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VECTOR-VALUED FUZZY MEASURES
ON FUZZY QUANTUM POSETS

LE BA LONG

(Communicated by Anatolij Dvuredenskij)

ABSTRACT. The notion of a Hilbert space-valued fuzzy measure on fuzzy quan-
tum posets is studied. Some results about the relation among fuzzy measures,
Hilbert space-valued fuzzy measures and fuzzy morphism are mentioned, too.

I. Introduction

Vector-valued measures on orthocomplemented lattices or on quantum logics
have been studied by several authors, e.g. [2], [3], [4], [5], [9]. In [11] the authors
have proved that a state m on L can be expressed in the form ||£(a)||? = m(a),
where ¢ is a vector-valued measure on a quantum logic L, if and only if there
exists a kernel function K: L x L — R satisfying some properties. In [5] a
representation of a vector-valued measure on L by a morphism ®: L — L(H),
(L(H) being the lattice of closed subspaces of H ), via £(a) = ®(a) -z (where
z € H) is pointed out. In the present paper similar results are given on fuzzy
quantum posets. Moreover, the existence of a kernel function K in several cases
is mentioned, too.

Let a, b be two fuzzy elements from [0,1]®, where Q is a given non-void
set.

(i) a and b are said to be orthogonal and we write alb, if and only if
a+b<1.
(i) a and b are said to be fuzzy orthogonal and we write alpb if and

only if
anb:=inf(a,b) <1/2.
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It is evident that if aLb then alpb. Moreover, if aUal = bU bt then alb if
and only if alpb.

Let © be a non-void set and M C [0;1]? such that:
(i) If 1(w) =1 for any w € Q, then 1 € M;
(ii) if a € M, then at :=1—-a € M;
(ii) if 1/2(w)=1/2 for any w € Q, then 1/2 ¢ M.

A couple (2, M) is said to be a type I, type II fuzzy quantum poset if M
is closed with respect to a union of any sequence of fuzzy sets mutually fuzzy
orthogonal, orthogonal, respectively.

If M is closed with respect to any sequence of fuzzy sets of M, then (Q, M)
is said to be a fuzzy quantum space.

It is obvious that a fuzzy quantum space is a fuzzy quantum poset type I,
II and a fuzzy quantum poset type I is type II but the converse is not true, in
general, (See [9]).

Let (2, M) be a type I (type II) fuzzy quantum poset. By a fuzzy measure
of type I (type II ) on M we understand a mapping m: M — [0;00) satisfying:

(i) m(a)+m(at) =m(1) for any a € M,
o0 o)
() m( U an)= X mlan),
n=1 n=1
for every sequence {a,}>>, C M, a,lra, (a,Llag) for n# k, resp.

If m(1) =1, then m is called to be a fuzzy state of type I (type II) on M.

Let m be a fuzzy measure of type I on a type I fuzzy quantum poset (2, Af).
It is known that a type I fuzzy quantum poset is a type II. Therefore, if we
consider (2, M) as a type II, then we can prove that m is a fuzzy measure of
type II, too. Based on this note from here we can understand a fuzzy measure

of type i on a type i fuzzy quantum poset by a fuzzy measure on a type i fuzzy
quantum poset, 1 =1,2.

I1. Vector-valued measure on fuzzy quantum poset

DEFINITION 2.1. Let (Q, M) be a type I (type II) fuzzy quantum poset, H
be a Hilbert space. An H-valued fuzzy measure on M is a mapping §&: M — H
such that:

(i) &(avat)=¢(Q) foranya € M,
(ii) if alpb (albd), then £(a)LE(D),
(i) of {a;}2y C M, a;Lpa; (ailaj), then

€(Uai> = Zf(ai),

=1
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where the series on the right-hand converges in the norm in H . £ is called an
H -valued fuzzy state if ||€(1)||=1.

It is evident that if £ is an H-valued fuzzy measure, then the mapping m
defined via:

m(a) = ||¢(a)|)? forany ae M (2.1)

is a fuzzy measure on M .

On a fuzzy quantum space, every fuzzy measure can be expressed in the form
(2.1) . Indeed, suppose (Q, M) to be a fuzzy quantum space, m to be a fuzzy
measure on M .

Let K(M) be a family of all A C Q for which there exists a € M such that
{a>1/2} CAC{a>1/2}, (2.2)

where {a > 1/2} := {w € Q; a(w) > 1/2}, analogically for {a > 1/2} (See also

Piasecki [10]). Due to Theorem 2.1 by Dvurecenskij [1] and Remark

of Theorem 2.7 [8], K(M) is a o-algebra and P,,: K(M) — [0,00) defined via

P, (A) =m(a), where A, a satisfy (2.2), is a usual probability on K(M).
Consider ¢: M — Lo (Q, K(M), Pm) y @ Iigsy/2) -

It is easy to see that & is an Lo (Q, K(M ),Pm) -valued fuzzy measure
with (2.1).

THEOREM 2.2. Let (Q,M) be a type I (II) of fuzzy quantum poset and
m be a fuzzy measure on M . Then there is a real Hilbert space H and an
H-valued fuzzy measure £ on M with (2.1) if and only if there is a mapping
G: M x M — R such that:

(i) G(a,b) =0 for every alpb (alb),
(i) G(a,b) = G(b,a) for any a,be M,

(i) G(a,b) =m(a) if a < b, (2.3)
(iv) Y a;ajG(as,a;) >0 forany a; €R, a;€ M, i<n, n>1.
(2%

Proof. If ¢ exists, we put G(a,b) = (£(a),£(b)) . Then it is evident that (i),
(i), (iv) hold. (iii) follows from the observation that if a < b, then
€(a) +&(a™ Nb) =&(a) +£(1) — £(aUb) = €&(a) +£(1) — &(a) +&(bF) = £(b).

Conversely, let G with properties (i) — (iv) be given. Then there is a measure
space (X,S,P) and a centered Gaussian process {£(a); a € M} with the
covariance function equal to G (See Loeve (7, p. 489]). We claim to show
that a — £(a) is an L2(X, S, P)-valued fuzzy measure in question.
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(1) implies (ﬁ(a),g(b)) =0 for any alpb (albd).
For any a € Wi (M) ={a € M; a=aUal} we have that:

1€(a) = EWI* = 1€E@)I* + IEW)I1* — 2(¢(a), £(1))
=m(a) + m(1) — 2m(a) =0.

Hence, &(a) = £(1), which entails {(aUat) = £(1) for any a € M.
Now, if alpb (alb), then
1€(a L b) — €(a) — £
=[€@UB)|* + [€@)II* + €D — 2(¢(a U b), £(a))
—2(&(aUb), (b)) +2(£(a), (D))
=G(aUb,aUb) + G(a,a) + G(b,b) —2G(aUb,a) — 2G(a U b,b) + 2G(a, b)
=m(aUb) + m(a) +m(b) — 2m(a) — 2m(b) = 0.

Thus,
§(aUb) =¢(a) +£(b).

By induction we have £(a1U---Uay) = Y &(a;), whenever a;Lpa; (a;Lla;),

i=1

6,j=1,2,...,n,i#].

(e ]
Now, let a = |J ai, ailra; (ajla;), i,j=1,2,.... Similarly,
i=1

6@ - Y- €@ = le@IP + 36l =237 (€(a).£(ar))

:m(a)—Zm(ai)—»O when n — oco.

n=1

Hence, £(a) = i &(ai)- O
i=1

THEOREM 2.3. Let (0, M) be a type I (II) of fuzzy quantum poset. Let m be
a fuzzy state on M such that:

(i) if alpb (alb) and max (m(a),m(b)) <1/2, then
m(a) - m(b) =0; (2.4)

(i) if m(a) < 1/2 and there is b € M such that a < b, 1/2 <m(b) < 1,
then m(a) =0.
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Then, there is a function G: M x M — R with (2.3). Therefore there ezists a
real Hilbert space-valued fuzzy state £ with (2.1).

Proof. Put

My ={ae M; m(a) >1/2},
Mo ={a€e M; m(a) <1/2}.

Consider G: M x M — R defined via

min (m(a), m(b)) if a,b€ My or a,be M,
G(a,b) = G(b,a) ={ 0 if ae My, be My, m(b) <1,
m(a) if a€ My, m(b)=1.

We claim to show that G fulfils (2.3). The properties (i), (ii), (iii) are evident.

Calculate ) a;0;G(a;,a;), with given ay,...,a,, n € N. They can be num-
bered such that 0 = m(a;) < m(az) < --- < m(a,) = 1. Then the matrix of
the above quadric can be written in the following form:

0 0 0 0 0
0 0 0 0
0 0 0 0 0
ME41 cvereeeeens mre41 MEg41 e Miy
Mk+2 Mk 42 Mg+2 Mk+2
........... 0
0 0 mpgy1 Mpyo - mp mp - mp
L S R R Mh41 Mhp41 ,
Mh42  cevnnn. Mp42 Mhp42
0 O L e e
0 0 Mmgyy Miy2 mp, Mhpy1 Mpg2 - - 1 oo 1
1 1
_0 0 mpy1 Mo mp Mht1 Mpt2 - . 1 1 1

where m(a;) =m;, m(ap) =mp <1/2, mp41 > 1/2.
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Without loss of generality we may assume that:

Me41 < Mi42 < -

e <mp <mpy; <....

Indeed, if m; = mj41, we replace m;,; by m;-_H = m; + ¢ with € small. By
calculating the determinant of the first corner matrixes we can prove that:

is a matrix of a positively definite quadric. Therefore, limiting €4, €3, -

ey

€k

Mk+1

M1

Mgt

0
............ Mk41
MEk42 Mg42
MEk42 Mp

0
Mg42 mp
Mi42 mp,

0
Mk+1
Mk+1
0o ...
mhp
Mph41 e Mp41
Mp42  ceenvieiinnn
mp+1 . . 1- €k+1
Mh41 : . 1-— €k+4+1

Mp41

Mi42

— 0,

we see that Y a;a;G(ai,a;) > 0 for any {a;} C R. This means that G fulfils
(iv) of (2.3).

a

COROLLARY 2.4. Let (2, M) be a type II fuzzy quantum poset and m be a

{0,1} -valued fuzzy state on M . Then m can be erpressed in the form (2.1).

Proof. It is clear that m fulfils the condition (2.4).
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COROLLARY 2.5. Let (2, M) be a type II fuzzy quantum poset such that
a,be M, a<b,a#b#1 and b > 1/2 imply a < 1/2. Then, every
fuzzy state on M can be expressed in the form (2.1). In particular, suppose C
to be a q-o-algebra of subsets of given set Q such that A, BeC, ACB#Q,
A # B implies A= 0. Then (Q, M), where M = {I4; A € C}, fulfils the
above condition.

Proof. It is evident that every fuzzy state on M always fulfils (2.4). O

Example 2.6. Put Q ={1,2,3,4}. Let C be system of all even subsets
of Q, then (2, M) fulfils the condition of Corollary 2.5.

Remark 2.7. Theorem 2.3, Corollary 2.4, 2.5 and Example 2.6 are still in
validity if a fuzzy state m is replaced by any fuzzy measure, in which 1 and
1/2 are replaced by m(1) and m(1)/2.

ITI. A representation of a vector-valued fuzzy measure

Let H be a Hilbert space, L(H) be the set of all orthogonal projections in
H . Then, L(H) is a logic and it coincides with the logic of closed subspaces of
H (See [12, p. 190-192]).

Now, let (2, M) be a type I (II) fuzzy quantum poset.
A mapping ®: M — L(H) is called a fuzzy morphism if:
(i) ®(aUat)=®(1) for any a € M,
(i) a,be M, alpb (ald) implies ®(a)LP(b).
oo
U ai) =

A fuzzy morphism ®: M — L(H) is a fuzzy o-morphism if <I>(
i=1

oo

\ ®(a;) for any sequence {a;}$2; of mutually fuzzy orthogonal (orthogonal)
i=1

elements of M .

According to Kruszynski [6], two H-valued fuzzy measures £, n on
M are said to be biorthogonal if for every a,b € M, alpb (alb) we have

(£(a), (b)) = 0.
It is evident that £, n are biorthogonal if and only if @& + (7 is also an
H-valued fuzzy measure for any nonnegative real numbers o, 3.
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A family N of H-valued fuzzy measures on M is said to be biorthogonal
if every two measures £, € N are biorthogonal. A biorthogonal family N is
a mazimal biorthogonal family if every H-valued fuzzy measure on M, which
is biorthogonal to every member of N, necessarily belongs to N. It is clear
that every maximal biorthogonal family is a linear space. Obviously, a maximal
biorthogonal family is maximal with respect to the ordering by the set inclusion
in the class of biorthogonal families of H-valued fuzzy measures. Hence, every
biorthogonal family of H-valued fuzzy measures is contained in some maximal
family.

THEOREM 3.1. Let (2, M) be a type I (II) of fuzzy quantum poset and let H
be a real Hilbert space, ®: M — L(H) be a fuzzy o-morphism. Then:

(i) If v € H, then the mapping &, defined via
&v(a) = P(a)v forany ae M (3.1)

is an H-valued fuzzy measure on M .

(ii) N = {5,,; v € ®(1)H } is a biorthogonal family of H-valued fuzzy
measures on M .

(iii) N is a mazimal biorthogonal family of ®(1)H -valued fuzzy measures

on M.

Proof. (i), (ii) follow immediately from the definitions.

(iii): Let 7 be a ®(1)H-valued fuzzy measure orthogonal to ¢,, for any
v € ®(1)H . This means that n(a)L®(at)v for any v € (1)H and a € M.
So n(a)L®(at)H. On the other hand, ®(1)H = &(a)H + ®(a‘)H, and
®(a)HL1®(at)H.

Hence, n(a) € ®(a)H for any a € M. So, n(a) = ®(a)n(a) = ®(a)n(a) +
®(a)n(at) = ®(a)n(1), which entails n € N. , O

The following result for a fuzzy quantum poset is similar to Proposition 3.6
by Kruszyn ski [6] and Theorem 2.7by Pulmannov4d and Dvu-
re cen skij [11].

THEOREM 3.2. Let (Q, M) be a type I (II) of a fuzzy quantum poset and let
H be a real Hilbert space. Let N be a mazimal biorthogonal family of H -valued
fuzzy measures on M . For any a € M put N(a) = {E(a); a€ .M} . Then, the
following statements hold:

378



VECTOR-VALUED FUZZY MEASURES ON FUZZY QUANTUM POSETS

(i) For every a € M, N(a) is a closed linear subspace of H ;

(i) for every a,b€ M, alpb (alb), we have N(a)LN(b) and N(aUb)
= N(a) V N(b), i.e. ®(aUb) = ®(a) + ®(b), where P(a) denotes
the projection on N(a). In addition, for every sequence {a,},_1 of
mutually orthogonal elements of M we have:

@(U ) Z@(a,),

i=1

(iii) for every £ € N we have &(a) = ®(a)é(1), fora € M ;

(iv) ®(aUat)=®(1), foranya € M.
In other words, ® is a fuzzy o-morphism on M and £ is represented in the
form (3.1).

Proof. (i), (ii) can be proved in the same way as the Proposition 3.5 [6].
(iv) is evident from the definition of N(a), a € M.

(iii): For every £ € N, a € M, we have £(1) = £(aUat) = £(a) + €(at),
where £(a) € N(a) and é(al)LN(a), since £&(at)Ln(a) for any n € N . Hence,
§(a) = (a)é(1). w

Remark. In view of Theorems 3.1 and 3.2, it can be pointed out that
there is a one-to-one correspondence between the set of all maximal biorthogonal
families of H-valued fuzzy measures on M and the set of morphisms & from
M into L(H) such that ®(1)H = H .
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