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OF GLOBAL FUNCTION FIELDS 

A L F R E D CZOGALA 

(Communicated by Stanislav Jakubec) 

ABSTRACT. Hilbert-symbol equivalence of degree £ between two global fields 
containing a primitive ^ th root of unity is an isomorphism between the groups 
of £th power classes of these fields preserving Hilbert symbols of degree £. The 
Hilbert-symbol equivalence of degree £ is said to be tame if it preserves the 
p-orders modulo £. In the paper we prove tha t if £ is an odd prime number, then 
any two global function fields are Hilbert equivalent. We find also necessary and 
sufficient conditions for t ame Hilbert-symbol equivalence of global function fields 
for all prime numbers £>2. 

1. Introduction 

Let £ be a prime number and let K and L be global fields of characteristic 
prime to £ containing primitive ^th roots of unity. Degree I Hilbert-symbol 
equivalence (or ^-Hilbert-symbol equivalence) between K and L is defined to 
be a triple of maps 

/ : iJLt(K) -> iMt(L), t: K/K£ -> L/L£, T : Cl(K) -> Q(L), 

where / is an isomorphism between the groups of £th roots of unity, t is an 
isomorphism between the groups of *?th power classes of the two fields and T 
is a bijective map between the sets of all primes of K and L, with (/, t, T) 
preserving Hilbert symbols of ^th degree in the sense that 

(a,6){ = (ta,tfc)Tp for all a,bek/Ke, p e il(K). 

We say that K and L are degree £ Hilbert-symbol equivalent when there exists 
a degree £ Hilbert-symbol equivalence between K and L. 

The 2-Hilbert-symbol equivalence was introduced in [PSCL] in order to clas­
sify the global fields with respect to isomorphism of Witt rings. For £ > 2 the 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11E12. 
K e y w o r d s : global function field, Hilbert-symbol equivalence. 

393 



ALFRED CZOGALA 

£-Hilbert-symbol equivalence was first discussed in [CSl]. In [S] it was shown 
that: 

K and L are degree t Hilbert-symbol equivalent if and only if there is 
an isomorphism of graded rings K(K)/tK(K) = K(L)/iK(L), send­
ing { — 1}^ onto { — 1}^ (here K(F) stands for the Milnor ring of the 
field F). 

Hilbert-symbol equivalences come in two types: tame and wild. The equiva­
lence (/, t, T) of degree t is said to be tame at non-archimedean place p of K, 
when 

ordp(a) =ordTp(ta) (mod t) for all aek/K£. (1) 

Otherwise the equivalence is wild at p . The equivalence (/, t, T) is said to be 
tame when it is tame at all finite non-archimedean places p of K. 

So far ^-Hilbert-symbol equivalence has been investigated in details for all 
global fields only for t = 2 (see [PSCL] and [C]). On the other hand for t > 2 
the ^-Hilbert-symbol equivalence, and the tame Hilbert-symbol equivalence has 
been studied only for the algebraic number fields (see [CS2], [CZ1], [CZ2]). 

This paper completes the picture by finding necessary and sufficient condi­
tions for degree t Hilbert-symbol equivalence of global function fields in case 
t > 2 (in Section 2), and for tame ^-Hilbert-symbol equivalence of global func­
tion fields for all t > 2 (in Section 3). 

2. Hilbert-symbol equivalence 

The 2-Hilbert-symbol equivalence can be described in terms of field invari­
ants. C a r p e n t e r in [C] has shown: 

2 .1 . The algebraic number fields K and L are degree 2 Hilbert-sxjmbol equiva­
lent if and only if they have the same level, the same number of real primes and 
there exists a bisection from dyadic primes of K to those of L which preserves 
the local degrees and local levels. 

2.2. The global function fields K and L of odd characteristic are degree 2 
Hilbert-symbol equivalent if and only if they have the same level. 

The counterpart of C a r p e n t e r ' s theorem 2.1 for degree t > 2 was proved 
in [CSl]: 

2 .3 . The algebraic number fields K and L containing primitive tth roots of 
unity are degree t Hilbert-symbol equivalent if and only if there exists a bisection 
from t-adic primes of K to those of L which preserves the local degrees. 

Here we will show the following result which is the counterpart of C a r p e n ­
t e r ' s theorem 2.2 for degree t > 2: 
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THEOREM 2.4. Let t > 2 be a prime number. Then any two global function 
fields K and L containing primitive tth roots of unity are degree t Hilbert-
symbol equivalent. 

We will obtain the proof of Theorem 2.4 by adapting the approaches pre­
sented in [CS1] to the global function fields. First we recall the notions and facts 
necessary in the proof. 

Suppose t is a prime number and K is a global function field containing 
a primitive ^th root of unity. In case t = 2 we assume additionally that the 
characteristic of K is different from 2. Those assumptions guarantee that the 
characteristic of K is prime to t. 

Let (K be a fixed primitive ^th root of unity in K. For any prime p G Q(K) 
the group K /Kl of the ^th power classes of the local field K can be viewed as 
2-dimensional inner product space over the ^-element field F^, with the bilinear 
form p defined by the p-adic Hilbert symbol of degree t in the following way 

(x,y)p = CK
v(x'y). 

If u is arbitrary p-adic unit which is not a local *?th power and ir is a local 
uniformizer at p , then the set {u^n } forms a basis of this space. The form P 
is symmetric when t = 2 and antisymmetric when t > 2. 

The characteristic of the residue class field of K is prime to t, thus the 
Hilbert symbol (,) of degree t is tame. From the explicit formula for the value 
of tame Hilbert symbol (c.f. [CF; Example 2]) one can deduce that there exists 
a local p-adic unit u G U with the property 

Pp(u, x) -= ord x mod t for every x G K . 

Assume S is a finite nonempty subset of ft(K). We call such a set S suffi­
ciently large if t does not divide the class number hs(K) of the ring OK(S) 
of /S-integers of K. We consider the inner product space (G(S),PS) over F^ 
which is the orthogonal product of (K' /K*Pp), p G S\ that is, 

G{S) = XlKiK and
 M K W > (»-),.«) = E!y-v!Vp)-

pes pes 
The dimension (over F£) of the space G(S) is equal to 2 # S \ 

We write UK(S) for the group of /S-units of K. According to Dirichlet's 
unit theorem, we have rk£UK(S)/UK(S)£ = #S. We have a homomorphism 
i: UK(S)/UK(S)e ~> G(S), which is the composite map 

uK(S)/uK(S)e - + k/ke ^ G(S). 

Using the same arguments as in the proofs of [CS2; Lemma 3.1, Lemma 3.2], 
and [CZ2; Lemma 3.6] we obtain the following facts: 
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2.5. If S is a sufficiently large set of primes of K, then 

(i) An tth power class aKe lies in UK(S)/UK(S)e if and only if ordp(a) 
= 0 (mod t) for every p outside S. 

(ii) The map i: UK(S)/UK(S)e -> G(S) is infective. 
(iii) The image of the group UK(S)/UK(S)e under the monomorphism i is 

a self-orthogonal subspace of G(S) 

(i.e. i{UK(S)/UK(SY)=i{UK(S)/UK(SY)L). 

LEMMA 2.6. If S is a finite non-empty set of primes of K and (ap)peS G 

G(S), then there exists q G fl(K) \ S and q E K such that 

(i) qKe
p = apK

e
p for all p G S, 

(ii) o r d q g = 1, 
(iii) ordp q = 0 (mod t) for all p G tt(K) \ (S U {q}). 

P r o o f . This is immediate from [LW; Lemma 2.1]. • 

It has become a standard that the Hilbert symbol equivalence is achieved 
by using the concept of an /S-equivalence. Let S be a sufficiently large set 
of primes of K. By S-equivalence between K and L we mean a quadru­
ple {f,T,ts,(tp)p£S) where / : He(K) -> fie(L) is a group isomorphism, T 
is a bijection of S onto a sufficiently large set 5" = TS of primes of L, 
V UK(S)/UK(S)e -> UL(Sl)/UL(Sf)e is a group isomorphism, (tp)peS is a 
family of isomorphisms t : K /Ke -» LTp/LT preserving Hilbert symbols in 

the sense that (x, y)p = (tpx, t y)T for all x, y G Kp and the following diagram 
commutes 

i • uK(s)/uK(sy —--> G(S) 

1 its lnt> 
1 • UL(S')/UL(S')1 —--f G(S') 

An i'-equivalence is said to be tame if each isomorphism t is tame. 

THEOREM 2.7. A S-equivalence of degree t can be extended to a degree t 
Hilbert-symbol equivalence which is tame outside S. 

P r o o f . Arguments are the same as those used in the proof of [CS2; The­
orem 3.4]. • 

Now we turn to: 

P r o o f of T h e o r e m 2.4 . Assume t > 2 is a prime number. Let K, L 
be number fields and let (K, £L be fixed primitive tth roots of unity in K and 
L, respectively. From [OM; 33:13a] it follows that there exist sufficiently large 

396 



HILBERT-SYMBOL EQUIVALENCE OF GLOBAL FUNCTION FIELDS 

sets of primes S, Sf of the fields K and L, respectively. Adding, if necessary, 
some primes to one of these sets, we can assume they consist of the same number 
of elements. Let T: S —> S' be a bijection between the sets S and S". For every 
p € S the inner product spaces (Kp/I{

e/3) and (LTp/L
e
T fiT ) are isometric. 

Using the same arguments as in the proof of [CS2; Theorem 4.1] we conclude 
that there exists a small equivalence of degree £ between K and L. Now the 
statement follows immediately from Theorem 2.7. • 

3. T a m e Hi lbe r t - symbol equivalence 

Again let £ be a prime number, K be a global function field of characteristic 
prime to £ and let C,K G K be a fixed primitive ^th root of unity. By EK we 
shall denote the constant field of K. Let us observe that the level s(K) of K is 
equal to 1, when —1 is a square in EK and is equal to 2, otherwise. We write 
CK for the zero-degree divisor class group of if, that is CK is the factor group 
T>0/T, where T>0 is the group of divisors of degree 0, and V is the group of 
principal divisors. 

We define the group of ^-singular (or briefly singular) elements of K, 

Ksi = {x e K : ord x = 0 (mod £) for all primes p of K} . 

It is obvious that Ksi is a subgroup of K and it contains the group Ke. 

LEMMA 3 .1 . We have 

rk£KJKi = l+rkeCK. 

P r o o f . Let £CK be the subgroup of CK consisting of elements of order 
<£. The map 

Ksi~> eci<i xH+cinp (ordpa0/' 
p 

is a surjective homomorphism with the kernel EKKe. Thus ?k£Ksi/EKK = 
r k ^ C ^ . The groups EK/Ke and EK/Ee

K are isomorphic and the ^-rank of 
EK/EK is equal to 1. This proves the lemma. ---

Assume S is a finite nonempty set of primes of K. We consider the group of 
^-singular elements with respect to S. 

Ks.(S) = {xeK: ordp = 0 (mod £) for all p G fl(K) \ S} . 

Similarly as in the proof of Lemma 3.1 we see that the map x H-> cl n P^ordp " 

is a surjective homomorphism of Ksl(S) onto £CK(S) with the kernel UK(S)K . 
Since UK(S)Ke/Ke *_ UK(S)/UK(S)e and rk£UK(S)/UK(S)e = #S, we have 

rk, Ks[(S)/Ke - #S + rk, CH(S). (2) 
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LEMMA 3.2. / / p0 is a prime of K of degree prime to I and S0 = {p 0 }, then 

(i) Ksi(S0) = Ksi, 
(ii) rkeCK(S0) = rkeCK. 

P r o o f . 
(i) Let x be an arbitrary element of Ksi(S0) • The degree of principal divisor 

(x) is equal to 0. Thus we have 

fpo0rdPo*+ Efp° r dPX = 0 ' 
PT^PO 

where fp denotes the degree of the prime p. Since £ divides ordp x for every 
prime p ^ p0 and £ does not divide f , hence £ divides o rd p o x , so x G Ks{. 

(ii) It follows immediately from (i), Lemma 3.1 and (2). • 

LEMMA 3.3 . Assume that the elements a1,...,an€K are £ -independent and 
e 1 , . . . , £n G { 0 , . . . , £ — 1} . Then there are infinitely many primes p of K for 
which 

(t),=« 
holds for i = 1 , . . . , n . 

P r o o f . Let L{ = K(tfa~ ) for i = 1 , . . . , n . The extension LJK is normal 
with the cyclic Galois group G(LJK). Let at be its generator acting on j/a~ 
b y (v^ i Y% = CKy/°~- Consider the field L = L1---Ln = K(^/a~,..., ifa~\). 

From the Kummer theory it follows that L/K is a Galois extension of de­

gree £n with the Abelian Galois group G(L/K) = f[ G(LJK). Let a = 

(0~i\. •• ,o-£
n
n) £ G(L/K). According to Chebotarev density theorem (see [W; 

Chap. XII, Theorem 12]) there exist infinitely many primes p of K for which 
the Frobenius automorphism FL/K(p) is equal to a . It follows that FL/K(p) = 
(FLl/K(p), • • •, FLi/K(p)), so FLi/K(p) = G*i for i = 1 , . . . , n . 

On the other hand, we have (^/a~ ) F L < / * ( P )
 = (2±^^~- ( s e e [CF; Exam­

ple 1]), hence {f)e = Q- • 

Now we prove the second main theorem of the paper. 

T H E O R E M 3.4. 

(i) The global function fields K and L of odd characteristic are degree 2 
tamely Hilbert symbol equivalent if and only if they have the same level and the 
zero-degree divisor class groups of K and L have the same 2-rank. 

(ii) Let £ be an odd prime number and K. L be global function fields con­
taining a primitive fth root of unity. The fields K and L are degree £ tamely 
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Hilbert symbol equivalent if and only if the zero-degree divisor class groups of K 
and L have the same i-rank. 

P r o o f . We will prove simultaneously (i) and (ii). 
Suppose (/, t, T) is the degree i tame Hilbert-symbol equivalence of K and 

L. The isomorphism t induces a group isomorphism t: Ks{/K
e —y Lsi/L

e. By 
the Lemma 3.1 we have rk^ CK = rk^ CL. When i = 2, t(-l) = - 1 holds (see 
[PSCL]), thus we get additionally s(K) = s(L). 

Now we prove the sufficiency part of (i) and (ii). 
Let us fix the ^th roots of unity C)K G K and CL G L. From the assumptions 

we have rk^ Ksi/K
e — rk^ Lsi/L

e = 1 + n , where n = rk^ CK = rk^ CL. There 
exist elements a0 G EK, b0 G EL which are not global ^th powers. When i = 2 
and —1 is not a square in both K and L, we choose a0 = b0 = — 1. 

From [AT; Chap. 5, Theorem 5] it follows that the least positive divisor degree 
of K is equal to 1. Hence there exists a prime divisor p0 of K of degree fpo prime 
to i. The corresponding completion K is afield of power series with coefficients 

in a finite field EK , where EK is finite extension of the field EK of degree f . 

Since i does not divide [EK : EK], the element a0 is not an ith power in the 

field EK. This implies that a0 <£ K /K*Q, and so (f^)t ¥" 1. Replacing, if 

necessary, the element a0 with its power we can assume that (^)t = CK- In 

the same way, there exists a prime divisor q0 of L of degree f prime to i and 

we can assume that (*jp-)t = (L. 

Let { a 0 , a l 3 . . . , a n } be a basis for Ksi/I(
e and {b0ybx,..., bn} be a basis 

for Lsi/L
e. Using Lemma 3.3 we pick up primes p 1 , . . . , p n of K and primes 

q l 7 . . . ,q n of L, such that 

( * ) . - < - • ( * ) . - < - • ( ^ . • ( ^ . - i 

for each i G { 1 , . . . , n } , j G { 0 , 1 , . . . , n } , i^j. 
Multiplying, if necessary, the elements ai (i = l , . . . , n ) by powers of a0 

we can assume that (^)t = 1 for i = 1 , . . . , n . Similarly, we can assume that 

&e = 1 f o r i = 1 ^ - ^ ' L e t S0 = {p0} and S'0 = {q0}. 

CLAIM. The set of classes of primes p 1 } . . . , p n is linearly independent 
(overFe)inCK(S0)/CK(S0)

e. 

For otherwise there exists x G K and a fractional S0 -ideal a such that 

xOK(S0) = p^...p^ae 

for some e 1 ? . . . , en G { 0 , . . . , ^ — 1} and ei > 0 for certain i. The element ai 

is r-adic unit (modulo local ^th power) for each prime r of K and the element 
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x is r-adic unit (modulo local ^th power) for every prime r £ { p 0 , . . . , p n } . 
Taking into account the connection between the residue norm symbol and Hilbert 
symbol (cf. [CF; Example 2]) we have 

/ x (ai \ o r d p » ( a ; ) >e, / t / N / ai \OTd*J(x) ., 

(***)* = [j:)£ = CS # 1, {*i,*)Pi = (p j - j , = 1 

for all j e { l , . . . , n } , j ^ i, and (a.,x) t = 1 for every prime r $ { p 0 , . . . , p n } . 
This contradicts Hilbert's reciprocity and establishes the claim. 

Analogously we claim that the set of classes of primes q1?..., qn is linearly 
independent in CL(S'0)/CL(S'0)

£. 
We put 5' = {p0 ,p1 , . . . ,pn} and S' = {q0, q1?..., q n}. 
The claims imply that the ^-rank of the groups CK(S) and CL(S') are equal 

to 0, thus the sets S and S' are sufficiently large. 
From 2.5(i) we infer that the group Ksi/K

£ is a subgroup of UK(S)/UK(S)£ • 
Because these groups have the same ^-rank we get Ksi/K

£ = UK(S)/UK(S)£ 

and similarly LJL£ = UL(S')/UL(S')£. 
Now we construct an S -equivalence of K and L. 
We define an isomorphism / : fJ>£(K) -> I^(£), a bijection T: S —r S' and 

an isomorphism ts: KJK£ -r LJL£ by putting f((K) = CL, T(p{) = q{ and 
ts(ai) = bi for * = 0 , l , . . . , n . 

For i e {0,1, . . . ,n} the element ai is p-adic unit, which is not a local 
^th power at p^, thus the set {a^tr } forms a basis of K /K£. We define 
the isomorphism tp.: Kpi/K

£ -> Lqi/L
£ by sending ai i-r b^, 7Tp. r-» 7rq.. Of 

course the isomorphism t is tame and preserves Hilbert symbols. For j ^ i 
the element ô - is a local i!th power at pi and 6. is a local *?th power at qi; 
hence the diagram 

1 > KJK£ - -^_> G(S) 

i 1 ?'" 
1 > LJL£ - ^ ^ G(S') 

commutes. Therefore f,T,ts and the family (tp.), i = 0, . . . ,n , determine an 
5*-equivalence of K and L. By Theorem 2.7 this 5-equivalence can be extended 
to degree I Hilbert-symbol equivalence (/ , t ,T) which is tame outside S. To 
finish the proof, it is sufficient to notice that the equivalence is in fact tame, 
because the isomorphism £ is tame for every i G {0 ,1 , . . . , n} . • 

Remark. A criterion for tame Hilbert-symbol equivalence, as simple as in The­
orem 3.4, does not exist for the global number fields. But for algebraic num­
ber fields there is a necessary and sufficient condition for tame Hilbert-symbol 
equivalence that can be viewed as a finiteness condition, for details see [CZ1] 
and [CZ2]. 
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