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ASYMPTOTIC BEHAVIOUR OF ALL SOLUTIONS
OF DIFFERENTIAL SYSTEMS WITH
DEVIATING ARGUMENTS

BOZENA MIHALIKOVA

This paper deals with systems of differential equations with deviating argu-
ments of the form

L) xi() =a)x;1(t), i=1,..,n=2,n>2
(A) (Pn-1(O) X, 1 (D) = a, (1) g(x,(7,(1)))
(1) x, (1)) =f(t, %, (0 (D)), t>a,

where the following conditions are always assumed:

(a) 0 < p(t)eCla; ), J _cis_< 00, i=1,..,n;

pi(s)
(b) 0 < a,(t)eCla; ), J a(s)ds< oo, i=1,..,n—1 and

a;(t) are not identically zero on any subinterval of [a; x);

(c) gu)e C(—o0; ), |g(u)| < Klu|? for 0 < B< 1, 0 < K-const,

(d) f(t,v)eC([a; ) x (—o0; ©)) and |f(¢, v)] < w(t,|v]) for (¢t,v)e[a; o) x
X (—o0; ), where w(t,z)eC([a; ) x [0; o)) and w(t,z), w(t,z)/z are
nondecreasing in z;

(e) 1(t)eCla; ©), lim 7(t) = o0, i=1,nand 7,(¢) < tfort>a.

The term “‘solution x(z) = (x,(2), ..., x,(¢)) of (A)” will be understood in the
sequel to refer to a solution of (A) which exists on an interval [T,,; o) < [a; o)
and satisfies the condition

sup{z |x(2)]: ¢ = T} >0 forevery T>T.
i=1

Such a solution is said to be oscillatory, resp. weakly oscillatory, if each
component (resp. at least one component) has arbitrarily large zeros.

Some asymptotic behaviours of solutions of two-dimensional differential
systems with deviating argument are studied in the papers by Kitamura and
Kusano [1—3]. Our purpose in this work is to give an analogue of the theorem
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of [1], which enables us to classify all the solutions of (A) according to the
asymptotic behaviour.
Leti={1,2,...,2n—1}, 1 <k <2n—1 and ¢, se[a; o). We define

Jo(t,8) = Ly(t,5) = 1

I,,(t,S; yik! vy J’i,) yik(x)lk—l(xa S; J’i,,_l, (ERE} yil) dx!

J‘I
t
Ji(t, s; Yips ++os yi,) = j yil(x)Jk—l(t9 X5 Yigs +ee yiz) dx.
We introduce the notation for ¢ > a:
m(1) = ag(t) = y(1) = 1

. 1 1
”21j+1(t) = J2j+1<00a L= Qitj 15 -oes Gy ")

Pivj . Pi
i 1 1 . . .
”2j+2(t)=']2j+2 00, t;ai+j9—a"',ais— ,0<]<n—1—1,1<l<n—1;
Pi+j pPi
1
Ty _z0i(0) = ( f 0y (G, == @) 1< i <= L
pn—l Pi
" 1
”l(t)zjl OO t
,. 1 1 . .
a2j+l(t)=‘]2j+l ©, t; a;_ _/’ T ey T G ’l<l<n_1’0<1<l_15
Pi- Jj+1 Pi
. 1
a2'j+2(t)=‘,2j+2(w’ L,—,a_ p""_,ai>,lgisn_zsogjgi_l,
pi
1 .
Q2j+l(t)=‘]2j+l > by n—j!""an—l’— ,0<]<n——1,
Pn
1 1 .
sz+2(t)=‘,2j+2 OO, t; a,,_j_l,———, ceey a”_],'—‘ ,0<]<n‘_2.
pn—j pn

Lemma 1. Let (a), (b) be valid. Then

D limmg()=0,1<i<n1<k<2n-2i+1,
limaj()=0,1<i<n—-1,1<k<2i—-1;
t—
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) lim B0 0 k> kj=1,.,2m—2i+1,1<i<n
t-— oo ”;(t)

Proof. From (a), (b) we see that lim zi(f) = lim &f(£) =0, 1 <i<n,
t— 00 t—

1 <j<n—1. Let for some ke{l, ..., 2(n— i)}, 1 <i<n—1 limz()=0
{— o0

hold. If k is even, i.e. kK = 2m, then
”I£~+—1(t) = J2m+l(ooat;—_l_’ai+m—]’ ...,a,-,—1'> < 7[1‘+m(t)7f£m(t)“"0 fO[' t— 0.
pi+m pi
If kis odd, i.e. Kk = 2m + 1, then
()= J2m+2<oo, L@y s «ees l) < ai*"(t) mj,, , 1(t) > 0 for t - o0.

Pi+m Di

Analogously it can be shown that /() has the property 1). Using the I’'Hospital
theorem and the properties 1) we prove the case 2).
Corollary 1. For t, > a there exist constants A;, B, such that

o) < A0 _ (), () < Bumi_ (), 1<i<n1<j<2n—2,1<k<2n-2i+1.

Lemma 2. Let x(t) = (x,(?), ..., x,(t)) be a solution of (A) on the interval [a; ).
Then the following relations hold for t = T 2 a:

k—i—1 )

1 1

FOEED) Ix,-+,(T)IIz,-(t, rla L a4, .. a..+,-_,)+
j=0 D; Dis

k—i—1 , 1 1
+ Z |Pi+j(T)xi+j(n|12j+l(t’ T, —,a, ..., Qivj—1s """)+
j=0 i i+j (1)

1 1 1
+12(k—1)<ta Ta T By Ty ey T, ak-—llxk|),
pi Piti Pr -1
1<i<sn—-2,i+1<k<sn—1;

n—i—1 1

1
MOEE) lx,-+,-(T)I12,(t, T;—,a,-,—,...,a.-+,-_.)+

j=0 Pi Diti

n—i—1 , 1 1
+ Y |p.-+,mx,-+,m|12,-+.(t, L, .., —)+
j=0 Di Pi+j

1 1
+MﬁK12n——2i(t9 T;_, Ajy -+ ’an—l>+ (2)
bi Pn—
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t

+ VK|

T

1 1
o(s. [ (T (s Jon (r sl aa, —) ds,

i pn
1<i<n—1, M=ix(D)|+ |p(T)x(D\ 7(T), N = pMP~".
Proof. Let us integrate the first (n — 2) equations of (A) from T > a to
t = T we get

(O] < (T + (D) (D (t, T; 1{) +

(3)
t u
+| -—l—j a(®) b @l dsdu, 1<i<n—2,
r pu) Jr
which are the inequalities (1) (with 1 < i< n — 2,k =i + 1). By substituting for
|x; + 1(2)] in (3) successively we have the mequahtles (1.
From the (n — 1)st and nth equations of (A) we have for 1> T > a
, 1
1 0) < o (D + o) x5 (D (1 T )+
n—1
C @
K| [ o ds an
T Pn- I(u T
Ix.(2) < Ixn(T )N+ IPn(T) x (D) 7 (T) +
(5)
w(u, 1x(7,())]) du ds
T p,.(s
and using the Taylor theorem
X (7N < MP+ N f @ (u, |x, (1)) du ds,
T p,(s) Jr
for t > T, > T such that 7,(¢) > T for ¢t > T, and from (4)
, 1
Ix"-l(t)|<|x,,-,(7:)|+|p,._.(T,)xn_,(m|11(t,n; )+
n—1
1 1
+ KM (1 T =g )+ KN T, Lo ).
Pn-1 Pn-1 Pn

When we substitute the last inequality for |x,_,(¢)| in (1) (with k =n — 1,
T = T,), at the end we get (2).

The main result of this paper is the following theorem, which describes
possible behaviours of all solutions of (A).
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Theorem 1. Let (a)—(e) be satisfied and
J a(t, cm _ (1,(1) @on— 1 (1) dt <‘ o fork=1,..2n—-1 (6)

and for all ¢ > 0. If (x,(¢), ..., x,(¢)) is a solution of (A), then exactly one of the
following cases holds:
(I) limsup|x,(¢)] =00, i=1, ..., n;

t— ©

(II) there exist an integer k, 0 < k& < 2n — 3 and a nonzero number b, such that

m —i&)———= b, limx(t)af_} _,(1)=0, 1<i< [1—{] +1<j<n
=0 M iy (1) e 2

(IIT) there exists a nonzero number b,, _, such that

. . (t
fim x,() = by_p lim —D oy ), 1<i<n—I;
t— 00 t— 0 7[2"1_2',[

(IV) there exists a nonzero number b,, _, such that

IOl

.oXx,(t . ,
lim —"(—)—=b2,,_1, limsup ————~—< o0, I<ig<n-—1
i A0 tvw My gi(2)

(V) lim _x,_(_t)___
f=o ﬂén—2i+l(t)

Proof. Let (x,(¢), ..., x,(¢)) be a solution of (A) defined on [£y; o) and
let #, >t such that min(7(¢), 7,(1))>1t for t>1t. We shall show, if

=0, 1<i<n.

lim sup |x,(¢)] = oo, then limsup |x;(¢)] = oo for i = 2, ..., n. Suppose the con-

t—+ © t—=

trary. Then there exists an integer j, 2 <j < n such that lim sup |x,(¢)| < oo,

t— o0
which means there exist a T > ¢, and a positive constatnt L such that |x;(#)] < L
for t > T (if j = n, let a T be such that |x,(z,(¢))] < L for ¢t > T too). From (1)
with i=1, k=j (resp. (2) with j=n) by Lemmal we get that
lim sup |x,(¢)] < oo, which contradicts the assumption.

{— 00

Now, let limsup|x,(¢)| < oo, then there exist a positive constant ¢ and a

T = t, such that |x,(?)| < c, |x,(7;(1))| < c for t > T. First we assume that (6) for
k =1 holds. Using Lemma 1, (2) (for i = 2) we can easily show that

Jm ! ral(s)xz(s) ds duj < 0
r pi(w) Jr
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and from the first equation of (A) we get for ¢t > T

x1(t) = by — pu(T) xi(T) 7 (1) — f i j "a@x dsdu, ()

¢ p(w) Jr
where

o0

by = x(T) + pi(T) x{(T) m(T) +

a,(s) x,(s) ds du.
T p(u) Jr

So, we have lim x,(¢) = b, and by (2) and corollary 1

n—i—1
1
a5 x ()] < a3 2(t)|: Z |x|'+j(T)| Izj<°0a T, ;, Ay -eoy ai+j—l) +
j i

=0

n—i—1

, 1
Y b (D) D Ly (oo, T a

j=0

1

)+ MPKaj = (T) +
pr

n t

(5, €) 02— 2i +1(5) ds] + NKA,, _, J (s, C) 0z, — 5(5) ds

h

+NKJ

T

t=T,>T,i=2,...,n— 1. The right-hand side of this inequality can be made
arbitrarily small by taking 7, sufficiently large and then letting ¢ without bound.

Thus 11m a () x(t)=0,i=2,...,n— 1. Analogously we get from (5)

&0 0] < ™ z(t)[M+ f ! f " o(u, ¢) du ds]+
T pa(s) Jr

T

+A2n—-lj o(u,c) 0y, _,(u) du, t=T,

T

which implies lim az,, L(®) x,(t) = 0. Hence Case (II) for k = 0, b, # 0 occurs.

Now, let b, = 0. We shall show that if for any integer k, 0 < k < 2n — 4,
b, = 0 and (6) (with £ + 1) hold, then the components of the solution of (A) are
subject to Case (II) with k£ + 1.

Let us consider the following two cases:
a) Let k be even, i.e. kK = 2m. The components of the solution of (A) have these

properties for t > T

x,.(t)=r-1—- " ) x,, ) dudu, i=1,2, .., m, ®)
o pis) Js
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1
Pm+ I(s)

Koo r(0) = —pm+.mx;,+.(r)n,"'+‘(z)—jw f s 110 %+ o) dueds

©)
x(0) = 5D + pTx1) [ j f 4%, @) duds  (10)
T p,(S) T p,(S)

j=m+2,.
" ds
Tpn-—l(s)

4 j ! f (g0 (5w)) du ds
Tpn l(s)

Xp_1(8) = X _((T) + py (1) x,_ (T

(I

x(t) = x(T) + po(T) x(T) | - J
rp,(s) Jr

(8), (9) give using (2) (with i =m + 2)

f Flx,(5) du ds. (12)
) XE))

()] < Ty 1 (0) [lpm+1(ﬂx,’n+1(T)I + j Gy 1) 1 205) ds] <
. T

n—m-—2

, 1 1
<”21m+|(t)|: Z |Pm+i+1(T)xm+i+1(T)|Izi(00; T;a,.,, s eees >+

i=0 Pm+2 Pmiivi

n—m-—3

+ Y oD + KMPa5 Y, (T) +

i=0

+ KNF (s, 151 (5] € 2 o(5) ds], (> T.

By Lemma 1 there exists a positive constant 4 such that
|, (9)]

Ty +1(2)

We shall show that x,(f) = O(n;,, , (1)) as t = 0. Since x,(¢) = o(m,,,(t)) as t - ©

and m,,, . (t) = o(m,,(t)) as t - oo by Lemma 1 we can choose a 7; > T such that

T, = inf (min(z,(5),5)) = T, 1x(5(O) < Tu(71()s T(71(8) = Moy 1 (1i(1)) for

s>T,

t > T, and

<4+ KNjw (s, X/ (T () o —2m—o(s) ds, 12> T. (13)

L 05, TolT1(5))) or— am—2(5) ds < 4—;—5,
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Let us define

uz,,,(t) — Sup I ](s)l

t>T, (14)
s>t ﬂ,m(s) 0

When we use (14) and the monotony of function (¢, z)/z, we obtain from (13)

7,,(1)

ﬂ2m+l

1
(1) < A + KN f (s, 1% (51 ()] O - o —2s) ds +
T

] (15)
+ KN j 05, T (51(5))) ton(71(5)) @ o(8) dis.

For each ¢t > T, let I,, J, denote the sets
t,=A{se[l}; o), 1(s) < t},  J, ={se[l}; o), 1y(s) > t}.

Since u,,,(7,(s)) < w,,,(t) for seJ;

T, (71(5)) 5, (7, (5)) s 15, (V) 1, () for sel,
T 1 1(T1(5)) TOS"S’ ”2m+|(v)

the right-hand side of (15) is bounded from above by

Ar 4 kN sup B [y g B OO g4
Tosv<t My, (V) Jnami< Tom(71(5))

+ KNuy (1) f (s, T (1) @ o 2(5) ds <

J (T %)

1 R x
<A* + KN sup @) 7 0 (D)) 0o (o) ds +

h<est My, (V) Jn

+ KN —————”21'"([) tan(8) [* (S, T3u(T1(5))) Qo0 - 20— 2(5) ds <

”2]m+](t) T

1 1
car il qp T0a0) | 1 Ou0)

dn<e<t my, ., 4(0) 4 Ty (1)

WV

1s

T

where A* = A + KN f (s, |%,(7,())]) Oan — 2m — -(5) ds. From this last inequality
T

we get

é ”Zlm(t) u2m(t) < g +l su ”ZIm(U) u2m(v)

| 1 t>T, A>0, const.
L A ()] dri<est My, ()
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and hence

t ! -
lel( )l s u ”ZMSU) uZm(v) < 2A, > T;
. Tomi1(t)  Ti<vst m, (V)
So x,(t) = O(m+1(2)) as t > o0 and (6) (with k = 2m + 1) yields that the
function @(t, 7oy + 1(7,(1))) 0, _ 2m _ 2(¢) is integrable at co. Taking into account

(2) (for i = m + 2) we get by Lemma 1 that a,,, ,(¢) x,, , ,(¢) € L,[T; o) and the
(m + 1) st equation of (A) implies

pm+l(t)xr,n+l(t) = —b2m+l —J am+1(s)xm+2(s) dsa t? T

where
[ o}

by, =pm+,(T)x:n+,(T)+j G+ 1(5) Xor 1 () ds.

T

We transform (9)
Xm + l(t) = —Pm+ I(T)xrln+ I(T) ”lm+ l(t) -

_Jw 1 [J“’a,,,u(u)xmu(u)du_-[wam“(u)xm“(u)dujlds=(16)
4 pm+l(s) T . B

oo}

= b2m+lﬂlm+l(t) +j f a,,,+,(u)x,,,+2(u) du dS, t=>T.

! pm+ l(s)
. X t . .. . .
So we have lim —’"—% = b,,, .. Taking this into consideration we have from
t— 7[1'" t
. x,(1) . . . .
®) im —————=b,,,,,i=1,...,m. As in the previous case we can easily

fmo ”2im—2i+3(t)
show using (2) (for i = m + 2, ..., n — 1) and (5) that lim x,(t) &', _;(t) = 0,
i=m+2, ..., n. Hence case (II) can occur for k + 1.
b) Now, let k be odd, i.e. k=2m + 1 and b, = 0. The components of the

solution of (A) satisfy (8), (10), (11), (12) and from (16) we have for the
(m + 1) st component

xm+,(t)=f°° ! fwam“(u)xm(u)duds, (>T. (7
’pm+l(s)-"

By transforming (8), (10) (for j = m + 2), (17) and (2) (for i = m + 3) we get

n—-m-3

|x,(z)|<n;m+z<r)[ S s ie (D) (T +

i=0

79



n—m-—3 , 1 l
Y |pm+,-+2(T)xm+.~+z(T)|Iz,-+.(oo, T )+
i=0

i Pm +2 pm +241i
+KMPa Y, (T) + KNJ (s, (T @2 5(8) ds]
T

from which by Lemma 1
1x, ()]
Ty 4+ 2(2)

t > T, A, is a suitable positive constant. We shall show that x,(r) = O(m),, , ,(¢))
as t — oo if (6) (with k = 2m + 2) holds. We know that x,(t) = o(n;, . ,(2)),
Ty 4 2(t) = 0(75,, 4 1(2)) as t > co. Defining

< /‘Tz + KNjw (s, |x,(ty(5)]) On — 2m - 3(5) ds, (18)

i 1 1(0).= sup 1O

" , t=21;
$21t My 4 1(5)

and applying the same type of arguments that we used to prove the case a) we
conclude from the last inequality (18) that x,(z) = O(m,,, . ,(t)) as t —» c0. Owing
to (6), the nondecreasing of the function w(z,z), Lemma 1 and (2) (with
i = m + 3) the integrals

Jw(t, Tom + 2(T1(1))) Oon — 2 —3(8) dt, J 1 Jamn(u)xmn(u)duds

T T pm+2(s) T

are convergent. Therefore we get from the (rn + 2)nd equation of (A)

X4 2(8) = bop s 23— Py AT x00  oAT) 77 H2(2) —

—f ! j @y, ,(Wx,, wduds, t=>T
t Pmy Z(S) T
where

b2m+ 2= xm+2(T) +pm+2(T) x:n+2(T) ”lm+Z(T) +

x 1 s
+ J. f Ay 4 (U)X, 4 5() du ds,
T pm + Z(S) T

and hence lim x,, , ,(¢) = b,,,, , and (8), (17) yield

lim —5D i m+ L
1 Mo —2i 4 a(0)

As described above we can show using (2) (fori =m + 3, ..., n — 1) and (5) that
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lim x,(£) &}~ _4() = 0, i = m + 3, ..., n. So the solution of (A) is subject to
t— 0

Case (II) fork=2m+2,0< k <2n-—2.

Now we shall show that Case (I1I) can occur. Let b,, _; = 0 and the assump-
tion (6) hold. The components of a solution of (A) satisfying (8) (fori=1, ...,
n—2), (12) and

pn—l(s) §

Using these properties we get

Xy (1) = jw ! jwan_.(u)g(x"(r,,(u)»duds, t>T. (19

0L < gt & [ 06, (@@ ds. 13T
Ty, —1(2) T

Repeating the procedure used in the previous cases, defining the function

B)
Uy, —5(t) = sup ————— l 19]
szt ”2!1 S(S)

we obtain that x,(¢) = 0(n, _,(¢)) as t — co. Therefore

J f S, (5,(w) du ds| <
T Pa(s)

c is a suitable positive constant. From the nth equation of (A) we have

t= 1T,

j " (s, ey _5(1(9) @1(s) ds < 0

T

oo}

(1) = by 3 — po(T) x(T) (1) — f L) f fx(n@) duds,  (20)

t Pn

t > T, where

by 2 = %,(T) + p(T) x,(T) m(T) + (r,(4))) du ds

and therefore lim x,(t) = b,,_,. Owing to a continuity of the functions g and
11— 0

7, lim g(x,(z,(2))) = g(b,,_,) and (19) yields lim Xn _'((?) g(b,, _,). Further
x(1) C
from (8) we have lim ——~— = g(b,,_,), i=1, — 1, which is Case (III)

P WY (;
for b,,_, # 0.
If b,, _» = 0 and (6) (with k = 2n — 1) hold, we shall show that case (IV) can
occur. From (20) with b,, , = 0 we have
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(0] < 727(0) [!pn(T) X(T)| + f " o, 1 (5 ) du], (> T
and hence

(O < (nr(rn(t))ﬂ[nmm X(TP +

ao (21)
+ Blp(T) x (TP ! f o(u, |x, (7, (w))]) du]
T
fort = T, = T such that 7,(¢) = Tfort > T,. Combining (8),fori=1,...,n — 2
(19), (21) we obtain :

! ' , N
P9OL | (@) xi @ + Blp (T xi(T) J o, I (r@)) du, 1> T,.
Ty 1 (2) T
By taking into account (6) (wjth k = 2n — 1), defining a function

(1) = sup 2L

t=1,
521 13, _o(5)

and using the method described earlier we show that x,(¢) = 0(n;, _,(?)) as
t — oo and therefore f(¢, x,(7,(?))) € L,[T;; o0). The nth equation of (A) implies

PO xX0) = —by s — rﬂs,x.(r.(s»» ds, 1>T,

X

where —b,, _, = p,(T)) x,(T}) + j S (s, x,(71(5))) ds. From (20) with b,, _, =0,
T

T =T, we get
x,() = —p 1) x,(T)) 7 (1) —

- f o [ f " P, x5y () du — f ) du] ds =
t pu(s) L s

~ b0+ | [ @) dds, >
1 Pa(8) Js
which yields lliqrr: Z—""((I;—)) = b,,_,. It means that x,(¢) = 0(n](¢)) as ¢t - o0 and
-4
from (19) we obtain %—;—' < K-¢, cis a suitable positive constant, t > T5, T,
3
is sufficiently large, i.e. limsup I)C—":L(-tl< oo. Analogously it can be easily

i~ (1)
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il

Mn—2i41(2)
n — 2. Case (V) of the theorem occurs for b,,_, = 0. Thus the proof of Theo-
rem 1 is complete.

shown by using (8) (for i = 1, ..., n — 2) that lim sup

t— 00

<wi=1,...,

Corollary. Let all assumptions of Theorem 1 be fulfilled and let g(u) =
= |u|? sgnu. then Cases (1), (II), (11), (V) and

v’ lim —D  _p 20 i=1,..n
1= M 2i41(2)
hold. '
The following theorem describes some properties of all oscillatory solutions of
(A) for which the following assumption is needed.
(f) Let there exist a continuous increasing function 7 on [a; o0) such that

n(t) < 7,(2), lim (1) =

We use the notation A(t) = in{ ) {min (7,(s), s)}. We say that the condition (G)
sz n(

is satisfied if there exists a sequence {¢,};"_, such that ¢, > co as n —» oo and
h(t)=t,forn=1,2, ...

Theorem 2. Assume that f = 1 and (a)—(f), (G) are satisfied. If (6) for k = 1,
., 2n — 1 hold, then every oscillatory solution (x,(t), ..., x,(t)) of (A) has the
property of Case (I).

Proof. Let (x,(t), ..., x,(t)) be an oscillatory solution of (A) on [t,; 00).
Choose a T = t, so that min(7,(¢), n(¢)) = t, as ¢t > T. Since the solution is
oscillatory by hypothesis, the Cases (II)—(IV) can never occur, so it must satisfy
either Case (I) or Case (V). Suppose that Case (V) is true. Hence
x (1) = o(nz‘,,_](t)) as t—o0. We can choose a 7,>T such that
lx,(t; ()] < emy, _(1;(1)), t=T,, ¢ — is a suitable constant. Then f(t,
x,(7,(t))) e L,[T;; 0) by (6) (with k =2n — 1) and the nth equation of (A)
implies

pa(t) x,(1) = p,(T}) x,(T}) + f S(s,x:(7i(s)) ds — f fs,x(n(9))) ds.  (22)
T !
Since x,(¢) is oscillatory by hypothesis, we must have

(T x(T}) + j (5, x:(5(s)) ds = 0.

Tl
Further

j f Fu x5, (w))) du ds| <
T, Pa(s)

(T)j (s, cmy, _1(1i(5))) ds
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and taking this into account we get by (22)

x(t) = x(T;) — f f St x,(r())) du ds +

Pa(s)
(23)
+ j f f(u, x,(7,(1))) du ds, t>T,.
t Pal)
Since x,(¢) is oscillatory we get again
x(T) —f j £, 5,05 @) e ds =
T Pa() Js
Using this fact for transforming (23) we obtain
[ 9} d [+ 9 }
mOl< [ [Coem@on & >, 4)
U pn(s)\ !

which implies by (6) (with k = 2n — 1) that x,(¢) = o(#](¢)) as t — oo and so the
integrals

f " 4 () g Cm(s) ds, f .

L

fm 4 1(0) g(x,(5,(w) du ds
pn - |(S) s

are convergent. The functions x, _,(¢), x,_,(¢) are oscillatory and analogously
as above we get from the (n — 1)st’ equation of (A)

lxn-.(z)lst - f " a4y Ix ()] du ds. 25)
! pn—l(s) s

Similarly as above, since x(t) = o(m;, _,,,(t)) as t > 00, i=2, ..., n— 1 the

integrals
j% a; _,(s) x,(s) ds, JWJ ! Jw a;_(u) x;(u) du ds
Pi—1(8) Js

are convergent. By hypothesis x;_,(¢), x;_,(¢) are oscillatory. So, the (i — 1)st
equation of (A) implies

K ()] < f ) - ‘(s) J e @)x@)| duds, 13T (26)

a T, is sufficiently large i=2, ..., n— 1. Combining (24), (25), (26) we have
()] < Ky (0 J ol (5N ds, 13> T, @
n(r)

84



al, — sufficiently large. We choose T T3 such that T, < T*< T}
TF= h(TH > T |x,(t)| < m),_(t) for ¢ > T Let us define

v(t) = sup —2 @l t=>T¢
20, 1(5)

Owing to the nondecreasing of the function w(t,z)/z in z we get from (27)

v() < K w(s, T _ (T () v(7,(5)) ds < Kv(h(t))'f w(s, 7 _ (1,(s)) ds
n(t) "
and hence
o _ K fw 1 )
v(h(2)) < o a(s, my, _(7(s)) ds. 28)

This is a contradiction because the right-hand side of (28) tends to zero as t - o0
while the left-hand side equal to 1 along a sequence diverging to infinity by (G).
From that it follows that Case (I) is the only possibility.

Example. Consider the system

13 21

(2x7()) =30t * (xy(1)))?
(t'° 10)1 ————t3(x,(t5))2 t>0

One can easily check that condition (6) with k = 2 is not satisfied and the system
has the solution (x,(¢), x,(2)) = (¢ =%, t¥*) which has the following properties

lim x,() = lim xln) _
mx tioo m ([)

lim @, (£) x,(t) = lim @!(£) x,(t) = 0

x,(¢ .
m L)= 00, lim x,(¢) = o
t—o Ile(t) >
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ACUMIITOTUYECKUE MOBEAEHUE PEIIEHHUI CUCTEM
JU®OEPEHLIMAJIBHBIX YPABHEHUM C OTKJIOHSIOIIMMCS APTYMEHTOM

Bozena Mihalikova
Pe3wome

B cratne TIPUBEACHBI LOCTATOYHBIC YCJIIOBUS, KOTOPBIC MO3BOJIAKOT ONPEACIIUTDH aCUMIITOTHYEC-
KO€ NMOBC/ICHUE BCEX pCIHCHHﬁ CHCTEM

(PO X(O) = a()xi (1) i=1,.,mn>2
(Pa (D)X, 1)) = a,_ (1) g(x,(T, (1)
(PO XD = f(t.xi (7 (1), t>a.
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