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ABSTRACT. One of the more elegant approaches to the mathematical founda­
tions of the experimental sciences is the linear-duality formalism featuring an 
order-unit space U in order duality with a base-normed space V. The unit in­
terval E in U is the set of effects, and the cone base fl in V is the set of states. 
For various reasons, some of which we indicate, it is useful to replace the order-
unit space U by a partially ordered abelian group G with order unit. One can 
still associate a base-normed space V(G) with G, and much of the articulation 
between U and V is still available in this more general context. 

1. Effects and states 

All approaches to the mathematical foundations of the experimental sciences 
necessarily feature representations for observables (or random variables) and 
states (or probability models). Different authors approach foundational questions 
from widely varying philosophical perspectives, and it is hardly surprising that 
a number of disparate mathematical representations for observables and states 
can be found in the literature. The primacy accorded to observables on the one 
hand, and states on the other, varies from author to author. Heuristics and 
interpretations are often sketchy and ambiguous. For an intuitive understanding 
of the various approaches, one often must rely on what can be gleaned from 
contemplation of the postulated mathematical structures and from a study of 
just how these structures are employed in practical applications. Fortunately, 
there is some common ground. 

An observable a is understood to be something that can be measured, at 
least in principle if not in fact. Thus, associated with an observable a is a 
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class of measurement procedures that test it. Each measurement, or test, of a is 
supposed to yield an outcome, and to say that a is a H-valued observable means 
that all possible outcomes of measurements of a belong to the nonempty set H. 
For the development of statistical notions, it may be necessary to equip the 
outcome set H with a cr-field B of subsets, thus forming a so-called measurable 
space (H, ,6). 

It is usually possible to identify a set, call it E, of "elementary observables" 
from which more general observables are built up in one way or the other. In 
most accounts, the elementary observables e G E take values in a two-element 
set such as H — {yes, no}. Following G. L u d w i g [15], the elementary observ­
ables e G E are often called effects. For instance, according to the authoritative 
paper [13; p. 360], "One may think of a quantum effect as an elementary yes-no 
measurement that may be unsharp or imprecise." Thus, effects, like the events 
employed in the theory of probability, are two-valued and are to be revealed by 
experiments, measurements, or tests. However, unlike events, effects can have 
an unsharp, imprecise, or fuzzy character. To say that an effect is observed pre­
sumably means that it is tested and the yes outcome is obtained. 

A state is often thought of as an equivalence class of preparation procedures. 
To say that a measurement is made "in state u" can be interpreted to mean that 
it is made on a system or an ensemble that has been prepared in state u. The 
set of all states, call it fi, is usually assumed to be convex. Thus, if ux,u2 G fi 
and 0 < t < 1, then u := tu1 + (1 — i)u2 G fi can be thought of as the state of 
an ensemble a fraction t of which is in state ux and a fraction 1 — t of which 
is in state u2. The state space f] may be endowed with suitable topological 
structure to allow for the notion of convergence of a sequence of states to a limit 
state. We formalize the notion of a state space as follows. 

1.1. DEFINITION. A state space is a nonempty convex set fi with a Hausdorff 
topology such that the mapping [0,1] x f) x f) —•» Q given by (t,u1,u2) >-> 
tu1 + (1 — i)u2 is continuous. 

The states u G ft are supposed to determine the probabilities associated with 
outcomes of measurements. An intuitively appealing way to introduce a linkage 
between the set of effects E and the state space f) is to assume that E and f) are 
in "statisticalduality" under a "probability mapping" Prob: Extt -> [0,1] C R. 
The idea is that, if e G E and u G f2, then Prob(e,c<;) is the probability 
of observing the effect e when it is tested in state u ([2]). Here is a formal 
definition. 

1.2. DEFINITION. The nonempty set E and the state space Q are in statistical 
duality under the mapping Prob: E x f2 -» [0,1] if and only if, for each e G E, 
the mapping Prob(e, •): ft —> [0,1] is affine (i.e., preserves convex combinations) 
and continuous. 
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The statistical duality Prob: E x fi —> [0,1] is said to separate effects if and 
only if, for all e l5 e2 G £", the condition Prob(e1,o;) = Prob(e2,o;) for all u) G fi 
implies that ex = e2 . It is said to separate states if and only if, for all u)x, u2 € ^ > 
the condition Prob(e,o;1) = Prob(e,u;2) for all e G -E implies that CJ1 = U;2. 

In the so-called convexity approach, the state space fi! is awarded primacy 
and all other concepts, including effects and observables, are formulated in terms 
of fi. An authoritative account of the convexity approach can be found in [14]. 
In the so-called effect-algebra approach ([8]), E (with the structure of an effect 
algebra) is awarded primacy, states and observables being defined in terms of E. 

2. The linear-duality approach 

Owing to the attractions of the highly developed theory of partially ordered 
linear spaces, investigators have sought realizations of the set E of effects and 
of the state space fi as sets of vectors in linear spaces endowed with suitable 
topological and order-theoretic structures and in order duality under a nonde-
generate bilinear form. Apart from forging a connection with functional analysis, 
such a linear-duality approach has the advantage that E and f2 are treated on 
an equal footing. 

One of the most successful formulations of the linear-duality approach is 
largely based on the original pioneering work of L u d w i g [15]. The idea is to 
realize E as the order-unit interval E = {e G U : 0 < e < -u} in a real partially 
ordered linear topological space U with order unit u, and to realize fi as a 
cone base for the positive cone V+ = {y G V : 0 < //} in a real partially 
ordered linear topological space V = V+ — V+. The convex and topological 
structures on fi are understood to be inherited from the linear and topological 
structures on V. The linear spaces U and V are assumed to be in order duality 
under a nondegenerate continuous bilinear form (•,•): U x V -» K in such a 
way that, for e G E and u) G f2, (e,cu) G [0,1] C R. Consequently, under the 
restriction Prob of (•, •) to E x $1, the effect set E and the state space f2 are in 
statistical duality as in Definition 1.2. The nondegeneracy of (•, •) implies that 
Prob: E x f2 -> [0,1] separates both effects and states. 

The basic linear-duality formalism outlined above may be enhanced by vari­
ous additional hypotheses, e.g., U is an order-unit Banach space [1; p. 69], V is a 
base-normed Banach space [1; p. 77], V is the Banach dual of L7, and so on. For 
an elegant exposition of an up-to-date version of the linear-duality formalism, 
see [13]. Here are two important examples. 
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2.1. E X A M P L E . Let (E,B) be a measurable space, say, the phase space of a 
classical mechanical system. An observable for the phase space E is a measurable 
function / : E -> R, E is the set of all observables e such that 0 < e(x) < 1 for 
all x G E, and U is the partially ordered normed linear space of all bounded 
observables with the constant function u(x) = 1 as the order unit and with the 
supremum norm. (If one prefers to have an order-unit Banach space, one replaces 
U by the space U of all uniform limits of functions in U, in which case the order-
unit norm is the supremum norm.) The partially ordered normed linear space 
V is the space of all countably additive, bounded, R- valued measures on (S, B) 
with the variation norm, and the cone base ft is the subset of V consisting 
of all the countably additive probability measures on (H, B). (If one prefers to 
have a base-normed Banach space, one replaces V by the space V of all finitely 
additive, bounded R-valued measures on (E,B) and ft by the convex subset 
ft C V of all finitely additive probability measures, in which case the base norm 
is the variation norm.) The spaces U and V (as well as U and V) are in order 
duality under (f,fj) ~ f f d/i. 

In Example 2.1, the characteristic set functions XM °^ s e^ s M e B belong 
to E, and may be regarded as the "sharp effects" ([11]). The remaining functions 
e G E map E into [0,1] and may be considered to be "fuzzy versions" of the 
sharp effects ([12]). 

2.2. E X A M P L E . Let H be a separable Hilbert space, say the Hilbert space as­
sociated with a quantum-mechanical system. In orthodox quantum mechanics, 
an observable for % is a (possibly unbounded) self-adjoint operator on 7i, or 
what is the same thing via the spectral theorem, a projection-valued measure on 
the a -field of real Borel sets. Let U be the linear space over R of all bounded 
self-adjoint operators on H , partially ordered as usual, and let E be the set of 
all operators A G U with 0 < A < 1. Then U is an order-unit Banach space 
with 1 as the order unit, and the order-unit norm is the usual uniform opera­
tor norm on U. Let V be the linear subspace of U consisting of the bounded, 
self-adjoint, trace-class operators, and let ft be the set of all operators W G V 
such that 0 < W and trace(JV) = 1. Then V is a base-normed Banach space 
and the base-norm on V is the trace norm. The spaces U and V are in order 
duality under (A, TV) := trace(_4TV). 

In Example 2.2, the projection operators PM onto closed linear subspaces M 
of % belong to E, have spectrum contained in {0,1}, and may be regarded as 
the "sharp effects." The remaining operators A G E have spectrum contained 
in [0,1] and may be considered to be "fuzzy versions" of the sharp effects. (In a 
more up-to-date and more realistic theory of quantum measurement, observables 
are represented by effect-valued measures on a a -field of sets, whence the effect 
operators A G E play an even more prominent role ([4]).) 
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In the linear-duality formalism, the fact that E = {e £ U : 0 < e < u) C U 
bestows considerable structure on the set E. To begin with, there are two special 
elements 0 and u in E, and E is a bounded poset under the restriction of the 
partial order < on U. Also there is a natural involution '': E —r E defined for all 
e e E by ef := u-e, and e < / = > / ' < e' holds for all e, / G .E. The partial 
binary operation 0 obtained by restriction to E of + on U is an important 
feature of E, although its phenomenological interpretation is a bit problematic. 
According to [13], "The element a 0 b represents a statistical combination of a 
and b whose probability of occurrence equals the sum of the probabilities that 
a and b occur individually." In other words, if a, b G E and a 0 b is defined, 
then Prob(a 0 b, a;) = Prob(a, a;) -f Prob(6,a;) for all u G f). 

Another important consequence of the linear-duality formalism is that it be­
comes possible to multiply an effect a G E by a scalar A, and if 0 < A < 1, 
the product is again an effect Aa G E. Turning again to [13] for intuition, we 
find that, for a quantum effect (Example 2.2), "Aa represents the effect a at­
tenuated by a factor A", and that, "a similar interpretation is given for fuzzy 
events" (Example 2.1). The notion of A as an attenuating factor seems resistant 
to phenomenological interpretation, at least as long as we subscribe to the two-
valuedness of effects. Presumably, an effect is either observed or it isn't. What 
meaning shall we give to an attenuated observation? Again we have to resort to 
a statistical interpretation, namely, Aa is an effect such that, for every state a;, 
Prob(Aa, a;) = AProb(a,a;). 

The possibility of multiplying effects by scalars in the linear formalism implies 
that if a and b are effects and 0 < A < 1, we can form the convex combination 
Aa 0 (1 — X)b G E. Again, a statistical interpretation of convex combinations of 
effects is available, but a suitable phenomenological interpretation appears to be 
problematic. 

3. The unital-group approach 

The linear-duality formalism, as compelling and elegant as it may be, gives 
rise to questions of interpretation, some of which we have alluded to in Section 2. 
Also, there are circumstances in which this formalism is much more elaborate 
than needed for practical applications. In the analysis of a dice game, it is prob­
ably not necessary to deal with effects such as (\/2/2) hard-eight, even if it is 
possible to make sense of such a thing. There are situations in which we do not 
care to avail ourselves of the possibility of multiplying effects by scalars. The 
solution is simple — we just "remove the scalars" from the linear space U. If we 
disregard multiplication by scalars, U forms a partially ordered abelian group 
under addition, and many of the notions discussed above are readily formulated 
in that context. 
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We begin by reviewing some terminology. Details, as well as concepts not 
elucidated in this brief review, can be found in [1] and [10]. If P is a real 
linear space, then a subset G C P is called a wedge if and only if 0 G G, 
G is closed under addition, and G is closed under multiplication by nonnegative 
real numbers. A cone in P is a wedge G such that p, —p G G = > p = 0. 
(Caution: Some authors, e.g., [1], call such a G a proper or a strict cone.) If 
G is a cone in P , then the relation < defined on P by p < q if and only 
if q — p G G is a partial order, it is translation invariant (i.e., for all r G P , 
p < q = > p + r < q + r), it is invariant under multiplication by nonnegative 
scalars (i.e., if 0 < A G M, then p < q = > Xp < Ag), and it determines G 
according to G = {p G P : 0 < p}. 

A linear space P , equipped with a partial order relation < that is translation 
invariant and invariant under multiplication by nonnegative scalars, is called a 
partially ordered linear space, and P + := {p G P : 0 < p} is called the positive 
cone in P . We note that 0 G P + in spite of the terminology "positive cone". The 
positive cone P + is in fact a cone in P , and for p, q G P , p < q <=> q—p€ P + . 
Thus, the partial order < determines the cone P + and the cone P + determines 
the partial order < . The partially ordered linear space P is said to be directed 
if and only if P is the linear span of P + . Evidently P is directed if and only if 
P = P + — P + . A subset D of P + is called a cone base for P + if and only if 
every nonzero element p G P + can be written in the form p = Xd for a uniquely 
determined positive real number A and a uniquely determined element d G D. 

The abelian groups that we consider will all be additively written. For par­
tially ordered abelian groups, the story is much the same as for partially or­
dered linear spaces, except that multiplication by (arbitrary) real scalars may 
no longer make sense. (Of course, such a group is a module over the ring Z 
of integers, so one can still multiply its elements by integers and form integer 
linear combinations of its elements.) If G is an abelian group, then a subset 
G C G is called a cone if and only if 0 G G, G is closed under addition, and 
g,—g G G = > g — 0. (Caution: Again, some authors, e.g., [10], call such a G a 
proper or a strict cone.) If G is a cone in G, then the relation < defined on G 
by g < h if and only if h — g G G is a translation invariant partial order on G. 
A partially ordered abelian group is an abelian group G equipped with a trans­
lation invariant partial order relation < , and the corresponding positive cone is 
G+ := {g G G : 0 < g}. The positive cone G + is in fact a cone in G, and for 
9,heG, g <h <=> h - g G G + . If G + generates G, i.e., if G = G + - G + , 
then G is said to be directed. 

If P is a partially ordered linear space, and if we neglect multiplication by 
(non-integer) scalars and consider P as an abelian group under addition, then P 
forms a partially ordered abelian group. With this understanding, all concepts 
that we define for partially ordered abelian groups are applicable to partially 
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ordered linear spaces as well. For instance, a partially ordered abelian group G 
is said to be archimedean if and only if, for all g, h G G, the condition ng < h 
holds for all positive integers n only if — g G G + . The same definition carries 
over directly to partially ordered linear spaces. 

If G is a partially ordered abelian group and u G G + , we define the interval 
G+[0, u] := {e G G : 0 < e < u} and regard it as a bounded partially ordered set 
under the restriction of the partial order on G. A set A C G + is said to be cone 
generating if and only if every element g G G + is a finite linear combination 
of elements of A with nonnegative integer coefficients. If each element in G is 
dominated by a suitably large positive integer multiple of u , then u is called 
an order unit ([10; p. 4]). A unital group is defined to be a partially ordered 
abelian group G with a specified order unit u G G + , called the unit, such 
that the interval E := G + [0 ,^ ] , called the unit interval, is cone generating [5; 
Definition 2.5]. Since a unital group G has an order unit, it is directed [10; p. 4]. 

The notion of a unital group is really quite general. Indeed, suppose H is 
any partially ordered abelian group and u is any element in H+. Define C to 
be the subset of H consisting of all finite linear combinations of elements of 
H+[0,u] with nonnegative integer coefficients. Then u G H+[0,w] C C C H+, 
C is a cone in FT, G := C — C is a subgroup of H, and C is a cone in G. 
Partially order G by taking G + := C . Then G is a unital group with unit u 
and H+[0,u] = G+[0,^] is the unit interval in G. 

The ordered additive abelian group R of real numbers with the standard 
positive cone R+ = {x G R : 0 < x} forms an archimedean unital group 
with unit 1, and its unit interval is the standard unit interval [0,1]. Let G be 
a unital group with unit u and unit interval E. The set of all group homo-
morphisms from G to the additive group R is denoted by hom(G, R). Under 
pointwise operations, hom(G,R) forms a real linear space, and hom(G,R) + := 
{v G hom(G, R) : v(G+) C R+ } is a cone in hom(G, R). In what follows, we un­
derstand that hom(G, R) is organized into a partially ordered linear space with 
positive cone hom(G, R) + . The elements of hom(G, R) + are the order-preserving 
group homomorphisms v: G —> R. We also understand that hom(G,R) carries 
the relative topology it inherits as a closed linear subspace of the locally convex 
linear topological space RG with the topology of pointwise convergence. 

3 .1 . DEFINITION. Let G be a unital group with unit u and unit interval 
E = G+[0,u] and let K be an abelian group. A mapping (\>: E -> K is called a 
K-valued measure if and only if e, / , e+f G E ==> cj)(e + f) = (j)(e) + (j)(f). 

If every K-valued measure <\>: E —r K can be extended to a group homo-
morphism $ : G -» K, then G is called a K-unital group ([5; Definition 2.5]). 
If G is K-unital for every abelian group K, we say that G is a unigroup ([9]). 

If K is a partially ordered abelian group, then a mapping (f>: E —r K+ is 
called a K+ -valued measure if and only if it is an K-valued measure. 
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If every IC+-valued measure (j>: E -> K+ can be extended to a group homo-
morphism $ : G —> K, then G is called a K+-unital group. 

A (finitely additive) probability measure on P7 is an R+ -valued measure 
fjbi E -> R+ such that /X(TZ) = 1. 

Suppose G is a unital group with unit interval E, K is a partially ordered 
abelian group, and (j>: E -» K + is a Iif+-valued measure. Because E generates 
the positive cone G+ , it is clear that an extension of <f> to a group homomorphism 
$: G -» Iif necessarily satisfies the condition $(G+ ) C K+, i.e., $ is an order-
preserving group homomorphism. 

3.2. DEFINITION. Let G be a unital group with unit u. By definition, a state 
on (or for) G is an element u G hom(G,R)+ that is normalized in the sense 
that u(u) = 1 ([1; p. 72], [10; Chap. 4]). We denote the set of all states on G by 
Cl(G) and give f2(G) the relative topology it inherits as a subset of the linear 
topological space hom(G, R). 

If G ^ {0} is a unital group, then il(G) is nonempty ([10; Corollary 4.4]) 
and Q(G) is a compact convex subset of hom(G, R) ([10; Proposition 6.2]). In 
fact, by [10; Proposition 6.5], f2(G) is a-convex. The unit interval E in G and 
the state space fi(G) are in statistical duality (as per Definition 1.2) under 
Prob: E x fi(G) -> [0,1] given by Prob(e,o;) := u(e) for e G E, u G fi(G). 
If a; G -~-(G), then the restriction u\j^ = Prob(-,a;) of u to I? is a probability 
measure on E. 

3.3. LEMMA. Let G be a unital group with unit u and let E be the unit interval 
in G. Then: 

(i) Q(G) is a cone base for hom(G,R)+ . 

(ii) If u G fi(G). then the restriction u\g of u to E is a probability measure 
on E. 

(iii) G is R+ -unital if and only if every probability measure // on E can be 
extended to a state u G fi(G). 

(iv) If G is R+ -unital, then the states u G fi(G) are in bijective corre­
spondence with the probability measures n on E under the mapping 
U i-» jl = (j|jry; . 

(v) G is a unigroup => G is R-unital =-> G is R+ -unital. 

P r o o f . 
(i) Let i/ G hom(G,R)+ . Evidently, 0 < v(u). If v(u) = 0, then, owing to 

the fact that v is order preserving, v(E) = {0}. But E is cone-generating and 
G = G+-G+, whence i/(u) = 0-= ,>i/ = 0. Therefore, if 0 ^ i/ € hom(G, R)+ , 
then a; := (l/£)x/ G fi(G) where 0 < t := i/(u). Uniqueness is evident. 
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(ii) Part (ii) is obvious. 

(iii) Suppose every probability measure on E can be extended to a state 
on G and let </>: E -> E + be a R+ -valued measure on E. Suppose (j)(u) = 0. 
If e G -5, then u — e G E and we have <j>(e) + 4>(u — e) = 0(it) = 0 with 
0 < 0( e ) )0(^ — e), and it follows that 0(e) = 0. Therefore, if <j>(u) — 0, then 
cf)(e) = 0 for all e £ E , so the zero homomorphism 0 G hom(G,E) + is an 
extension of <j). Suppose cj)(u) ^ 0 and let t := <j>(u). Then [i := (l/t)cj) is a 
probability measure on F7, whence it can be extended to a state u G Q(G), and 
iv := too G hom(G, K) + is an extension of 0. 

(iv) By (iii), u h-r C J | ^ maps fi(Cr) surjectively onto the set of probability 
measures on E. Now E generates ( 3 + , G = G + - ( ? + , and each u G fi(G) is 
a group homomorphism u: G -> R, whence each a; G $1 is uniquely determined 
by its restriction u\j^ to E. Therefore, the mapping u H» O ; | ^ is injective. 

(v) Part (v) is obvious. D 

3.4. LEMMA. Let U be a partially ordered linear space over R and let u be an 
order unit in U+. Disregarding multiplication by scalars, we can regard U as a 
partially ordered abelian group under addition. As such, U is a unigroup with 
unit u and hom(c7, R) + is the set of linear functional v on the linear space U 
such that v(U+) C R+ . 

P r o o f . If we regard U simply as an additive abelian group, it is obviously 
a partially ordered abelian group with positive cone U+ and u is an order unit 
for U, but we have to prove that every element of U+ is the sum of a sequence 
of elements in the interval c7+[0,w]. Suppose y G U+ and choose a positive 
integer m such that mu — y G U+. Then u — (l/m)y G U+, whence (l/m)y 

m 
belongs to U+[0,u]. Therefore y = Y^V% w i ^ V% := (l/m)y for i = 1 ,2 , . . . , r a , 

i=l 

and it follows that U is a unital group. That the unital group U is a unigroup 
follows from [3; Corollary 4.6]. That every group homomorphism in hom(c7, R) + 

is a linear functional on the linear space U follows from [10; Lemma 6.7]. D 

Suppose ([/, V) is a dual pair in the linear-duality formalism and u is the 
order unit in U. Disregarding multiplication by scalars, we can regard U as 
a partially ordered abelian group under addition as in Lemma 3.4, and thus 
obtain a unigroup with unit u. Therefore, a unigroup, and more generally a 
unital group, generalizes the linear space U in the dual pair ([/, V). We note 
that the cone base ft in V and the state space Q(U) as in Definition 3.2 are not 
necessarily the same thing, although they are closely related. Indeed, if u G Vt, 
then the mapping (-^UJ) belongs to Q(U) and the mapping CJ H-> (-,O;) is an 
injective afrine mapping of the cone base Q into the state space Q(U). 
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3.5. E X A M P L E . We revisit Example 2.1 from the perspective of the unital-group 
approach. The additive group Z of integers with the standard positive cone 
Z + = {z G Z : 0 < z} forms a lattice-ordered unigroup with unit 1. Given 
a measurable space (H, B), let G be the abelian group under pointwise addi­
tion of all bounded functions / : H —> Z that are measurable in the sense that 
f~l(z) G B for all z G Z . Partially order G pointwise, so that its positive cone is 
G + = {/ G G : / (H) C Z + } , and let u G G be the constant function u(x) = 1. 
Then G is a lattice-ordered unigroup with unit u and the unit interval in G 
is the set E of all characteristic set functions XM °f s e t s M € B. Therefore 
E has the structure of a a-complete Boolean algebra isomorphic to the a -field 
B. There is a uniquely determined bijective affine mapping \x <-» CJ between 
finitely additive probability measures fi on B and states a; G ft(G) such that 
/x(M) = u(xM) for all M G B. Therefore, Q(G) is affine isomorphic to the 
space f2 in Example 2.1. 

One of the advantages of the unital-group approach is that it enables one to 
study finite effect algebras. For instance, in Example 3,5, we can take H to be a 
finite set with n elements. 

3.6. E X A M P L E . Let n be a positive integer. The additive abelian group Z n with 
coordinatewise addition forms a free abelian group of rank n , and every free 
abelian group of rank n is isomorphic to Z n . Under the coordinatewise partial 
order, Z n forms a lattice-ordered abelian group with positive cone ( Z + ) n , and 
as such, it is a so-called simplicial group ([10; p. 47]). The vector u = ( 1 , 1 , . . . , 1) 
is not only an order unit, it is also the smallest order unit in the simplicial group 
Zn. In Example 3.5, let H := {1,2, . . . , n } and let B be the power set of H. 
Then the unigroup G can be identified with the simplicial group Z n in the 
obvious way, and the order unit is then identified with u = ( l , l , . . . , l ) . Thus, 
the unit interval E consists of the 2n vectors e G Z n having only 0 and 1 as 
coordinates, hence it is isomorphic to the finite Boolean algebra 2 n . Moreover, 
the state space fl(G) is an (n — 1)-dimensional simplex. 

4. The base-normed space V(G) 

In the linear-duality formalism, the partially ordered linear space U with 
order unit u is in order duality with a partially ordered linear space V with 
cone base fi. By analogy, as we show in this section, if G is a unital group, 
there is a corresponding "dual" base-normed Banach space V(G) with the state 
space Ct(G) as a cone base. 

By Lemma 3.3(i), the compact convex set Q(G) is a cone base for hom(G, M)+ , 
but in general, hom(G,R) will not be directed. For instance, hom(R, R) is not 
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directed because hom(R,R)+ consists of all mappings of the form a; 4 Ax, 
A G R, and there are discontinuous additive homomorphisms in hom(R, R) . 
However, we can use the cone hom(G,R)+ to construct a directed linear space 
V(G) := hom(C7, R)+ - hom(G, R)+ that plays the role of the partially ordered 
linear space V in the linear-duality approach. 

4 . 1 . THEOREM. Suppose G is a unital group, define V(G) := hom(G,R)+ — 
hom(G,R)+. and let V(G)+ := hom(G f,R)+. Then V(G) is a base-normed 
Banach space with V(C?)+ as its positive cone and with Q(G) as the cone base. 

P r o o f . With the topology of pointwise convergence, the cone base Q(G) is 
compact, and it follows that the convex hull B of J7(G) U (—fi(G)) is compact. 
Therefore, B is radially compact, and it follows from [1; Proposition 11.1.12] 
that V(G) is a base-normed Banach space with B as its closed unit ball. • 

In Example 3.5, V(G) is order isomorphic and isometric to the base-normed 
Banach space V in Example 2.1. In Example 3.6, V(G) is order isomorphic to 
the lattice-ordered coordinate vector space W1 with coordinatewise partial order 
and with the standard (n — 1)-dimensional simplex as the cone base. 

Suppose that V is a base-normed space, fi is the cone base for V+, and V* is 
the Banach dual space of V. Then V* can be organized into a directed partially 
ordered linear space with positive cone V*+ := {/ G V* : f(V+) C R+} and 
there is a uniquely determined ex G V* such that ex(u) = 1 for all u G fi. 
Furthermore, by a theorem of A. J. E11 i s [1; Theorem II.1.15], V* is an order-
unit Banach space with order unit ex and the order-unit norm on V* coincides 
with the usual norm on the Banach dual space V*. 

4.2. DEFINITION. If G is a unital group, we define V(G) := hom(G,R)+ -
hom(G,R)+ organized into a base-normed Banach space as in Theorem 4.1. 
Also, V(G)* denotes the Banach dual space of V(G) organized into an order-
unit Banach space with order unit ex. Each g G G determines a linear functional 
g: V(G) -r R by evaluation, i.e., g(u) := u(g) for all v G V(G). We define 
G:={g: gGG}, G+ := {g: g e G+}, and E := {h G G+ : u - h e G+}. 

Evidently, ex = u. Caution: In spite of the notation, E is not necessarily the 
same as {e : e G E] . 

4.3 . THEOREM. Let G be a unital group with unit u and unit interval E. 
Then: 

(i) G C V(G)* and g »-> g is an order-preserving group homomorphism 
from G into the partially ordered additive group of V(G)*. 

(ii) G is a unital group with positive cone (7+ C V(G)*+, unit u, and unit 

interval E = G+ [ 0, u] . 
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(iii) For g G G. g = 0 if and only if u(g) = 0 for all u £ SI. 

(iv) For each v G V(G) there is a uniquely determined v G V(G) such 
that v(g) = v(g) for all g G G. Moreover, the mapping v h-> z? is a 
base-normed-space isomorphism from V(G) onto V(G). 

(v) G is archimedean if and only if G+ is an induced subcone in V(G)*, 

i.e., if and only if G+ = V(G)*+ C\G. 

P r o o f . 
(i) Let ||-|| be the base norm on V(G) and let g G G. To prove that 

g G V(G)* it will be sufficient to show that there exists K G R+ such that 
\g(v)\ = \v(g)\ < Kg\\v\\ for all v G V(G). Suppose first that g G G + . Then 

n 

there are integers c- G Z + and elements e{ € E such that g = Y,cieii whence, 
n n i=l 

if u G ft, we have 0 < o;(g) = YJ ciu(ei) -̂  Zl ci- Therefore, there exists 

Cg := f > f G Z + such that 0 < u(g) < Cg for all u G ft. If ẑ  G V ( G ) + , 
i = l 

there exist £ G R+ and u G ft such that v = tu, whence ||z/|| = £ and 
0 < z/(^) = tu(g) < Cg\\v\\. li v e V(g), then by [1; Proposition II.1.14], 
there exist a,(3 € V(G)+ such that v = a-(3 and \\v\\ = \\a\\ + \\(3\\, whence for 
g G G + we have \v(g)\ = |a(g)- /3(g) | < a(g)+P(g) < Cg\\a\\ + Cg\\P\\ = Cg\\v\\. 
Now suppose g G G and select gl5g2 G G + such that g = gx- g2. Then, for 
v G V(G), we have \v(g)\ < \v(9l)\ + \v(g2)\ < / ^ | | i / | | , where Kg := Cp i + Cg2. 
Therefore, g G G => g G V(G)*. Clearly g^g preserves addition. If g G G + 

and ^ G V^G)4" = hom(G,R) + , then g(v) = v(g) G R+ , so g G V(G)* + , and it 
follows that g »-> ^ is order preserving. 

(ii) The proof of (ii) is straightforward. 
(iii) Let g G G . Since V(G) is the linear span of f2(G), it follows that 

g = 0 «-=* ( V ( j € n ( G ) ) ( c j ( g ) = 0 ) . 
(iv) If i/ G V(G) and g15g2 G G with £ = £, , then v(gx) = gx(v) = 

g~2(v) — v(g2), so we can and do define v: G —> R by P(g) := /v(g) for all g G G. 
By a straightforward argument, v H> Z? is a base-normed space isomorphism 
from V(G) onto V ( G ) . 

(v) Since G + C "V(G)*+, it follows that G + is an induced subcone in V(G)* 
if and only if, for all g G G, 0 < g(^) for all .v G V(G)+ => g G G + . Because 
fi(G) is a cone base for V(G)+, the latter condition holds if and only if, for all 
9 € G, 0 < g(u) for all u G ft(G) = » g e G+. Therefore, by (iv) above, G + 

is an induced subcone in V(G)* if and only if, for all g G G, 0 < C(^) for all 
Q G fi(G) = > geG+. But, by [10; Theorem 4.14], the latter condition holds 
if and only if G is archimedean. • 
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An alternative representation for the order-unit Banach space V(G)* can be 
obtained as follows: If G is a unital group with unit u and state space f}(G), 
and if / G V(G)*, then the restriction f\^ of / to fi(G) is a continuous 
affine function from the compact convex set Q(G) to R. The set aff(fi(G)) 
of all continuous affine functions from ft(G) to R forms an order-unit Banach 
space with U\Q as order unit, and the mapping / i-> f\^ is an order-unit-space 
isomorphism of V(G)* onto aff (fi(G)) ([1; Theorem IL1.8]). 

4.4. THEOREM. Let U be an order-unit space and regard U as a unital group 
as in Lemma 3.4. Then V(U) is the base-normed Banach dual space U* of U 
(see[l; Theorem II.1.15]). 

P r o o f . By Lemma 3.4, hom(c7, R) is the set of linear functional v: U -> R 
such that v(U+) C R+ . Therefore, by [1; Corollary II.1.5], hom(C7, R)+ = U*+, 
whence V(U) = C/*+ - [ / *+ = [/*. D 

5. The passage from G to G 

By Theorem 4.3, in the passage from the unital group G to the unital 
group G, the state space and the associated base-normed and order-unit Ba­
nach spaces remain invariant (up to a homeomorphic affine isomorphism, a base-
normed-space isomorphism, and an order-unit-space isomorphism, respectively). 
In general, G not only retains most of the desirable properties of G, but it ac­
quires some attractive features that G fails to possess. For instance, G may be 
archimedean although G is not. One of the more important properties that a 
unital group G may possess is the property of being R+ -unital, as this property 
allows one to match up the probability measures on the unit interval E of G 
with the states on G (Lemma 3.3(iii)). Thus, the following result is of interest. 

5.1. THEOREM. If G is an R+ -unital group, then G is R+ -unital. 

P r o o f . Assume the hypothesis, let E be the unit interval in G, and let 
tp: E -> R+ be an R+ -valued measure on the unit interval E in G. Then 
h1,h2,h1+h2 G E ===.> ^(hx + h2) = ^(^i) + / 0 ( ' ^ ) ' anc* by induction, if 

h.eE and fc. G Z + for i = 1,2,. , . ,n with £ k./i. G E, then ^( J2 Khi) = 
»=i M = I ' 

n 

Yj^i^i^i)- By hypothesis, the R+-valued measure (/>: E -> R+ defined by 
(j)(e) \— ip(e) for all e G E can be extended to a group homomorphism $ G 
hom(G, R)+ -= V(G)+ , and by Theorem 4.3 (iv), there is a group homomorphism 
$ G hom(G, R) + = V(G)+ such that $(g) = $(g) for all g G G. We claim that 
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$ is an extension of I/J. Indeed, suppose h G E. Then ft G G , so there exist 

e- G £ and k{ G Z + for i = 1,2, . . . , n such that £ fc-e^. = ft G E. But then, 
i=i 

e; € E for * = l , 2 , . . . , n , so $ [ » = £ *.*(g;) = £ fci*(ei) = £ M f o ) = 
i = l i=l i=l 

E^(e^)=v(E^)=^)- • 

Suppose E is the unit interval in a unital group G with unit u. If the elements 
of E are to be interpreted as testable effects in some experimental context, then 
it is desirable to have a reasonably large supply of probability measures on E. 
Since each state u G Q(G) determines a probability measure u\jg on E by 
restriction, one can ensure the existence of a suitably large supply of probability 
measures on E by requiring that there are sufficiently many states in fl(G). 

Some of the conditions on Q(G) that guarantee the existence of a suitable 
supply of states on G are as follows: 

(i) Q(G) is cone determining if and only if G + = {g G G : 0 < u(g) 
for all uen(G)}. 

(ii) Q(G) is ordering if and only if the condition uj(g) < 1 for g G G + and 
all CJ G Q(G) implies that g G E. 

(iii) fi(G) is arap/e if and only if the condition uj(g) = 1 for g e G+ and all 
cj G fi(G) implies that g — u. 

(iv) J}(G) separates points in G (respectively, in 2*7) if and only ii g1,g2 e G 
(respectively, gl5g2 € -E) with g1 ^ g2 iLQplies that there exists UJ G 
fi(G) such that u(gx) ^ ^(g2)-

(v) fi(G) is strictly positive if and only if, for every e e E, e =7== 0 implies 
that there exists u; G fi such that 0 < uj(e). 

By Theorem 4.3, if Q(G) satisfies any one of the conditions (i)-(v), then Vt(G) 
also satisfies that condition. 

Evidently fl(G) is cone determining if and only if it determines the partial 
order on G in the following sense: For g1,g2 G G, oj(gx) < w(g2) f° r a ^ u ^ 
Q(G) <=> g1 < g2. Likewise, Q(G) is ordering if and only if it determines the 
partial order on the unit interval E. By [10; Theorem 4.14], G is archimedean 
if and only if Q(G) is cone determining. Evidently, cone determining ===> 
ordering ==-===> ample ===> separates points in E = > strictly positive, 
and suitable examples show that all of these implications are proper. Also, cone 
determining ===> separates points in G -==> ample, and these implications are 
proper. Finally, separates points in G -==£> ordering, and ordering ==£=> separates 
points in G . Although the states need not separate the points of G, parts (iii) 
and (iv) of Theorem 4.3 imply that they do separate the points of G, and this 
is one of the main reasons why one might want to pass from G to G . 
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The mapping e i—r e from E to E is not necessarily bijective, and the 
structure of the effect algebra E^ may be altered in the passage to E. Even 
if E = {e : e G E}, E and E need not be isomorphic as effect algebras. 

However, if Q(G) is ample, then E is isomorphic (as an effect algebra) to E 
under the mapping e i-> e ([5; Theorem 2.7(iii)]). The weaker condition that 
Q(G) separates points in E is equivalent to the condition that e 4 e maps E 
injectively into E. 

As we indicated earlier, one of the attractive aspects of the unital-group 
approach is that it enables a perspicuous representation for finite effect algebras, 
and we now focus our attention on the case in which the unital group G has a 
finite unit interval E. 

5.2. LEMMA. Let G be a unital group with a finite unit interval E. Then: 

(i) The unit interval E in G is finite. 
(ii) y (G) = hom(G,R). 

P r o o f . 
(i) Since the finite set E generates the positive cone G + , it follows that 

the finite set {e | e G E} generates the positive cone G + = {g : g G G + } . 

Therefore, by [5; Theorem 2.2], the unit interval E is finite. 
(ii) By [6; Corollary 2.3], there is a state a G Q(G) such that, for all g G G + , 

a(g) = 0 ==> g = 0. Let v e hom(G,R) and choose t G R+ with t > 
max{v(e)/a(e) : 0 ^ e G E} . Then, 0 ^ ta-v G hom(G, R) and 0 < (ta-v)(e) 
for all e G E. Since E generates G + , it follows that 0 < (to — v)(g) for all 
g G G + . Therefore, 0 ^ ta — v G hom(G, R) + and, because fl(G) is a cone base 
for hom(G,R)+ , there exists u G f2(G) and 0 7-- s G R+ with to - v = SUJ . 
Consequently, v = ta — SUJ G V(G). • 

If K is an abelian group, we denote the torsion subgroup of K, i.e., the 
subgroup of i f consisting of 0 and all elements of K that have finite order, by 
KT. We say that K is torsion free if and only if KT = {0} . If v: K -± R is a 
group homomorphism from K into the additive group of R, then v(KT) = {0}. 
Therefore, if G is a unital group and ft(G) separates the points in G, it follows 
that G is torsion free. In particular, G is always torsion free. 

5.3. THEOREM. Let G ^ {0} be a unital group with unit u and with a finite 
unit interval E. Then, GT is finite and is a direct summand of the abelian 
group G. Also, GT is the kernel of the surjective group homomorphism g (-> g 
from G onto G, whence, as an abelian group, G is isomorphic to the quotient 
group G/GT . Furthermore, the rank of G is a positive integer r, and there is an 
order-preserving group isomorphism 9: G —» Z r from the unital group G onto 
the simplicial group V. 
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P r o o f . Since the finite set E is a set of generators for the abelian group 
G, it follows that the torsion subgroup GT of G is finite, that it is a direct 
summand of G, and that there is a surjective group homomorphism n: G -» Z r 

with ker(r/) = G r . By [6; Theorem 3.4], r is a positive integer and we can and do 
choose r\ in such a way that rj(G+) C (Z+) r. By Theorem 4.3 (iii), g G G r ==> 
g = 0, whence there is a surjective group homomorphism $: Z r -» G such that 
g = 0(r/(g)) for all geG. 

Let ry(ri) = (^1 ,n2 , . . . ,ur) G Z r . If z G Z r , there exists g G G such that 
77(g) = z and there exists a positive integer n such that nu — g G G+, whence 
nn(u) — z G r?(G+) C (Z+) . Therefore, (w1,u2,... ,rxr) is an order unit in the 
simplicial group Z r , and it follows that 0 < w1, rx2,..., ur. 

Suppose geG and (gl,g2,... ,g r) := 77(g) ^ 0. Then there exists k G 
{1,2,. . . , r} with gk ^ 0. Let 71 :̂ Z r -* Z be the projection homomorphism 
onto the kth component and define u: G -> R by o;(/i) := itk{r)(h))/uk for 
all /i G G. Then a; G fi(G) and u;(g) = gk/uk ^ 0, whence g ^ 0 by The­
orem 4.3(iii). Consequently, (j)(r](g)) = g = 0 <==> r/(g) = 0, and it fol­
lows that (j) is an isomorphism from the group Z r onto the group G and that 
GT — {g G G : g = 0}. Hence, G is isomorphic as an abelian group to G/GT. 

Let 9: G -» Z r be the inverse of the group isomorphism </>: Z r —> G, so 
that 9(g) = 77(3) for all geG. Then 0(G+) = n(G+) C (Z+) r , so 0 is order 
preserving. • 

If G is a nonzero unital group with a finite unit interval, then by Theorem 5^3, 
we may identify G, as a group, with Z r in such a way that the positive cone G+ 
is a subcone of the standard positive cone (Z+) in the simplicial group Z r . This 
throws considerable light on the structure of the unital group G and enables 
one to deal with it computationally. For instance^the question of whether G 
is archimedean hinges on whether the subcone G+ of (Z+) is determined 
by a finite set of homogeneous linear inequalities with integer coefficients ([7; 
Theorem 5.1]). 
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