

)
≤ −εRM0

d0

< 0,

where ε is as in (3.22). This together with (4.3) yields

−d0‖A5ϕ‖1 ≤ d0(A5ϕ)
(

1
2

)
+

∣∣∣∣(A5ϕ)′
(

1
2

)∣∣∣∣

≤ −μ
∫ 1

0

[
d0G2

(
1
2
, s

)
−

∣∣∣∣
∂G2

∂t

(
1
2
, s

)∣∣∣∣
]

[f(s, ϕ(s)+φ2(s), ϕ
′(s)+φ2(s))−L] ds

≤ −μ
∫ 1

0

[
d0G2

(
1
2
, s

)
−

∣∣∣∣
∂G2

∂t

(
1
2
, s

)∣∣∣∣
]
τ(s)g

(
εRM0

d0

)
ds ≤ −d0R.

Thus ‖A5ϕ‖1 ≥ ‖ϕ‖1. By Theorem 1.1 the operator A5 has at least on fixed
point in the set K4 ∩ (Ω2 \ Ω1) which means that (1.2) has a negative solution
x such that x ∈ P 2

1 (R). This completes the proof of Theorem 4.3. �
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In the simlar way we can prove the following

Corollary 4.4 Assume that conditions (4.6)–(4.9), (3.24)–(3.25) are satisfied.
Then (1.2) has a negative solution x ∈ P 2

1 (R).
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