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Abstract

In this paper, following the concepts in [5, 7], we shall establish a
convergence result in a uniformly convex Banach space using the Jungck–
Mann iteration process introduced by Singh et al [13] and a certain general
contractive condition. The authors of [13] established various stability
results for a pair of nonself-mappings for both Jungck and Jungck–Mann
iteration processes. Our result is a generalization and extension of that
of [7] and its corollaries. It is also an improvement on the result of [7].
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1 Introduction

Suppose that A = (ank) is an infinite, lower triangular, regular row-stochastic
matrix, E a closed convex subset of a Banach space and T a continuous map-
ping of E into itself and x1 ∈ E. Then, the general Mann iteration process
M(x1, A, T ) which was introduced in Mann [9] is defined by

vn =
n∑

k=1

ankxk, xn+1 = Tvn, n = 1, 2, . . . , (1)
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If A is the identity matrix, then each sequence of M(x1, A, T ) becomes the
sequence of Picard iterates of T at x1. It was established in [9] that if either of
the sequences {xn} a nd {vn} converges, then the other also converges to the
same point, and their common limit is a fixed point of T .

In [5, 7], it is said that the matrix A is segmenting for the Mann process if
an+1,k = (1 − an+1,n+1)ank for k ≤ n. In this case, vn+1 lies on the segment
joining vn and Tvn:

vn+1 = (1− dn)vn + dnTvn, n = 1, 2, . . . , (2)

where dn = an+1,n+1. A segmenting matrix is determined by its sequence of
diagonal elements. Some authors including [3, 11, 12] have investigated the
case dn = λ, 0 < λ < 1, while Mann [9] approximated the fixed points of
continuous functions on a closed interval of the real line using the segmenting
matrix determined by dn = 1

n ∀ n. Dotson [6] considered the case when dn is
bounded away from 0 and 1. Groetsch [7] generalized the results of [3, 6, 9, 11,
12] in a uniformly convex Banach space by employing (2) and assuming that A
is a segmenting matrix for which

∑∞
n=1 dn(1− dn) =∞.

We shall give another definition of a segmenting matrix in the next section
with a view to generalizing and extending Groetsch [7] and others mentioned
earlier in this paper.

2 Preliminaries

Singh et al [13] introduced the following iteration process: Let (E, ‖.‖) be a
normed linear space, S, T : Y → E and T (Y ) ⊆ S(Y ). Then, for x0 ∈ Y ,
consider the iteration process

Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, 2, . . . , (3)

where {αn}∞n=0 satisfies

(i) α0 = 1,

(ii) 0 ≤ αn ≤ 1 for n > 0,

(iii)
∑
αn = ∞, and

(iv)
∑n

j=0 αjΠn
i=j+1(1− αi + aαi) converges.

The iteration process (3) is called the Jungck–Mann iteration.
For Y = E, S = I (identity operator) in (3) with {αn}∞n=0 satisfying

(i)–(iv), then we have the Mann iteration process introduced by Mann [9]. Also,
if in (3), Y = E, S = I (identity operator) and αn = 1, then we obtain the
Jungck iteration introduced by Jungck [8].

Following (3), we shall generalize and extend Groetsch [7] and others men-
tioned earlier in this paper by assuming that A is a segmenting matrix for which

Svn+1 = (1− dn)Svn + dnTvn, n = 1, 2, . . . , (�)
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such that
∑∞

n=1 dn(1 − dn) = ∞ and S, T : C → C are selfmappings on a
nonempty convex subset C of a uniformly convex Banach space E. The opera-
tors S and T are assumed to have a common fixed point and satisfy in addition
the contractive condition

‖Tx− Ty‖ ≤ ‖Sx− Sy‖, ∀x, y ∈ C. (��)

If S = I (identity operator) in (�), then we obtain (2) and if S = I in (��) then
we have ‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C (that is, T becomes a nonexpansive
mapping).

We shall establish our main result in the next section. However, the following
lemma is required in the sequel.

Lemma 2.1 (Groetsch [7]) Let X be a uniformly convex Banach space and let
x, y ∈ X. If ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε > 0, then

‖λx+ (1− λ)y‖ ≤ 1− 2λ(1 − λ)δ(ε)

for 0 ≤ λ < 1 and δ(ε) > 0.

The proof of this Lemma is contained in [4, 7].

3 The Main Result

Theorem 3.1 Let C be a convex subset of a uniformly convex Banach space
E and S, T : C → C selfmappings satisfying condition (��) and T (C) ⊆ S(C).
Suppose that S and T have at least a common fixed point. Let {Svn}∞n=1 be the
sequence defined by (�). Then, the sequence {(S − T )vn}∞n=1 converges strongly
to 0 for each x1 ∈ C such that

∑∞
n=1 dn(1− dn) =∞.

Proof If p is a common fixed point of S and T (i.e. Sp = Tp = p), then

‖Svn+1 − p‖ = ‖(1− dn)Svn + dnTvn − (1− dn + dn)p‖
= ‖(1− dn)(Svn − p) + dn(Tvn − p)‖
≤ (1 − dn)‖Svn − p‖+ dn‖Tvn − p‖
= (1 − dn)‖Svn − p‖+ dn‖Tvn − Tp‖
≤ (1 − dn)‖Svn − p‖+ dn‖Svn − Sp‖
= (1 − dn)‖Svn − p‖+ dn‖Svn − p‖
= ‖Svn − p‖ ≤ ‖Svn−1 − p‖ ≤ · · · ≤ ‖Sv1 − p‖, (4)

from which we have that the sequence {Svn − p}∞n=1 is decreasing.
Now,

‖(S − T )vn‖ = ‖Svn − Tvn‖ ≤ ‖Svn − p‖+ ‖p− Tvn‖
= ‖Svn − p‖+ ‖Tp− Tvn‖ ≤ ‖Svn − p‖+ ‖Sp− Svn‖ = 2‖Svn − p‖.
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Suppose on the contrary that {(S − T )vn}∞n=1 does not converge to 0. Since
‖Svn − Tvn‖ ≤ 2‖Svn − p‖, we may assume that there is an a > 0, a ∈ (0, 1)
such that ‖Svn − p‖ ≥ a for any n. If {(S − T )vn}∞n=1 does not converge to 0,
then there is an ε > 0 such that ‖Svn − Tvn‖ ≥ ε for any n.

Let

b = 2δ
(

ε

‖Sv1 − p‖

)
, xn =

Svn − p
‖Svn − p‖

and yn =
Tvn − p
‖Svn − p‖

.

Then, we have

‖xn‖ =
∥∥∥∥
(

Svn − p
‖Svn − p‖

)∥∥∥∥ ≤
‖Svn − p‖
‖Svn − p‖

= 1

and

‖yn‖ =
∥∥∥∥
(
Tvn − p)
‖Svn − p‖

)∥∥∥∥ ≤
‖Tvn − Tp)‖
‖Svn − p‖

≤ ‖Svn − Sp‖
‖Svn − p‖

=
‖Svn − p‖
‖Svn − p‖

= 1.

Hence, we have by (�) that

‖Svn+1 − p‖ = ‖(1− dn)Svn + dnTvn − (1 − dn + dn)p‖
= ‖(1− dn)(Svn − p) + dn(Tvn − p)‖

=
∥∥∥∥(‖Svn − p‖)

[
(1− dn)

(Svn − p)
‖Svn − p‖

+ dn
(Tvn − p)
‖Svn − p‖

]∥∥∥∥
= ‖(‖Svn − p‖)[(1− dn)xn + dnyn]‖
≤ ‖Svn − p‖ ‖(1− dn)xn + dnyn‖. (5)

Using (4) and Lemma 2.1 in (5) yield

‖Svn+1 − p‖ ≤
≤ [1− dn(1− dn)b]‖Svn − p‖
= ‖Svn − p‖ − bdn(1− dn)‖Svn − p‖
≤ ‖Svn−1 − p‖ − bdn−1(1− dn−1)‖Svn−1 − p‖ − bdn(1 − dn)‖Svn − p‖
≤ ‖Svn−1 − p‖ − bdn−1(1− dn−1)‖Svn − p‖ − bdn(1 − dn)‖Svn − p‖
= ‖Svn−1 − p‖ − b[dn−1(1− dn−1) + dn(1 − dn)]‖Svn − p‖.

Repeating this process inductively leads to

a ≤ ‖Svn+1 − p‖ ≤ ‖Sv1 − p‖

− b
[
d1(1 − d1)‖Svn − p‖+ d2(1− d2)‖Svn − p‖+ · · ·+ dn(1 − dn)‖Svn − p‖

]

= ‖Sv1 − p‖ − b
n∑

j=1

dj(1 − dj)‖Svn − p‖ ≤ ‖Sv1 − p‖ − ab
n∑

j=1

dj(1 − dj).
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Therefore, we obtain

a

⎡
⎣1 + b

n∑

j=1

dj(1 − dj)

⎤
⎦ ≤ ‖Sv1 − p‖,

from which it follows that

a ≤ ‖Sv1 − p‖
1 + b

∑n
j=1 dj(1 − dj)

→ 0 as n→∞,

leading to a contradiction. Therefore, we have a = 0. Hence,

lim
n→∞

‖Svn − Tvn‖ = 0.

Remark 3.1 Theorem 3.1 is also a generalization of the results of [3, 6, 7, 9,
11, 12].
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