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VECTOR-VALUED FUZZY MEASURES 

ON FUZZY QUANTUM POSETS 

LE BA LONG 

(Communicated by Anatolij Dvurecenskij) 

ABSTRACT. The notion of a Hilbert space-valued fuzzy measure on fuzzy quan­
t u m posets is studied. Some results about the relation among fuzzy measures, 
Hilbert space-valued fuzzy measures and fuzzy morphism are mentioned, too. 

I. Introduct ion 

Vector-valued measures on orthocomplemented lattices or on quantum logics 
have been studied by several authors, e.g. [2], [3], [4], [5], [9]. In [11] the authors 
have proved that a state m on L can be expressed in the form ||£(a)||2 = ra(a), 
where £ is a vector-valued measure on a quantum logic L, if and only if there 
exists a kernel function K: L x L —> R satisfying some properties. In [5] a 
representation of a vector-valued measure on I by a morphism $ : L —> L(H), 
(L(H) being the lattice of closed subspaces of H), via £(a) = $(a) • x (where 
x G H) is pointed out. In the present paper similar results are given on fuzzy 
quantum posets. Moreover, the existence of a kernel function K in several cases 
is mentioned, too. 

Let a, b be two fuzzy elements from [0, l ] f i , where O is a given non-void 
set. 

(i) a and b are said to be orthogonal and we write a_L6, if and only if 

a + 6 < 1. 

(ii) a and b are said to be fuzzy orthogonal and we write aJ-pb if and 
only if 

a H b := inf (a, b) < 1/2 . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 81P15. 
K e y w o r d s : Fuzzy orthogonality, Fuzzy quantum poset, Fuzzy quantum space, Vector-

valued measure, Fuzzy measure, Fuzzy morphism. 
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It is evident that if a±b then a-Lpb. Moreover, if a U a1- = b U b1- then a_Lb if 
and only if aA-pb. 

Let ft be a non-void set and M C [0; 1]Q such that: 
(i) If l(u) = 1 for any u G ft, then 1 G M ; 

(ii) if a G M , then a x := 1 - a G M ; 
(iii) if 1/2(LV) = 1/2 for any w G ft, then 1/2 £ M . 

A couple (ft, M) is said to be a £upe 7, type II fuzzy quantum poset if M 
is closed with respect to a union of any sequence of fuzzy sets mutually fuzzy 
orthogonal, orthogonal, respectively. 

If M is closed with respect to any sequence of fuzzy sets of M , then (ft, M) 
is said to be a fuzzy quantum space. 

It is obvious that a fuzzy quantum space is a fuzzy quantum poset type I, 
II and a fuzzy quantum poset type I is type II but the converse is not true, in 
general, (See [9]). 

Let (ft, M) be a type I (type II) fuzzy quantum poset. By a fuzzy measure 
of type I (type II) on M we understand a mapping m: M —-> [0; oo) satisfying: 

(i) m(a) + m(a±) = ra(l) for any a G M , 

( OO \ OD 

U an) = Z) m(an), 
n=l ' n=l for every sequence { a - j } ^ ! C M , an\-Fa]z ? (an^-ak) f° r n ^ & ? resp. 

If ra(l) = 1, then ra is called to be a fuzzy state of type I (type II) on M. 

Let m be a fuzzy measure of type I on a type I fuzzy quantum poset (ft, M) . 
It is known that a type I fuzzy quantum poset is a type II. Therefore, if we 
consider (ft, M) as a type II, then we can prove that m is a fuzzy measure of 
type II, too. Based on this note from here we can understand a fuzzy measure 
of type i on a type i fuzzy quantum poset by a fuzzy measure on a type i fuzzy 
quantum poset, i = 1,2. 

II. Vector-valued measure on fuzzy quantum poset 

DEFINITION 2.1. Let (ft, M) be a type I (type II) fuzzy quantum poset, H 
be a Hilbert space. An H-valued fuzzy measure on M is a mapping £: M —> H 
such that: 

(i) f (a U a-1) = £ (1) for any a £ M , 
(ii) if a±Fb (alb), then ^(a)±^(b), 

(iii) if {O i}^! C M, Oi-Lpaj (a{laj), then 

( oo \ oo 

(Ja. = ^ ( 0 i ) , 
i=l J i=l 
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where the series on the right-hand converges in the norm in H. £ is called an 
H-valued fuzzy state if ||£(1)|| = 1. 

It is evident that if £ is an H-valued fuzzy measure, then the mapping m 

denned via: 
m(a) = U(a)\\2 for any aeM (2.1) 

is a fuzzy measure on M . 

On a fuzzy quantum space, every fuzzy measure can be expressed in the form 
(2.1). Indeed, suppose (f2, M) to be a fuzzy quantum space, m to be a fuzzy 
measure on M . 

Let K(M) be a family of all A C ft for which there exists a G M such that 

{a > 1/2} C A C {a > 1/2} , (2.2) 

where {a > 1/2} := {u E fi; a(u) > 1/2} , analogically for {a > 1/2} (See also 
P i a s e c k i [10]). Due to Theorem 2.1 by D v u r e c e n s k i j [1] and Remark 
of Theorem 2.7 [8], K(M) is a a -algebra and Pm : K(M) —> [0, oo) defined via 
Pm(A) = m(a), where A, a satisfy (2.2), is a usual probability on K(M). 

Consider £: M -> L2(Tt,K(M),Prn) , a i-> I(a>i/2) • 

It is easy to see that £ is an L2(f-, -f-"(M),Pm) -valued fuzzy measure 
with (2.1). 

THEOREM 2.2. Let (fi, M) be a type I (II) of fuzzy quantum poset and 
m be a fuzzy measure on M. Then there is a real Hilbert space H and an 
H-valued fuzzy measure £ on M with (2.1) if and only if there is a mapping 
G: M x M -> R such that: 

(i) G(a,b) = 0 for every aJ-pb (a_L6), 
(ii) G(a, b) = G(b, a) for any a,b e M , 

(iii) G(a, b) = m(a) if a<b, (2.3) 
(iv) ^2aiCtjG(ai,aj) > 0 for any a ^ G K , ai £ M, i < n . n > l . 

i,j 

P r o o f . If £ exists, we put G(a,b) = (£(a), £(6)) . Then it is evident that (i), 
(ii), (iv) hold, (iii) follows from the observation that if a < 6, then 
£(a) + .-(a-- n 6) = {(a) + £(1) - «$(a U O = £(a) + £(1) - £(a) + £(6X) = £(&). 

Conversely, let G with properties (i) - (iv) be given. Then there is a measure 
space (X, 5, P) and a centered Gaussian process {£(a); a G M } with the 
covariance function equal to G (See L o e v e [7, p. 489]). We claim to show 
that a —> £(a) is an L2(X, 5, P ) -valued fuzzy measure in question. 
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(i) implies (£(a),£(b)) = 0 for any a±Fb (a±b). 

For any a E W\(M) = {a E M ; a = aU a-1} we have that: 

IK(a) - £(1)||2 = ||£(a)||2 + lie(l)H2 - 2(£(aU(l)) 
= m(a) -f m( l ) — 2m(a) = 0. 

Hence, f (a) = £(1), which entails f (a U a-1) = £(1) for any a E M . 

Now, if a±Fb (a_Lb), then 

| |£ (aU6)-£(a) -£(6) | | 2 

= ||£(a U 6)||2 + ||£(a)||2 + ||£(6)||2 - 2(£(a U 6), £(a)) 

- 2(£(aU&),£(&))+2(£(a),£(6)) 

= G(a U 6, a U 6) + G(a, a) + G(b, 6) - 2G(a U 6, a) - 2G(a U 6, 6) + 2G(a, 6) 

= m(a U 6) + m(a) + m(b) - 2m(a) - 2m(6) = 0. 

Thus, 
£(aU6)=£(a)+£(6). 

n 
By induction we have £(ai U • • • U a n ) = ]£ C(ai)> whenever ai±Faj (ai±aj ), 

2 = 1 

i,j = 1,2, . . . , n , i ^ j . 
oo 

Now, let a = |J a*» ai±Faj (a,_Laj ), z, j = 1, 2 , . . . . Similarly, 
2 = 1 

*(a) " £f(«i) | = IÎ WII2 + £ lie(ai)||2 - 2 £ (Ka),^)) 
2 = 1 2 = 1 2 = 1 

n 

= 7n(a) — 2_] m(ai) —> 0 when n - > o o . 
n = l 

Hence, f (a) = ^ f (a») • • 
2 = 1 

THEOREM 2.3. Let (fl, M) be a type I(II) of fuzzy quantum poset. Let m be 
a fuzzy state on M such that: 

(i) if a±Fb (a±b) and max (771(a), m(b)) < 1/2. then 

m(a) -m(b) = 0; (2.4) 

(ii) if m(a) < 1/2 and there is b E M such that a < b, 1/2 < m(b) < 1. 
then m(a) = 0 . 

374 



VECTOR-VALUED FUZZY MEASURES ON FUZZY QUANTUM POSETS 

Then, there is a function G: M x M —> R with (2.3). Therefore there exists a 
real Hilbert space-valued fuzzy state £ with (2.1). 

P r o o f . Put 

Consider G: M x M 

Mi = {a G M ; ra(a) > 1/2} , 

M0 = { a G M ; ra(a) < 1/2} . 

R defined via 

min (ra(a),ra(6)) if a,b € M0 or a, 6 E M i , 

G(a,b) = G(6,a) = { 0 if a <= M 0 , 6 <E M x , m(b) < 1, 

ra(a) if a G M 0 , ra(b) = 1. 

We claim to show that G fulfils (2.3). The properties (i), (ii), (hi) are evident. 
Calculate ^2 aiGtjG(ai, aj), with given a i , . . . , a n , n E N. They can be num­

bered such that 0 = m(ai) < 771(02) < * • • < mfan) — 1 • Then the matrix of 
the above quadric can be written in the following form: 

0 0 0 
0 0 

0 0 0 
m f c + i . .. mk+l 

mk+2 

0 0 m f c + i m f c + 2 i 

0 0 m f c + i m f c + 2 

mk+2 

0 

0 

™fc+i 

mk+2 

mh mh+1 mh+2 

0 0 m f c + i m f c + 2 mh mh+1 mh+2 '. '. 1 1 

where ra(a^) = ra*, m(ah) = mu < 1/2, mh+i > 1/2. 

0 

0 
mk+i 

mk+2 

mh mh . . . mh 

mh+i mh+i . . . mh+i 
mh+2 mh+2 . . . mh+2 
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Without loss of generality we may assume that: 

rafc+i < mk+2 < • • • < mh < mh+i < ... . 

Indeed,, if mj = mj+i, we replace mj+i by m'j+i = mj + e with e small. By 

calculating the determinant of the first corner matrixes we can prove that : 

єi 

0 
£k 

mk+i 

mk+2 • • 

•• тnfc+i 

• • mk+2 

mh+i 

mh+i 

mh+i 

0 

mic+i 

mk+i 

mk+1 

mk+2 

mk+! mk+2 

0 

mk+2 

mk+2 

mh 

mh 

mh 

mh+i 

mh+i 

mh+i 

0 

mh 
mh+i 

mh 

mh+i 
mk+2 

0 

mk+2 

mk+2 

mh 

mh 

mh 

mh+i 

mh+i 

mh+i 

mh+2 

mh 
mh+i 

mh 

mh+i 
mk+2 

0 

mk+2 

mk+2 

mh 

mh 

mh 

mh+i 

mh+i 

mh+i 

mk+i 

mk+2 

0 

mk+2 

mk+2 

mh 

mh 

mh 

mh+i 

mh+i 

mh+i 

1 - Єfc+l ' 

1 - Єfc+l 

• 1 - єk+ 

mk+i 

mk+2 

0 

mk+2 

mk+2 

mh 

mh 

mh 

mh+i 

mh+i 

mh+i 

1 - Єfc+l ' 

1 - Єfc+l 1 

is a matrix of a positively definite quadric. Therefore, limiting £i, £2, • • • —> 0, 
we see that ^aiajG(ai,aj) > 0 for any {a^} C R. This means that G fulfils 
(iv) of (2.3). • 

COROLLARY 2.4. Let (fi, M) be a type II fuzzy quantum poset and m be a 
{0,1} -valued fuzzy state on M . Then m can be expressed in the form (2.1) . 

P r o o f . It is clear that m fulfils the condition (2.4). D 
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COROLLARY 2.5. Let (f t ,M) be a type II fuzzy quantum poset such that 
a,b e M, a < b, a / d 7- 1 and b > 1/2 imply a < 1/2. Then, every 
fuzzy state on M can be expressed in the form (2.1). In particular, suppose C 
to be a q-a-algebra of subsets of given set ft such that A,BeC, A C B 7-= ft, 
A ^ B implies A = 0 . Then (ft, M), where M = {IA; A e C}, fulfils the 
above condition. 

P r o o f . It is evident that every fuzzy state on M always fulfils (2.4). • 

E x a m p l e 2.6. Put ft = {1 ,2 ,3 ,4} . Let C be system of all even subsets 
of ft, then (ft, M) fulfils the condition of Corollary 2.5. 

R e m a r k 2.7. Theorem 2.3, Corollary 2.4, 2.5 and Example 2.6 are still in 
validity if a fuzzy state m is replaced by any fuzzy measure, in which 1 and 
1/2 are replaced by m(l) and ra(l)/2. 

III. A representation of a vector-valued fuzzy measure 

Let H be a Hilbert space, L(H) be the set of all orthogonal projections in 
H. Then, L(H) is a logic and it coincides with the logic of closed subspaces of 
H (See [12, p. 190-192]). 

Now, let (ft, M) be a type I (II) fuzzy quantum poset. 

A mapping <£: M —> L(H) is called a fuzzy morphism if: 

(i) $ (a U a-1) = $(1) for any a G M, 
(ii) a,beM, a±Fb (a±.b) implies 3>(a)_L<I>(b). 

A fuzzy morphism $ : M —> L(H) is a fuzzy a-morphism if $ ( (J aA = 
^i=l ' 

00 

\j $>(ai) for any sequence {a i}?^ of mutually fuzzy orthogonal (orthogonal) 
i=l 
elements of M. 

According to K r u s z y n s k i [6], two H-valued fuzzy measures £ , 77 on 
M are said to be biorthogonal if for every a, 6 E M , a_L^b (a_L6) we have 
(aa),r,(b))=0. 

It is evident that £, 77 are biorthogonal if and only if a£ + f3r] is also an 
H-valued fuzzy measure for any nonnegative real numbers a, /3. 
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A family N of ff-valued fuzzy measures on M is said to be biorthogonal 
if every two measures £,77 E N are biorthogonal. A biorthogonal family 1V is 
a maximal biorthogonal family if every ff-valued fuzzy measure on M, which 
is biorthogonal to every member of IV, necessarily belongs to TV. It is clear 
that every maximal biorthogonal family is a linear space. Obviously, a maximal 
biorthogonal family is maximal with respect to the ordering by the set inclusion 
in the class of biorthogonal families of ff-valued fuzzy measures. Hence, every 
biorthogonal family of ff-valued fuzzy measures is contained in some maximal 
family. 

THEOREM 3.1 . Let (fi, M) be a type I (II) of fuzzy quantum poset and let H 
be a real Hilbert space, $ : M —•» L(ff) be a fuzzy a-morphism. Then: 

(i) If v E ff, then the mapping £v defined via 

£v(a) = $(a)v for any a E M (3.1) 

is an ff -valued fuzzy measure on M . 

(ii) J V = { £ V ; u E $ ( l ) f f } is a biorthogonal family of ff-valued fuzzy 
measures on M. 

(iii) N is a maximal biorthogonal family of $( l ) f f -valued fuzzy measures 
0П M. 

P r o o f , (i), (ii) follow immediately from the definitions. 

(iii): Let 77 be a $(1)ff-valued fuzzy measure orthogonal to £v, for any 
v E $ ( l ) f f . This means that n(a)±^(a±)v for any v E $ ( l ) f f and a E M. 

So r/(a)±$(a J-)ff. On the other hand, $ ( l ) f f = Q(a)H + $ ( a x ) f f , and 
$(a)H±$(a±)H. 

Hence, 77(a) E $(a)ff for any a E M. So, 77(a) = $(a)n(a) = $(a)r)(a) + 
$(a)77(a-L) = $(0)77(1), which entails 77 E N. • 

The following result for a fuzzy quantum poset is similar to Proposition 3.6 
by K r u s z y n s k i [6] and Theorem 2.7 by P u l m a n n o v a and D v u -
r e c e n s k i j [11]. 

THEOREM 3.2. Let (£2, M) be a type I (II) of a fuzzy quantum poset and let 
ff be a real Hilbert space. Let N be a maximal biorthogonal family of ff -valued 
fuzzy measures on M. For any a E M put N(a) = (£(a ) ; a £ M^ . Then, the 
following statements hold: 
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(i) For every a G M, N(a) is a closed linear subspace of H; 
(ii) for every a,6 G M, a±.pb (a±b), we have N(a)±N(b) and N(aUb) 

= N(a) V N(b), i.e. $ (a U 5) = $(a) + 3>(b), where $(a) denotes 
the projection on N(a). In addition, for every sequence {ai}^=1 of 
mutually orthogonal elements of M we have: 

( oo \ oo 

(J a. =]>>(«.); 
i=l / 2 = 1 

(iii) for every £ e N we have £(a) = $ ( a ) £ ( l ) , /or a e M; 

(iv) $ (a U a x ) = $ ( 1 ) , /or any a e M . 

In other words, $ is a fuzzy a-morphism on M and £ is represented in the 

form (3.1). 
P r o o f , (i), (ii) can be proved in the same way as the Proposition 3.5 [6]. 

(iv) is evident from the definition of N(a), a G M. 
(iii): For every f G N, a G M , we have f (1) = £(a U a-1) = f (a) + ^(a-1) , 

where £(a) G N(a) and cJ(a-L)_L1V(a), since ^(aJ-)_L77(a) for any 77 G N. Hence, 
£(a) = $(a)cT(l). D 

R e m a r k . In view of Theorems 3.1 and 3.2, it can be pointed out that 
there is a one-to-one correspondence between the set of all maximal biorthogonal 
families of H-valued fuzzy measures on M and the set of morphisms $ from 
M into L(H) such that $(1)H = H. 
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