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ASYMPTOTICAL CONFIDENCE REGION
IN A REPLICATED MIXED LINEAR MODEL
WITH AN ESTIMATED COVARIANCE MATRIX

LUBOMIR KUBACEK

Introduction

Let Y, Y., ... be independent identically distributed (i.i.d.) random vectors;
Y,~ N,(XB.X),j=1,2,...; the n x k matrix X is known, fe #* (k-dimensional
Euclidean space) is an unknown vector parameter and the covariance matrix X
is totally or partially unknown.

A confidence region for the parameter # (or for its function) based on
realizations y,, ..., ¥,, of the vectors Y|, ..., Y,, in the case when the covariance
matrix X is totally unknown is determined in [4] and [2].

The aim of the paper is to find a confidence region when some a priori
information on the covariance matrix is available; we shall investigate two
following cases:

a) the covariance matrix X is diagonal with unknown elements

b) the cdvariance matrix has the following structure:

)4
E=) 9V,p=229=(9,....,9) €8 < " (3 is an open and bounded set),
i=1

where the n x n symmetric matrices V,, i = 1, ..., p, are known and the com-
ponents 9, ..., 3, are unknown (a mixed linear model).

1. Preliminaries

The notation ¥=(1/m) 3. ¥ and § =[1/(m — )] 3. (¥~ P)(¥,— P is

used in what follows.

Lemma 1.1. Let Y,,....Y, be iid random vectors, Y,~ N,(XBX),
j=1,...,m, R(X) =k < n (R(X) is the rank of the matrix X) and let the cova-
riance matrix T be regular. Let m > n and G be an r x k matrix of the rank
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R(G) = r. Then the confidence ellipsoid for the vector function g(f) = G, fe #*,
Is

A A 1
{u: (u— G IGX'S™'X)"'G'] "(u— Gﬂs)m[l + = 1 V'S '\7] <
m—
(m—1)r }
< F . _i_. l—a),
m—1—m—k) = -l )
where B, = (X’S™'X)"'X'S 'V, v= ¥V — Xps and E,,, | w o1 —a) is the

(1 — @) th quantile of the Fisher—Snedecor random variable.
Proof. See Lemma 3b) in [4] or Theorem 2.2 and Corollary 1 in [2].
Lemma 1.2. Let {T,}),_, be a sequence of estimators of a parameter

OcO < RZ° such that \/r;(T,,, —0) —:—> N,(0,X(0)). let @ be an open set in A",

let X(-): ©® > &, (the class of symmetric s X s matrices) be a continuous
mapping and let £(0O) be regular for @€ . Let a function g(-): @ —» Z' have
continuous partial derivatives 0g,/00,, i = 1,....t,j = 1,...,s, and let the matrix
(0g/0@")X(O)0g’'/00 be regular for Oc@. Then

Jm((@g/oT;) X(T,)0g'/0T, )" 2[g(T,) — 9(@)] — N,(0.1)

(here | is the identical matrix).
Proof. See Section 6a.2 in [5].
Lemma 1.3. Under the assumption of Lemma 1.2

m[g(T,) — g(O)]'[(dg/0T,) X(T,)3g'/0T,1"'[9(T,) — 9(O)] %’ X0

Proof. It is a consequence of Lemma 1.2 and the Sverdrup theorem [I,
p. 185].
Corollary. If m is sufficiently large, then the random set (ellipsoid)

{u: [u— g(T,)'[(@g/dT,) E(T,)0g' /0T, ] '[u — g(T,)] < /(1 — @) m}

can be considered as a (1 — a) asymptotical confidence ellipsoid for the function
g(+); x}(1 — a) is the (1 — a)th quantile of the chi-square distribution with t
degrees of freedom.

Lemma 1.4. Let Y,, ..., Y, be random vectors from Lemma 1.1. Let the cova-

P
riance matrix X be of the structure X = Y 3V, where V,, i =1, ...,p, are known
i=1

symmetric matrices and 8 = (9, ..., 8,)" is an unknown vector parameter, 3€ 3 (an

P
open and bounded set) = #". Let Y. 3V, be regular for all $€9 and let the

i=1

matrices V,, ..., V, be linearly independent. Then
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(a) the 3ylocally best unbiased estimator of the vector & based on the matrix
S exists and has the form

39 = Sx‘_'l [Tr(E'V,E;'S), ..., Tr (£ 'V, 5 'S)T,
0

p
where 2y = Y Vi, $=(31,....%,) €9,
i=1

Sy = Tr(Ey'VET V), ij=1..p;

(b) if L = Z 3(8)V,, 9* = J[9(%)] = Sz [Tr(E"'V,E7'S), ...

LTrE'VE “S)] then
Jm{(1/2)S1](3* — 9) > N,O.D).

Proof. For (a) see Theorem 3.2 and Remark 3.3 in [3].
(b) As cov[Tr(E;'VE;'S), Tr(X;'VE;'S) 9] =
— [2/(m — 1)] Tr (%5 'V.E; 'EE; 'V, 'E) = [2/(m — DHS, -1y 1h

<where = Z '9i\/1> the covariance matrix of the vector 9(.90) from (a) is:

i=1
Var [9(9)19] = [2/(m — D]S; 1S, 1y, 18]

Under the given assumption on 3§ the last matrix converges to zero matrix if
m — o0. As the convergence in quadratic mean implies the convergence in

probability, §,(%) — 8.i=1,....p, thus £ — £ — 0. As the matrix Sy is

P

: . . 1 2 1 12
a continuous function of variance components, <5 Sy;—n) — 58271 — 0.

The last two relationships imply
— 39 =Sz [TrE'V,E'S), .., Tr(E'V,E'S) —

— S [Tr(E7'V,E7'S), ., Tr (E7'V,E7'S)] — 0.

The sequence {f (S — X)) _, . is obviously asymptotlcally normal. Thus
with respect to Lemma 1.2

1/2
\/;;Gsz_.> [9(3) — 9] — N,(0.)).
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Because of
12 . 1 12 .
ﬁl(—st ) (9 - 9) = JE(ESE ) [5(9) — 91 + ¢,
where

r il s ol o)

'[9(9)“’”@[(%9’: ) = (38 ) o - son = o

L

12 12
the sequences {ﬁ(é S: 1) (99 - 3]} and {ﬁ(% S: 1> .

(9% — 3)} have the same asymptotical distribution.

m=n+1

m—n+1

2. The asymptotical confidence ellipsoid for a function of the parameter f

Theorem 2.1. Let Y, ..., Y, and g(-) be from Lemmal.l.

Let B=(X'S"'X)"'X'S™'V, v=V—X} and T,=GXS'X)'G"
(1 + VS~'V). Then

JmI 2 [G(X'S™'X) ' X'S™'Y — G —""—» N,(0,))
and

m(Gp— Gpy 7' (G- Gp — 1.

PrOOf. Let SZ(SH, S|23 ey S]n; Szz, Sz}, ey Sz,,; ey Srlvl.n—]’ S"_L";
Sn.n)/a S’l = {S},'.,', l,] = 1, R (B

Then _ )
Jn?[y_x”]—b N,,+,[o;[’:’ 0 ﬂ
s—o ] " .0, TI\(o)

where o = (Glla 0125 ++5O1ns 300 —1n=15>0n—1n> o’n.n)/’ {E}:/ = O‘I/’ I’J = l’ < 1,
r=n(n + 1)/2, {]:I(d)}u.kl = 040, + 0,0y, "’J:_a k,l=1,...n.
If g(B) = gi(V,s) = GX'S™'X)"'X’S"'Y, then

S, 0
0, I’;l (S)

+ (0g,/2s') T\ (s)0g;/es

[8g,/a(Y",s)] [ ]@91/5[( Y.,s)] =(0g,/0Y)S0g;/0Y +
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and
0g,/0Y = GXX'S™'X)"'X'S~' = (0g,/0¥')S0g;/0¥ = GX'S'X)"'G’
09,/0S; = G(X'S™'X)"'X'S~' (3S/05,)S~'(Xf— V)=
= (0g,/0s") I, (s)9g//0s = VS~ 'WG(X'S™'X)"'G".
The last implication can be proved in the following way:

(39,/9s) T\ (s)3g;/0s = G(dpos) T (s) (@ [05) G’

and
(aﬁ/as') f“l (s) aﬁ'/as =X'S'X)"'X’'S! Z Z (0S/3S;)-
i<jk<l!
.8! V(SuS; + SuS;) v'S'(0S/0S,)S'X(X'S™'X)!,
where

ee, i=]j,

ee +ee, i+#]j,
e=0,.,0_,,1,0,,,...,0), i=1,..,n

The (r, s)th element K, ; of the matrix

3S/0S; = {

Y Y (88/3S,) ST (S, + 5,S;) V'S~ (38/0S,,)
i<jk<l
1s
K.=€Y Y (8S/05,)8 ' (S,S;+ 5,5,) V'S~ (@8/3S,) €, =
i<jk<!
={SVS v+ vV}, ,r,s=1,..,n
As X'S~'v = X'S~' (Y — Xf) = 0, we have
@Bas) T, (s)0f os = (X'S~'X)"'X’'S~' 'S~ USS'X(XS~'X) ! =
= VS 1YX’'S'X)"!
and thus
(0g,/0s') T\ (s)0g|/ds = V'S™'WG(X'S~'X)"' G".

The rest of the proof follows from Lemmas 1.2 and 1.3.

Remark 2.1. The confidence ellipsoid for the function g(-) from Lem-
ma 1.1 and the confidence ellipsoid
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{u:(u— GRY[GX'S™'X) 'G'] "(u— G/ + V'S ') < x2(1 — a) m}

m
— 1 has been

from Theorem 2.1 have a similar shape after the term ]
m —

neglected. The ratio of their axes is
(m=1rEF, W ol —afim—1—n-kZ(1 - a)=
=p(l—a m,r,n—Ak)
(cf. Table 2.1).

Table 2.1
l —a=095
n—hk m r p(l —a.n—k,m, r)

3 10 2 1.605*
3 10 1 1.529
3 14 2 1.335
3 14 1 1.296
3 24 2 1.158
3 24 1 1.142
3 50 2 1068
3 50 1 1.061

*) The “asymptotical™ ellipsoid is included mnto the ellipsoid from Lemma1.1.

If the number of replications is sufficiently large, the asymptotical procedure
can be used for determining an approximate confidence region within the
models with a given structure of the covariance matrix; this is shown in
Table 2.1.

Theorem 2.2. Let the assumption of Lemma 1.1 be satisfied and the covariance
matrix X be diagonal (in this case the notation A instead of X is used). If

D = Diag(S),
B =(X'D'X)"'X'D'Y,
V=, ..0)=Y—Xj
I,=GX'D 'X)"' +2(X'D~'X) 'X’'D 'Diag(vi,...,v})-
D 'X(X'D'X)""]G",
then
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Jml;'? (G- Gp) > N(OD
and
m(@Gf— GpyT; (GB—Gp) — x.

Proof. If d = (D,,, Dy, ..., D,,)’, 6 = (0}, Oz, ..., G,,), then

sl ok le ]l
— N ; .
\/E[ d-s1~ ""llol Lo, 24
If g(f) = GB, pe #* and g,(Y,d) = GX'D'X)"'X'D"'¥V = GJ, then ob-
viously

D 0 _
’ ’ s a ; a Y,, d/ ’ —
paacr.an| O 2 Jogioe .

= G[(0B/0V') Do /oY + 2(0B/od’) D*df /od] G,
where
oY = (X’'D'X)"'X’'D"", 3B/oD, = —(X'D~'X)"'X'D~'e{D"'V},
i=1,...,n.
Thus
@BoY)DOB /0¥ = (X'D'X)"!
and
©pB/od’)2D*df /od = 2(X’D~'X)~' X’'D "' Diag (62, ..., 52) D~'X(X'D~'X)"".

The rest of the proof follows from Lemmas 1.2 and 1.3.

Theorem 2.3. Let the assumptions of Lemma 1.1 be satisfied, let the covariance
4

matrix X be of the structure T = Y 9V, and fulfil the assumptions of Lemma 1.4.
9k = Sg,il [TrZ,'V,E.'S),...,Tr (X, 'V, 'S),
£,- 3 4@V, 2= % 8V,
B=XEX)'XE*'Y, v= V- X,
[ = GIX'E*'X)~" + (X E*'X)7 ' X E*(V, E* 1y, .., V,E* ).
2Sg NV E* g, L VEFT Ty EXIX(XE*IX) ] G,
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then

JmiTR(GR - G — N(OD)

and

mGf— GPT: (G- GB) — 1.
Proof. It is an analogy of the proofs of the previous theorems; it is suf-
ficient to take into account the following relations:
0oV = (XEx X)X E*,
OPodr = —(X'ExIX) ' X EX'VEY, i=1,...p,
and (b) of Lemma 1.4,

Remark 22. If V.= ee], i=1,....p, then T, (Theorem2.3) = I, (Theo-
rem 2.2).
Example 2.1 (a comparison of the results from Theorems 2.1 and 2.2).
Let
X=[ljl, E=[1’ 0], f=8and m=11.
1 0, 2
Let

SRR Y
a) We know nothing of the matrix X (Theorem 2.1). Then
B=(X'S™'X)"'X'S~'¥=8.10,
v= Y- X3=(0.2, —0.6),
JA + vS'v)(X'S 'X) /(m — 1) = 1.08/4/10 = 0.345.
b) We know that the matrix X is diagonal (Theorem 2.2). Then
B=(X'D'X)"'X'D"'¥=8.03,
v= Y- XB=(0.27, —0.53),
JIX'D'X)"" + 2(X’D~'X)"'X’'D ' Diag (v, v}) D 'X(X'D~'X) " )/(im — 1) =
= 0.90/+/10 = 0.285.
The estimates of the accuracy characteristics of ﬁdiﬂ'er, which shows clearly
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that the a priori information on the structure of the covariance matrix gives a
non-negligible effect and therefore it ought to be taken into account.

REFERENCES

M ANDEL, J.: Matematicka statistika. SNTL/ALFA, Praha 1978.

[21 KUBACEK, L.: Regression model with estimated covariance matrix. Math. Slovaca 33, 1983,
395—408.

[3] KUBACEK, L.: Repeated regression experiment and estimation of variance components. Math.
Slovaca 34, 1984, 103—114.

[4] RAO, C. R.: Least Squares Theory Using an Estimated Dispersion Matrix and Its Application
to Measurements of Signals. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Vol. I.: Theory of Statistics, 1967, 355—372. University of California
Press, Berkeley and Los Angeles 1967.

[S] RAO, C. R.: Linear Statistical Inference and Its Application. J. Wiley, N. York 1965.

Received August 6, 1986

Matematicky ustav SAV
Obrancov mieru 49
814 73 Bratislava

ACUMITTOTUYECKME JIOBEPUTEJIbHBIE OBJIACTU B ITOBTOPEHHOM
CMENAHHOM JTUHENHON MOJEJU C OLIEHUBAEMO¥
KOBAPUALIMOHHOM MATPULIEMN

Lubomir Kubacek
Pe3omMme

B perpeccuonnoit mogenn Y ~ N, (Xp, X) npeanoyiaraercs, YTO KOBapHallAOHHAas MaTpHLa

HEM3BECTHA, HJIM H3BECTHA TOJIBKO YaCTHYHO (HAaNMpHMeEp, OHAa AMaroHasbHa, WiId X = i 3V, rae
i=1

9, ..., 9, — Heu3BeCTHbIE KOBapHALMOHHbIE KOMMOHEHTHI). Ha OCHOBE MOBTOPEHHBIX peann3auuit

Clly¥aiHOro BeKTOpa Y HalileHbl rPAaHHIBI JOBEPUTENILHON 061aCTH 15 BeKTOP-PyHKUMK HensBec-

THOTO mapametpa f.
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