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Abstract

We study the existence of one-signed periodic solutions of the equa-
tions

o’ (t) — a®()a(t) + pf(t, x(t), 2’ (1) =0,
2" (t) + a®(t)a(t) = pf(t, x(t), 2’ (1)),

where 4 > 0, a : (—00,4+00) — (0,00) is continuous and 1-periodic, f is
a continuous and 1-periodic in the first variable and may take values of
different signs. The Krasnosielski fixed point theorem on cone is used.

Key words: Positive solutions; boundary value problems; cone;
fixed point theorem.

2000 Mathematics Subject Classification: 34G20, 34K10, 34B10,
34B15

1 Introduction

Nonnegative solutions to varius boundary value problems for ordinary differ-
ential equations have been considered by several authors (see for instance in

119
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[1]-[8]). This paper deals with existence of positive (negative) periodic solu-
tions of the nonlinear differential equations of the form

(1.1) 2’ (t) — a®(t)x(t) + pf(t, x(t), 2/ (t)) = 0,
(1.2) 2 (t) 4 a®(t)x(t) = puf(t, x(t), 2/ (1)),

where a : (—00,+00) — (0,00) is continuous, 1-periodic, u > 0, f is a continu-
ous, 1-periodic function in ¢ and may take values of different signs. Existence in
this paper will be established using Krasnosielski fixed point theorem in a cone,
which we state here for the convenience of the reader.

Theorem 1.1 (K. Deimling [4], D. Guo, V. Laksmikannthan [5]). Let E =
(E,|l - ||) be a Banach space and let K C E be a cone in E. Assume Q
and s are bounded and open subsets of E with 0 € Q1 and Q1 C Qo and let
A:KN(Qy\ Q1) — K be continuous and completely continuous. In addition
suppose either ||Aul| < ||u|| for v € K NOQy and ||Aul| > ||u|| for K N oQs or
|Au|| > |lu|| for u € K NoQy and ||Aul| < |lu|| for u € K N 0Ny hold. Then A
has a fized point in K N (Qy \ Q7).

2 Preliminary results

First, we shall give some notation. We define P;"(R) (m € N) to be the subspace
of BC(R) (bounded, continuous real functions on R) consisting of all 1-periodic
mapping x such that 2™ is an 1-periodic and continuous function on R. For
z € PL(R) we define
lally = sup (l2(8)] + =/ ()]
t€(0,1]
Note P}(R,| - ||1) is a Banach space.
Let us consider the boundary value problems

(2.1) — (@ (t) = a®(t)z(t)) =0, x(0) = (1), 2'(0) = 2'(1);
(2.2) 2'(t) + a*()x(t) =0, z(0) ==z(1), 2'(0) = 2/(1),

In this paper we assume conditions under which the only solution of the problem
(2.1) or (2.2) is the trivial one. In the proofs of theorems we will make use the
Green functions G; and G2 of the boundary value problems (2.1) and (2.2).

Remark 2.1 If a € C[0,1] and a(t) > 0 for all ¢ € [0, 1], then the problem (2.1)
has only the trivial solution and G (¢, s) > 0 for all ¢, s € [0, 1] (see [7]).

Ifa € C[0,1], a(t) > 0 for t € [0,1] and sup,¢jo 1) a(t) < 7, then the problem
(2.2) has only the trivial solution and G(t,s) > 0 for all ¢, s € [0, 1] (see [7]).

Remark 2.2 If a(t) =k > 0 for t € [0, 1], then

Gl(t; 5) = Qk(ek _ 1) ek(t—s) + ek’(l—‘,—s—i&)7 0<s<t<l.

1 {ek(ls+t) + ek:(sft)v 0<t<s<1
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Remark 2.3 If a(t) =k > 0 for t € [0,1] and k # 2i7 for all [ € N, then

Ga(t,s) = cos k[1/2 — |s —t]].

1
2ksin k/2
Before giving the lemmas we shall introduce some notation. We denote

M = Sup G7 (t7 5)7 m; = inf G? (t7 5)7

t,s€[0,1] t,s€[0,1]
— 0G, oG,
M; = t, s _i/ = f : t
o (Fen). e e (SR

fori=1,2.
The properties of the functions G; (i = 1,2) needed later on are described
by the following lemmas.

Lemma 2.4 Suppose that
(2.3) f:R® = R is continuous, a € C[0,1] and a(t) > 0 for t € [0,1].
Then z € C?[0,1] is a solution of the problem
o {x"(t) — a2 (0)a(t) + pft,2(0). /(1)) = 0
2(0) = z(1), 2'(0) =2'(1)

if and only if x satisfies the integral equation

1
(2.5) z(t) = ;L/O Gi(t,s)f(s,z(s),2'(s)) ds.

Lemma 2.5 Suppose that a € C[0,1],a(t) > 0 fort € [0,1], sup,e(pqja(t) <=
and f : R® — R is continuous. Then x € C?[0,1] is a solution of the problem

{x”(t) +a?()a(t) = pf(t, x(t),2'(t))
a(

(2.6) 0) =z(1), 2/(0)=2a'(1)

if and only if x satisfies the integral equation

1
(2.7) z(t) = ;L/O Ga(t,s)f(s,z(s),2'(s)) ds.
Lemma 2.6 Let a € C[0,1] and a(t) > 0 for t € [0,1]. Then
(2.8) . slen[g | Gi(t,s) = teiféﬂ] Gi(t,1), (see [7])

doG1(t,s) — | %52 (t, )| > Gi(s,s) + |25 (s — 0, 5)|

for s,t € [0,1] and

doG1(t,s) — 8§t1 (t,s)| > Gi(s,s) + aGl (s+0,s)|

for s,t € [0,1] where 2£1(s -0, s) (aGl (s40,5))
denote the left-hand (the right-hand) side derivative of Gy

at the point (s, s) and dy > %,




122 Jan LIGEZA

(2.10) Gi(s,8) + %(s -0, 8)‘ > My <G1(t7$) + %(t, S)D

mi+my
for s,t €[0,1] and M, € (O M1+]\411 }

(2.11) Gl(s,s)—&—’%(s—k(),s)

oG
> My (Gl(t’ s) + B—tl(t’s)D .

where s,t € [0,1].

Lemma 2.7 Let a € C[0,1] and a(t) > 0 for t € [0,1] and sup;coja(t) < 7.
Then

(2.12) sup Ga(t,s) = sup Ga(t,1) (see [7]),
t,s€[0,1] te[0,1]
(2.13) doGa(t,s) — %(us)‘ > Ga(s, s) + ‘%(s - 075)‘

fort,s €[0,1] and dy > %,

0G2

_ 0Go
(2.14) doGa(t, s) — W(t,s)‘ > Ga(s,s) + ‘W(s +0,s)|,
where s,t € [0,1],
(2.15) Ga(s,s) + %(s —0,5)| > My | Ga(t,s) + %(t, s)
ot ot
for s,t €0,1], My € (O, %} and
(2.16) Gg(s,s)—&-’%(s—k(hs)‘ Zﬁ(Gg(t s) + 8;2(75,5)‘) ,

where s,t € [0,1].
It is not difficult to prove the following

Corollary 2.8 Leta(t) =k >0 fort € [0,1]. Then

.
SUDPy,s¢(0,1] Gi(t,s) = Wkﬂll)v
. ok/2
mft,se[o,l] Gl(t7s) = EeFo1)»

(2.8) Gi(s,s) > Gi(t,s) for s,t €[0,1], sup; o1 ‘% | =1,

infy 50,1 |88Gf1 t,s)| =0, fo Gi(t,s)ds = 7 for t € [0,1],
buPteoufo Gi(t, s) ds + supseo 1] fo aGl (t,s)|ds=mi <L +1,
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doGi(t,s) — | %2 (t, 5)| > Gi(s,s) + |25 (s — 0,5)|

for s,t € [0,1] and

2.9)
29) Ao (t.5) — |22 (¢, )| > G (s.) + | %5 (s +0,5)]
for s,t € [0,1] and do > %ﬁ};_l),
(210)’ Gl(S S) + %(8—0 S) > M() (Gl(t78) + %(LS)‘)

k/2
for s,t €[0,1] and My € (0, 7€k(13_ek)+1_k:| )

ey Gl 4| St 0| 2 o (Gt +| Gt e )] )

where s,t € [0,1].
Corollary 2.9 Let a(t) =k fort € [0,1] and let 0 < k < w. Then

. k/2
1nft,s€[0,1] Ga(t,s) = Cot2k/ ,

el
Supt,sE[O,l] GQ(t’ 8) = m7 Supt,sE[O,l] |at(—(t;i)(t7 S)| = %7
]

(212) 3§ infacn |22 (45)] =0, [ Galt,s)ds = & for t € [0,1],
1
SUP¢e(o,1] fol Ga(t,s)ds + SUP¢eo,1] fo |%(t7 5)‘ ds
= m2 < 7 + Qa

— oG oG

(2.13) doGa(t, s) — | =2 (t, 5)| > Gals, s) + |—=(s — 0, 5)
ot ot

fort,s €[0,1] and
(2.14) doGa(t,s) — %(t s)| > Ga(s,s) + ’%(8 +0,9)|,

where s,t € [0,1] and dy > 2ktank/2 + 1,

(2.15) Ga(s,s) + —0,s)| >

at(

5 (Gatts) + 500

fors,t € [0,1], My € (0, 55285 and

(2.16) Ga(s,s) + ‘%

“ <s+oys>\ > T (Ga9) + @ws)\),

ot

where s,t € [0,1].
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Throughout the paper

D = (—00,00) x [0,00) X (—00,00), D = (—00,00) X (—00,0] X (—00,c0),

1w>0, a:(—00,00) — (0,00) is continuous and 1-periodic, L > 0,

1
(t) = /LL/ Gi(t,s)ds fori=1,2, t€]0,1],

¢i : (—00700) (_ ¢z S PQ( ) d)z( ) d)i(t) fO’I‘i: 172 and t € [07 1]7

110G,
T (t, 5)‘ds

m; = sup Gtsds—l—sup/
te[0,1] te[0,1] JO

fori=12.

3 Positive periodic solutions

In this section we present results on existence of positive 1-periodic solutions of
the equations (1.1) and (1.2).

Theorem 3.1 Suppose that

f:D — (—o00,00) is continuous,

f(t+1,v0,v1) = f(t,v0,v1) for all (t,ve,v1) € D,
there exists a constant L > 0 with

f(t,v9,v1) + L >0 for all (t,vp,v1) € D,

(3.1)

(3.2) there exists a function ¢¥(u) such that f(t,vo,v1)+ L < 1(vo+|v1]) on D,
where 1 : [0,00) — [0,00) is continuous and nondecreasing and Y(u) > 0 for
u >0,

(3.3) there exist C; > 0 and r > 0 such that r > pLC1dp,
fo G1(t,s)ds < MyCy for t € [0,1] and m > umy,
where dy, My and my have properties (2.9)-(2.11),
f(t,vo,v1) + L > 7(t)g(vo) on D, where 7 : (—00,00) — [0, 00)
(3.4) is continuous and 1-periodic and g : [0, 00) — [0, 00) is continuous,
g(u) > 0 for u > 0 and ¢ is nondecreacing,

(3.5)  there exists R > 0 such that R > r and

! 1 G, (1 eMoR
< [ o0 w6 () |G () o (7)o

where € > 0 is any constant such that

/LLCld() > ¢
R -
Then (1.1) has a positive solution x € P2(R).

1-—
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Proof The proof of Theorem is similar to that of Theorem 2.1 in the paper
[1]. To show (1.1) has a positive 1-periodic solution we will look at

(3.6) / Gi(t,)f (s, 2(s) — Br(s), ' (s) — By (s)) ds,

where
f(t7U()7Ul)+L, if (t7U(),'U1) €D

* t, , e D
Fi(t vo,v1) {f(t70,v1)+L, if (¢,v0,v1) € D.

We will show that there exists a solution z; to (3.6) with z(¢) > ¢1(t) for
t € [0,1]. If this is true then u(t) = x1(t) — ¢1(¢) is a positive solution of (3.6)
since for ¢ € [0, 1] we have

/ G1(t, s)[f1(s,21(s) — d1(s), 2} (s) —gb_’l(s))ds—yL/o Gi(t,s)ds
:M/O G1(t,s)f(s,u(s),u'(s))ds.

We concentrate our study on (3.6). Let E = (P} (R),| - ||1) and

K= {u e PLR): min [dou(t) — /(1) > MolJul ).

Obviously K is a cone of E. Let

(3.7) O ={ue Pf(R) sully <7}
and
(3.8) Qo ={uecPR): |ul|: <R}

Now let A1 : K1 N (Q2\ Q1) — PL(R) be defined by
Arp =1z, wherepe KN (Q2\ Q1)
and z, is the unique 1-periodic solution of the equation
(3.9) 2 (t) = (B (t) + pf Lt (1) — B1(1), ' () = 61 (1)) =0

First we show A; : K1 N (Q\ Q1) — K;. If o € K1 N (Q2\ Q) and ¢ € [0,1],
then by Lemma 2.4 we have

—_—

(310) (At / Gt 5)f% (5, 0(s) — B1(s), ¢ (5) — Br'(s)) ds.
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The relations (2.8)—(2.11) imply

do(A1p)(t) — [(Arp)' (1) =
= pdo fy Gr(t,5)F1(s,0(5) = B1(s), ¢/ (5) — 1 (s)) ds
)

~ (s &rce s)f+(8 o) = 91(s). ' (5) = 1 (5)) ds

> 1 fy [doGi(t,s) — |25 (1, 5)[] £ (5, 0(5) — G1(s), ¢/ (5) — 61 (5)) ds
[ [doGa () — |28 (t, 5)]] ;<s,¢<s)_m),@f(s)_a@)ds
>y <G1<s,s> + %52 (s+0,5)|) i(svw(S)—E(S)vw'(S)—% (5))ds
L (Gi(s,s) + | 282 (s — 0,5)]) F1(s,0(5) — G1(5), ¢/ (5) — b1 (5)) ds
> uMy [ (G1(E,8) + |282(7,5)]) f1(5,0(5) — b1 (s) ga'(s)l—ms))ds

+ [H (G, s) +|3G1ts)\)f+(s o(s) — b1

> My (fo (G1(Z,s) + | 281 (1, 5) )) fi(s,p
> My ((A19)(F) + (A1) (1)),  where t € [0,1].

Hence

(3.11) do(A1)(t) > do(A1)(T) — [(A1p) (D) = Mol Arp]1-
Consequently A;p € K1. So Ay : K10 (Q2\ Q1) — K. We now show
(3.12) A1l < el for p € K1 NoQy.

To see this let ¢ € K7 N 0. Then

My
el =7 and @“Zf for ¢ € R.

From (3.2)—(3.3) we have

(A10)(1) +[(Arp) (O] < o (r + [[Gull1)mr < 7 < [leo]ls.

So (3.12) holds. Next we show
(3.13) [A1¢llh > |lelln for ¢ € K1 N ONs.

To see it let ¢ € K1 N0Ns. Then ||¢||1 = R and dop(t) > RM, for t € R. Let
¢ be as in (3.5). From (3.3) we have

! LCi1MyRd
o) = Fit) = o) ~ L. [ Galts)ds > olt) - Lo

. /.LLCldo €RMO
R

0

> ep(t) 2 > 0.
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This together with (3.4)—(3.5) yields

dol[ Ay > do(Arp) (%) B ’(ASD), (%)‘

> [ (a0 (55) - [ B2 (3)]) atets) - s a

1 1 G, (1 eMyR
> doGi | =,s) —|— | =, ds > doR.
2 [0 (w6 (50) - |5 (39)]) o () o2

Hence we have (3.13). We will show that A; is continuous and compact. To see
it let

Cilt,s) = ai(s)yi1(t) +az(s)y2(t), 0<t<s<1
PO T\ bi(s)yn (t) + ba(s)ye(t), 0<s<t<1

where (y1,y2) is a fundamental system of equation (2.1) and a;, b; : [0,1] — R
are continuous for ¢+ = 1,2. From relations (3.1)-(3.3) and properties of the
function G4 it follows that A; is a bounded and continuous operator. Notice
that for y € K1 N (Q2 \ Q1); t1,t2 € [0,1] and ¢; < ¢, that

[A1y)(t2) — (Ary)(t1)] < /01 |G1(ta, 5) = Gi(tr, )| (R + |1 ]11) ds
and
|(Ary)'(t2) = (Ary)' (t2)] <
< /Otl [b1.(s) (W1 (t2) — w1 (t1)) + b2(s) (W3 (t2) — w3 (E)) V(R + [|1]11) ds

+ / b)) (t2) — ar (8) (t1) + ba(s)uh (t2) — as(s)ub(t)[0(R + [Brlly) ds
1

+ [ laa(s) (Wi (t2) — i (1)) + az(s) (ya(t2) — ya(t1)) V(R + [ ]l1) ds

to

< / (19 (t2) — 4, (t2)] + W (t2) — wo(t0)DA()(R + [ Brl) ds
2 / gl + w2l )A(s)e(R + [Brlh) ds,

where (s) = [ax(s)| + laz(s)] + [b1(5)] + ba(s)]. B

Using the Arzela—Ascoli theorem we conclude that A; : K1N(22\Q1) — K,
is compact. Theorem 1.1 implies A; has a fixed point z € K; N (g \ Qy),
ie.r < |lz|1 £ R and =(t) > A{d—g’" for ¢ € R. This completes the proof of
Theorem 3.1. O
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Theorem 3.2 Suppose that
(3.14) f:D —[0,00) is continuous

(3.15)  f(t+ 1,v9,v1) = f(t,v9,v1) for all (t,vg,v1) € D,

there exist a function 1(u) such that

f(t,vo,v1) < (v + |v1]) on D,

where 1 : [0,00) — [0,00) is continuous and nondecreasing and
P(u) > 0 for u >0,

(3.16)

(3.17)  there exists v such that r > (r)pmq,

there exist function T and g such that f(t,vg,v1) > 7(t)g(vo)
for all (t,vo,v1) € D, where g : [0,00) — [0,00), g(u) >0

3.18
( ) for u > 0,g is continuous and nondecreasing and

T : (—00,00) — [0,00) is continuous and 1-periodic,

(3.19)  there exists R > 0 such that R > r and

! 1 oGy (1 MoR
i oo (o) |5 () (7)o
0 . 0 T(S) ot 28 6t 28 g do s

Then (1.1) has a positive solution x € PZ(R).

Proof The proof of Theorem 3.2 is similar to that of Theorem 3.1. Let E, 21, Qo
and K be as in Theorem 3.1. Now let ¢ € K1N(€22\1) and let x, be the unique
1-periodic solution of the equation (3.9) and let Ay : K1 N (Q\ Q1) — PL(R) be
defined by Az = x,. It is easy to check that Ay : K1 N (Q2\ Q1) — K, Ag is
continuous and compact, ||Azpll1 < ||¢|l1 for ¢ € K1 NOQ; and ||Az¢] > |lell1
for ¢ € K71 N9Qs. Applying Theorem 1.1 we can show that the equation (1.1)
has a positive solution z € PZ(R) which implies our assertion. |

Example 3.3 To illustrate the applicabillity of Theorem 3.2 we consider the
following equation

(3.20) 2" (t) — a(t) + p(x(t) + |2/ (1)])* = 0.
Fix
o)=L () =1 do= T Mo= o glu) = U(u) =

We claim that (3.17) holds for r < % To see this notice that umy < 3pu.
Clearly

RM,\  RM; 4R?
- d? (3e —1)2

do -
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and

! 1 0Gy (1 MyR
= =z d
nf oo (o) 5 o)l (57)
4pR? [P (3e—1) 1 oG, (1 (3e —1)
— Z — == ds > R
(3e—1)2/0 { oe Ci\2® at \2°°)|| "= ok
for sufficiently large R. Thus all conditions of Theorem 3.2 are satisfied and the

equation (3.20) has a positive solution z € PZ(R).
It is not difficult to verify that x(t) = %L is a periodic and positive solution

of the equation (3.20).

Theorem 3.4 Assume conditions (3.1)—(5.2) and (3.4). Suppose that
(3.21) O0<a(t)<w fortel0,1],

there exists Cy > 0 and r > 0 such that r > puLCady,
(3.22) fol Ga(t,s)ds < CoMy fort € [0,1] and r > (1 + |[dy]|1) uma,
where dy and Mo have properties (2.18)-(2.16),

there exists R > 0 such that R > r and

623 3 AR fy () [0 (h5) %5 (5,9)[] o (et as,
where € > 0 is any constant such that 1 — “L%do > e.

Then (1.2) has a positive solution x € PZ(R).
Proof Let E,Q; and 3 be as in Theorem 3.1. Let

K= {uc PR): min [dou(t) - /(1)) > DolJul ).

Then K> is a cone of E. Now let ¢ € Ko N (Q2 \ ;) and let x, be the unique
1-periodic solution of the equation

2 (1) + (D)2 (t) = pf(t () — Ga(t), ¢ () — Bo(1)),

where f is defined by (3.6). Finally let A3 : KoM (Q2\ 1) — P} (R) be defined
by Asp = x,. It is not difficult to prove that Az : Ko N (Q \ Q) — Ky, A3z is
continuous and compact. The similar arguments as in Theorem 3.1 gurantee
that [|Aspll1 < |l¢ll1 for ¢ € K2 N 00 and [|Asplli > [¢lli for ¢ € KoM 0.
Theorems 1.1 implies that A3 has a fixed point x € KoN(Q2\ Q1) i.e. z(t) > %
for t € R. This completes the proof of Theorem 3.4. T
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In a similar way we can prove

Corollary 3.5 Assume conditions (3.14)-(3.16) and (3.18). Suppose that
(3.24)  there exists v > 0 such that r > (r)pma,
(3.25)  there exists R > 0 such that R > r and

_ 1 - 1 0Gy (1 MyR
< S g iy — )
o 70 [ (5.5) = 5 (3 o (527

Then (1.2) has a positive solution © € P2(R).

Example 3.6 We consider the equation
(3.26) 2" () + x(t) = p|sinzt|[(x(t) + |2/ (t)])* — 1].

It is not difficult to verify that the equation (3.26) for 0 < p < 1/5 has a
solution x such that z(t) > 0 for t € R and 2 € PZ(R). To see this we
apply Theorem 3.4 with a(t) = 1, L = 1, 7(t) = |sinnt|, dy = 2(tan% +1),
M, = 13_(:5/1327 g(u) = p(u) = u?, ¢y = p, C2 =2, r = 1 and with sufficiently
large R (R > 1).

4 Negative periodic solutions

In a similar way we can prove theorems on existence of negative periodic solu-
tions of the equations (1.1) and (1.2).

Theorem 4.1 Suppose that

f:D — (—o0,00) is continuous,
f(t+1,v0,v1) = f(t,v0,v1) for (t,vp,v1) € D,

(4.1) ] )
there exists a constant L > 0 with
f(t,v9,v1) — L <0 for (t,vo,v1) € D,
there exists a function (u) such that
(4 2) _f(ta anvl) +L < ¢(|U0| + |U1|) fOT (ta 'Uo,'Ul) € D7

where ¢ : [0,00) — [0,00) is continuous
and nondecreasing and ¥(u) > 0 for u > 0,

(4.3) L — f(t,v0,v1) > 7(t)g(|vo|) for (t,v0,v1) € D, where T and g have
property (3.4),

(4.4)  there exist R > 0 and r > 0 such that (3.3) and (3.5) hold.
Then (1.1) has a negative solution x € PZ(R).
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Proof Let

f(t,Uo,Ul) — L, if (t,vo,vl) S f)

* t7 ) =
fﬁ( v Ul) {f(t,(),vl) —L, if (t,vo,vl) eD.

We will show that there exists a solution zs to the following equation

1
(4.5) (t) = u/o Gr(t,5)F7 (5, 2(5) + By (s),2'(s) + 6, (5)) ds

with z2(t) + ¢1(t) < 0 for t € [0,1]. If this is true, then u(t) = z2(t) + ¢, (t) is
a negative solution of the equation (1.1) since for ¢ € [0, 1] we have
1
i [ Galt. s uls). ol () ds.
0
Let Q1,95 and F be as in Theorem 3.1. Now let

Ky ={ue P(R): maxldou(t) + [u/(1)] < ~MolJul}.

Then K3 is a cone of E. Let ¢ € K3N (22 \ Q1) and let z, be the unique
1-periodic solution of the equation

2 () = a2 (Ox(t) + pf2(E p() + 61(£), ' (£) + 61 (1) = 0.
Finally let A4 : K30 (Q2 \ Q1) — PL(R) be defined by A4 = z,,. Then
(Aap)(t) = M/O Grt:9) [~ (5,9(5) + 61(5), ¢ () + B (s)) ds

for ¢ € [0,1]. By Lemma 2.6 we have.

do(Asp)(t) + I(Aw)'(t)l

< g fy [doGa(t,s) — |25 (t,5)|] £2(5,0(5) + b1 (5), ¢/ () + By (s)) ds

= [y [doG(t,s) — | 251 (8, 5)[] f7 (5, 0(5) + 61(5), ¢ (5) + 61 (5)) ds

+ [ [doGa(t,s) — | 252 (t,8)[] £ (s, 0(s) + 1(5), ' (5) + 1 (5)) ds

<pfy [Glss+\8G1s+08)|]f*(sso()+ ds
N

G1(s) /() +1 ()
+ i [ [Gas,s) + [ 252 (s = 0,9)[] F2(5,0(5) + G1(), &' (5) + b1 () ds
Hence, by (2.10)—(2.11) we get
do(Asp)(t) + |(Asp)'(1)]

ity [ @)+ | 200 | (006 5160, + B ) s,

where ¢ € [0,1]. So

do(Asp)(t) + [(Aap) ()] < — Mol Asel1-
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Consequently A4 : K3 N (Q\ Q1) — K3. Using arguments similar to those in
the proof of Theorem 3.1 we conclude that A, is continuous and compact. Let
p € K3nNoQ. Then [[Asp|1 < |lolli- If ¢ € K3N0Qs, then ||¢|1 = R and
dop(t) < —RMj.

Now let € be as in (3.5). Then by (3.3) we have

p(t) < p(t) + 6,(t) < @(t) + L [ Gi(t, s) ds < p(t) + pLMoCy

RMO /,LLMQCleQ _ _RMO _ /J,LCldO _ERMO
< - + doR - do 1 R < do <0.

(for t € [0,1]). This together with (3.5) and (4.3) yields

—dol|Asepll1 < do(Ase) (3) + |(Asp) (3)]

< g Jy [doGr (.5) — |28 (3,9)[] [£(50(5) +Bu(5), 2/ (5) + B (s)) — L] ds
< —ufy [doGi (5.5) = | % (3. 9)[] 7(5)g(lp(s) + B (s)]) ds

<~ fy [doGi (3.5) — | %2 (%’8)|]TS>9(“%M°)CZS< —doR.

So [[As¢ll1 > R = [|¢]l1. By Theorem 1.1 the operator A4 has at least one fixed
point in the set K3 N (22 \ 1), which means that (1.1) has a negative solution
x such that = € P2(R). This completes the proof of Theorem 4.1. O

By the same way we can prove the following

Corollary 4.2 Suppose that

(4.6) f:D — (—00,0] is continuous

(4.7) f(t+1,v0,v1) = f(t,v0,v1) for all (t,v,v1) € D,
(4.8) there exists a function ¢ such that

|f(taUOaU1)| S ¢(UO+|UI|) on ,[jv

where 1 : [0,00) — [0, 00) is continuous and nondecreasing and ¥ (u) > 0
for u >0,

(4.9) there exist functions T and g such that
—f(t,v0,01) > 7(t)g(|vo])  for (t,v0,v1) € D,
where T and g have property (3.4),
(4.10) there exist constants r and R having properties (3.17) and (3.19).
Then (1.1) has a negative solution x € PZ(R).

Theorem 4.3 Assume that conditions (4.1)-(4.3), (3.21)—(3.23) are satisfied.
Then (1.2) has a negative solution x € PZ(R).
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Proof The proof of Theorem 4.3 is similar to that of Theorem 4.1. Let €, Qs,
f* and F be as in Theorem 4.1. Let

_ 1 . g ! _ AT
Ki={ue PIR): pmax [dout) + 1 (1)) < Mo |ull: }.

Obviously K4 is a cone of E. We will show there exists a solution x3 of the
equation

1
£(t) = / Galt, 5)f* (5, 2(5) + Ba(5), ' (5) + Bu(s)) ds

with 23(t) + ¢5(t) < 0 for t € [0,1]. Let ¢ € K4 N (R \ Q1) and let z, be the
unique 1-periodic solution of the equation

2 () + a®(£)x(t) = pf (t, o(t) + Bo(t), &' () + Ba(t)).
Finally, let A5 : K4 N (Q2\ Q1) — P!(R) be defined by Asp = z,,. Then

1
(As)(t) = M/O Ga(t,5) 17 (5,0(5) + B3(5), ¢/ (5) + By(s)) ds
for t € [0,1]. By Lemma 2.7 we have

do(As)(t) + |(As0)'(¢)]

< il [ 6ot + |2 | (17 52006) £ 3000/ (5) + () .

where ¢ € [0,1]. So
do(As)(t) + [(As0) ()] < —Mo||Asell1.-

Consequently As : K4 N (Qa \ Q1) — K4. Also Aj is continuous and compact.
Let p e K4ﬂ691. Then ||A5<p||1 < ||<p||1 If(p S K4ﬂ692, then do(p(t) < —RMj
and

<0,

- —RMy (1 — uLCsd, —eRM,
o) < o(t) + By(t) < 2 ( K 02d°)< Sl
d() R dO

where ¢ is as in (3.22). This together with (4.3) yields

_ B 1 .
—do||Aspll1 < do(Asp) (§> + ‘(As)go)/ (§>‘

< [ [u6a (55) - [52 (35) || 616481000 01+ Bolo) - L1 s

Lo 1 8G2 1 €RM() -
< _ _ ==z < — .
<o [mes () [ (o) rom (500 o=

Thus [[A5¢[l1 > [l¢ll1. By Theorem 1.1 the operator A; has at least on fixed
point in the set K4 N (22 \ Q1) which means that (1.2) has a negative solution
x such that = € P2(R). This completes the proof of Theorem 4.3. O
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In the simlar way we can prove the following

Corollary 4.4 Assume that conditions (4.6)-(4.9), (3.24)-(3.25) are satisfied.
Then (1.2) has a negative solution x € PZ(R).
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