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Abstract

By a nearlattice is meant a join-semilattice where every principal filter
is a lattice with respect to the induced order. The aim of our paper is
to show for which nearlattice S and its element c the mapping ϕc(x) =
〈x∨ c, x∧p c〉 is a (surjective, injective) homomorphism of S into [c)× (c].

Key words: Nearlattice; semilattice; distributive element; pseudo-
complement; dual pseudocomplement.
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It is well-known (see e.g. [4]) that if L is a bounded distributive lattice and c ∈
L has a complement in L then L is isomorphic to the direct product [c)×(c]. On
the other hand, if c is not complemented then the mapping ϕc(x) = 〈x∨c, x∧c〉
is still an injective homomorphism of L into the mentioned direct product and
one can discuss whether the homomorphic image ϕc(L) is a subdirect product
of [c)× (c].
In what follows we generalize this setting for the so-called nearlattices (see

[1–3, 5–8]) and we investigate which of these results remain true. It turns out
that our task is reasonable only for a class of so-called nested nearlattices.

Definition 1 By a nearlattice we mean a semilattice S = (S;∨) where for each
a ∈ S the principal filter [a) = {x ∈ S; a ≤ x} is a lattice with respect to the
induced order ≤ of S.
*Supported by the Research Project MSM 6198959214.
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Remark 1 Since the operation meet is defined only in a corresponding principal
filter, we will indicate this fact by indices, i.e. ∧x denotes the meet in [x). On
the other hand, if a, b ∈ [x) and y ≤ x then a, b ∈ [y) and a ∧x b = a ∧y b since
both are considered with respect to the same (induced) order ≤.

Definition 2 Let S = (S;∨) be a nearlattice and ∅ 	= A ⊆ S. A is called
a sublattice of S if it is a lattice with respect to the induced order ≤ of S.
A sublattice M of a nearlattice S is called maximal if M is not a proper

sublattice of another sublattice of S.

Let S = (S;∨) be a nearlattice. Denote byMS = {Mγ , γ ∈ Γ} the set of all
maximal sublattices Mγ of S.
Further, if there exists an element c ∈ ⋂MS , S will be called a nested

nearlattice.

Remark 2 a) Every finite nearlattice S is nested, because S is a join semilattice
with 1 and 1 ∈ ⋂

MS .
b) An example of an infinite nearlattice which is not nested is shown in

Fig. 1.
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Fig. 1

For any element c ∈ S we can find a maximal sublattice which does not
contain c. In particular, if c = i or c = ai then c does not belong to the
maximal sublattice [ai+1).

Let S be a nested nearlattice and suppose c ∈ ⋂MS. Suppose x ∈ S. Then
there exists γ ∈ Γ such that x ∈ Mγ . Since Mγ is a lattice and c ∈ Mγ , there
exists inf{x, c} with respect to the induced order. Suppose p ∈ S with p ≤ x, c.
Then clearly x ∧p c = inf{x, c}. Apparently, this operation does not depend
on γ (when x belongs to more than one Mγ). Summarizing, there surely exists
p ∈ S such that x ∧p c = inf{x, c}.
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Definition 3 Let S be a nested nearlattice and c ∈ ⋂MS . The mapping
ϕc : S → [c)× (c] defined by

ϕc(x) = 〈x ∨ c, x ∧p c〉

will be called a decomposition mapping.

The mapping ϕc is obviously everywhere defined, since c ∈
⋂MS .

Definition 4 Let S be a nearlattice and {Mγ , γ ∈ Γ} be the set of its maximal
sublattices.

(i) An element a of S is called distributive if

a ∨ (x ∧p y) = (a ∨ x) ∧p (a ∨ y),

for all x, y, p ∈Mγ , p ≤ x, y and all γ ∈ Γ.

(ii) An element a is called dually distributive if

a ∧p (x ∨ y) = (a ∧p x) ∨ (a ∧p y),

for all a, x, y, p ∈Mγ , p ≤ a, x, y and all γ ∈ Γ.

A nearlattice S is called distributive if

a ∨ (b ∧p c) = (a ∨ b) ∧p (a ∨ c)

for all a, b, c ∈ S with p ≤ b, c.

Suppose now, that an element c is distributive and also dually distributive.
We wonder whether ϕc is a homomorphism.

Definition 5 By a suitable element we mean an element c of a nested nearlat-
tice S = (S;∨) with c ∈ ⋂MS , which is distributive and also dually distribu-
tive.

Of course, in a nested distributive nearlattice S every element c ∈ ⋂MS is
suitable.

Proposition 1 Let S = (S;∨) be a nested nearlattice and c its suitable element.
Then the decomposition mapping ϕc is a homomorphism.

Proof ϕc(x∨y) = 〈(x∨y)∨c, (x∨y)∧p c〉 = 〈(x∨c)∨(y∨c), (x∧p c)∨(y∧p c)〉 =
〈x ∨ c, x ∧p c〉 ∨ 〈y ∨ c, y ∧p c〉 = ϕc(x) ∨ ϕc(y).

ϕc(x∧py) = 〈(x∧py)∨c, (x∧py)∧pc〉 = 〈(x∨c)∧p (y∨c), (x∧pc)∧p(y∧pc)〉 =
〈x ∨ c, x ∧p c〉 ∧p 〈y ∨ c, y ∧p c〉 = ϕc(x) ∧p ϕc(y). �
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Example 1 Let S be a nearlattice depicted in Fig 2.
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We can easily check that the elements 0, b, 1 are distributive and also dually
distributive. An element c is distributive, but not dually distributive, an element
a is dually distributive, but not distributive.
Consider the decomposition mappings ϕb, ϕa and ϕc. Then for ϕb : S �→

[b)× (b] we have ϕb(1) = 〈1, b〉, ϕb(0) = 〈b, 0〉, ϕb(b) = 〈b, b〉, ϕb(a) = 〈1, 0〉 and
ϕb(c) = 〈1, 0〉 (see Fig. 3). Clearly, [b) = {b, 1}, (b] = {0, b}.
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Fig. 3

One can see that the mapping ϕb is a surjective homomorphism which is not
injective.
For the decomposition mapping ϕa : S �→ [a) × (a] we have ϕa(1) = 〈1, a〉,

ϕa(0) = 〈a, 0〉, ϕa(a) = 〈a, a〉, ϕa(b) = 〈1, 0〉 and ϕa(c) = 〈c, a〉 (see Fig. 4).
Obviously, [a) = {a, c, 1} and (a] = {0, a}.
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The mapping ϕa is not a homomorphism, because

ϕa(c ∧ b) = 〈a, 0〉 	= 〈c, 0〉 = ϕa(c) ∧ ϕa(b).

Similarly, the decomposition mapping ϕc : S �→ [c)× (c] is not a homomor-
phism.

Now, we will check, whether ϕc is an injection. Let ϕc(x) = ϕc(y). Then
x ∨ c = y ∨ c and x ∧p c = y ∧p c. If the mapping ϕc is injective, then x = y.
Thus the mapping ϕc is injective only if for each x, y ∈ Mγ (x ∨ c = y ∨ c and
x ∧p c = y ∧p c) implies x = y.

Remark 3 Distributivity and dual distributivity of the element c is not enough
to ensure injectivity of the mapping ϕc (see Fig. 3). If we swap b and c, in Fig. 2,
we obtain b ∨ c = a ∨ c and also b ∧0 c = a ∧0 c, but a 	= b.
Let us note that for injectivity of ϕc it is not necessary that each maximal

sublattice is distributive.

Proposition 2 If S = (S;∨) is a nested distributive nearlattice and c ∈ ⋂MS,
then the decomposition mapping ϕc is injective.

Proof If S is distributive then each maximal sublattice is a distributive lattice,
in which (x ∨ c = y ∨ c and x ∧p c = y ∧p c) implies x = y. �

If ϕc is an injective homomorphism, then ϕc is an embedding of S into
[c)× (c], i.e. S is isomorphic to a subnearlattice of this direct product.

Example 2 Denote by M1 = {a, c, 1},M2 = {b, c, 1} the maximal sublattices
of the finite distributive nearlattice S visualized in Fig. 5.
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Evidently c ∈M1 ∩M2. Further, [c) = {c, 1} and (c] = {c, a, b}.
The direct product [c)× (c] is depicted in Fig. 6.



48 Ivan CHAJDA, Miroslav KOLAŘÍK

�
�

�
��

�
�

�
��

�
�

�
���

�
�

���
�

��
��

〈1, c〉

〈c, a〉 〈c, b〉

〈c, c〉 〈1, b〉〈1, a〉

Fig. 6

We have ϕc(1) = 〈1, c〉, ϕc(c) = 〈c, c〉, ϕc(a) = 〈c, a〉 and ϕc(b) = 〈c, b〉.
One can see that ϕc is an injective homomorphism, which is not surjective.

Remark 4 For c = 1 (where 1 is the greatest element of S), we obtain: [c) =
{c}, (c] = S, and thus [c)× (c] ∼= S.

Now we are interested in assumptions under which the mapping ϕc is surjec-
tive. Suppose S is a nested nearlattice with the set {Mγ; γ ∈ Γ} of its maximal
sublattices. An element a ∈ S has a complement bγ in Mγ if Mγ is a bounded
lattice (with 0γ or 1 as the least or greatest element, respectively) and a∨bγ = 1,
a ∧0γ bγ = 0γ .

Proposition 3 Let S = (S;∨) be a nested nearlattice and c its suitable ele-
ment. Suppose that c has a complement pγ in each maximal sublattice Mγ of
the nearlattice S. Then the decomposition mapping ϕc is a surjective homo-
morphism.

Proof We need only to prove, that for each 〈x, y〉 ∈ [c) × (c], there exists an
element z ∈ S, such that ϕc(z) = 〈x, y〉.
Since 〈x, y〉 ∈ [c) × (c], then clearly y ≤ c ≤ x and there exists γ ∈ Γ such

that [y) ⊆Mγ . Denote by ∧γ the operation symbol ∧y (because it in fact does
not depend on y in the following computation).
Take z = (y ∨ pγ) ∧γ x. Then

ϕc(z) = 〈z ∨ c, z ∧γ c〉 = 〈(y ∨ pγ) ∧γ x) ∨ c, (y ∨ pγ) ∧γ x ∧γ c〉
= 〈(y ∨ pγ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (pγ ∧γ c)) ∧γ x〉

= 〈(y ∨ 1) ∧γ (x ∨ c), ((y ∧γ c) ∨ (pγ ∧γ c)) ∧γ x〉
= 〈x ∨ c, y ∧γ c ∧γ x〉 = 〈x, y〉,

proving that ϕc is surjective. �

Corollary 1 Let S = (S;∨) be a nested distributive nearlattice and MS =
{Mγ; γ ∈ Γ} the set of its maximal sublattices. If there exists an element
c ∈ ⋂MS such that c has a complement in each Mγ then the decomposition
mapping ϕc is the isomorphism of S onto [c)× (c].
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Example 3 The nearlattice S in Fig. 7 is a nested distributive nearlattice
which has exactly two distinct maximal sublatticesM1 = {a, c, p1, 1} andM2 =
{b, c, p2, 1}. Of course, c ∈M1 ∩M2.
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The complement of c inM1, is p1. The complement of c inM2, is p2. Clearly,
[c) = {c, 1}, (c] = {a, b, c}. The direct product [c) × (c] is depicted in Fig. 6.
Obviously, the decomposition mapping ϕc : S �→ [c)× (c] is an isomorphism.

Remark 5 If the element c has not a complement in anyMγ , then the mapping
ϕc need not be surjective (see Example 2).

Definition 6 Let (L;∨, 0, 1) be a lattice with the greatest element 1 and the
least element 0. An element c∗ ∈ L is called a pseudocomplement of c ∈ L, if it
is the greatest element such that c ∧ c∗ = 0. An element c+ ∈ L will be called
a dual pseudocomplement of c ∈ L, if it is the least element for which c∨c+ = 1.

Proposition 4 Let S = (S;∨) be a nested nearlattice and c its suitable element.
Suppose that an element c has a pseudocomplement c∗γ and a dual pseudocom-
plement c+γ in each maximal sublatticeMγ. Then the homomorphic image ϕc(S)
is a subdirect product of [c), (c].

Proof By Proposition 1, ϕc is a homomorphism of S into [c)× (c], thus ϕc(S)
is a subnearlattice of the nearlattice [c)× (c]. We need only to prove that ϕc is
surjective in the both components. Let 〈x, y〉 ∈ [c)× (c], i.e. y ≤ c ≤ x. By the
assumption, there exist c∗γ , c

+
γ ∈Mγ .

Put z1 = (y ∨ c+γ ) ∧γ x. Then

ϕc(z1) = 〈z1 ∨ c, z1 ∧γ c〉 = 〈((y ∨ c+γ ) ∧γ x) ∨ c, ((y ∨ c+γ ) ∧γ x) ∧γ c〉
= 〈(y ∨ c+γ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (c+γ ∧γ c)) ∧γ x〉 = 〈x, y ∨ (c+γ ∧γ c)〉,

thus ϕc(z1) is surjective in the first component.
Consider z2 = (y ∨ c∗γ) ∧γ x. Then

ϕc(z2) = 〈z2 ∨ c, z2 ∧γ c〉 = 〈((y ∨ c∗γ) ∧γ x) ∨ c, ((y ∨ c∗γ) ∧γ x) ∧γ c〉
= 〈(y ∨ c∗γ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (c∗γ ∧γ c)) ∧γ x〉 = 〈(c ∨ c∗γ) ∧γ x, y〉,

i.e. ϕc(z2) is surjective in the second component. �
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On the other hand, we are able to get a surjective mapping of S × S onto
[c)× (c] for a nested nearlattice S and its suitable element c which need not be
a homomorphism.

Proposition 5 Let S = (S;∨) be a nested nearlattice and c its suitable element.
Suppose that an element c has a pseudocomplement c∗γ and a dual pseudocom-
plement c+γ in each maximal sublattice Mγ. Denote by ψc a mapping from S×S
into [c)× (c], defined by

ψc(z1, z2) = 〈z1 ∨ c, z2 ∧γ c〉,

where γ ∈ Γ, such that z2 ∈Mγ. Then ψc is a surjective mapping of S×S onto
[c)× (c].

Proof Let 〈x, y〉 ∈ [c) × (c], then y ≤ c ≤ x. Hence there exists γ ∈ Γ such
that [y) ⊆Mγ .
Take z1 = (y ∨ c+γ ) ∧γ x, z2 = (y ∨ c∗γ) ∧γ x. Then

ψc(z1, z2) = 〈z1 ∨ c, z2 ∧γ c〉
= 〈((y ∨ c+γ ) ∧γ x) ∨ c, ((y ∨ c∗γ) ∧γ x) ∧γ c〉

= 〈(y ∨ c+γ ∨ c) ∧γ (x ∨ c), ((y ∧γ c) ∨ (c∗γ ∧γ c)) ∧γ x〉
= 〈x ∨ c, y ∧γ c〉 = 〈x, y〉,

thus ψc is a surjective mapping of S × S onto [c)× (c]. �

We finish with a note concerning lattices.

Remark 6 Let L = (L;∨,∧) be a bounded lattice and suppose that an el-
ement c ∈ L has a pseudocomplement c∗ and a dual pseudocomplement c+.
Let the elements c+ and c∗ are distributive and dually distributive. Introduce
a mapping:

ψc+,c∗ : L �→ [c+)× (c∗], ψc+,c∗(z) = 〈z ∨ c+, z ∧ c∗〉.

Since the decomposition mappings ϕ∗c and ϕ
+
c are homomorphisms by Propo-

sition 1, also ψc+,c∗ is a homomorphism.
Further, analogously as in the Proposition 4 and the Proposition 5, it is easy

to show that the mapping ϕc+ is surjective in the first component, the mapping
ϕc∗ is surjective in the second component and the mapping ψc+,c∗ is a surjective
homomorphism of the lattice L onto [c+)× (c∗].

Example 4 Let L be the eight element lattice depicted on the left hand side
in Fig. 8.
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Fig. 8

L is obviously distributive. Clearly [c+) = {c+, 1} and (c∗] = {0, c∗} (see
the lattice (c+]× (c∗] on the right hand side of Fig. 8). The mapping ψc+,c∗ is
a surjective homomorphism of the lattice L onto [c+)× (c∗], given by

ψc+,c∗(1) = ψc+,c∗(z) = 〈1, c∗〉,

ψc+,c∗(c+) = ψc+,c∗(y) = ψc+,c∗(c∗) = 〈c+, c∗〉,

ψc+,c∗(c) = 〈1, 0〉,

ψc+,c∗(x) = ψc+,c∗(0) = 〈c+, 0〉.
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