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ON THE MAXIMUM AND THE MINIMUM 
OF QUASI-CONTINUOUS FUNCTIONS 

TOMASZ NATKANIEC 

ABSTRACT. Some results concerning the maximum and the minimum of quasi-
continuous functions are presented. 

I . Let us establish some of the terminology to be used. R denotes the real 
line. Let (X , r ) be a topological space. A real function / defined on X is said 
to be quasi-continuous at a point XQ G X iff for every e > 0 and for any 
neighbourhood U G r of the point XQ there exists an open set V such that 
0 7- V C U and | / ( x ) - / ( x 0 ) | < e for each x G V [1]. By C ( / ) and Q(f) 
we will denote the set of all continuity points of a function f and the set of all 
quasi-continuity points of f, respectively. Furthermore, let A(f) = X \ Q(f). 
A real function / : X —• R is quasi-continuous on X iff / is quasi-continuous 
at every point of X . The symbols C, Q stand for the families of all continuous 
and quasi-continuous functions, respectively. 

A family A of real functions / : X —» R is a lattice iff min( / , g) G A and 
max(/,(7) G .4 for f,g € A. If B is a family of real functions, then the symbol 
C(B) stands for the lattice generated by B, i.e. the smallest lattice of functions 
containing B. Evidently, we have C(A) C C(B) if A C B and C(C(A)) = C(A). 

The presented paper contains three theorems. In the first we generalize some 
result of Z. G r a n d e and L. S o l t y s i k from [6]. They proved that if a 
function / : X —> R is not upper (lower) semi-continuous, then there exists a 
quasi-continuous function g: X —• R such that m a x ( / , # ) (min( / ,<; ) ) is not 
quasi-continuous. Now we shall prove that for every non-continuous function 
/ : X —• R there exist two quasi-continuous functions </, h: X —> R for which 
m a x ( / , g) and min( / , h) are not quasi-continuous. In the second part we describe 
the lattice generated by the family of all quasi-continuous functions / : X —> R 
(for some class of topological spaces X). This generalizes one result from [4] (for 
X = R ) . Notice that in the proof in [4] the completeness of R plays the key 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54C30. Secondary 26A15. 
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role . Now this assumption is not necessary. The last proposi t ion characterizes 
max(go, gi) for quasi-continuous functions go5 gi • R —• R . This is a complement 
of results from [3] and [7], where functions which can be expressed as a sum and 
as a product of a finite number of quasi-continuous functions were characterized . 

I I . Let 

Mmm = {/: X -+ R : VG G Q min(/,<?) G Q} 

and Mm*x = { / : X -> R : VgZQ m a x ( / , </) G Q} . 

The equality Mma.x fl A4m in = C is shown in [6]. Now we shall prove tha t 

Mma.x = Mmin = C. 

P R O P O S I T I O N 1. We have the equalities yVfmax = C = Mmm . 

P r o o f . MmdiX C C . Notice tha t MmSiX C Q . Indeed, if / £ Q , then there 
exists a point XQ G A(f). Let us put g: X —> R , ^f(x) = / ( x 0 ) — 1 • Then g £ Q 
and the function max(/ , ( ] ) is not quasi-continuous at XQ . 

Let / G A^max • We shall prove tha t f(xo) = lim / ( x ) = lim f(x) for any 
x-+*o X^XQ 

XQ G X ' (where X' denotes the set of all accumulation points of X). We shall 
consider two cases. 

(a) Suppose tha t f(xo) < c < lim f(x). Then for every neighbourhood U 
X—•Zo 

of XQ there exists an open set VJJ such tha t VJJ C U and f(x) > c for x G VJJ . 
Let Bo be a fray's 0/ (X, r ) at the point XQ . We define the function g: X —• R 
as follows: 

f / ( x 0 ) f o r x G IJ ^ / ? 
g(x) = I ueBo 

[ c otherwise . 

Observe tha t g is a quasi-continuous function and the set {x G X: m a x ( / , g)(x) 
< c} is nowhere-dense . Thus the function m a x ( / , g) is not quasi-continuous at 
the point xo . 

(b) Now we suppose tha t lim f(x) < c < f(xo). Then for every neighbour-
X—>Xo 

hood U G Bo there exists an open set VJJ such tha t VJJ C U and f(x) < c for 
x G VJJ . We put 

c for x G IJ Vrj, 
h(x) = { u^o 

/ ( ^ o ) + 1 otherwise. 

Notice tha t the function h is quasi-continuous, m a x ( / , h)(xo) = f(x0) and 

m a x ( / , h)(x) G {c} U (f(x0) + 1, 00) for a, ^ F r ( IJ Viy) • Hence m a x ( / , / i ) is 
vt/G-30

 y 
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not quasi-continuous at the point x0 . 
The cases (a) and (b) imply the continuity of the function / . 

The inclusion C C -Mmax follows easily from the results of [6] but for the 
sake of completeness we give here the following proof. 

Assume that / G C, g G Q and x0 G X. Fix e > 0 and an open set U with 
x0 G U. We shall consider two cases. 

(a) / ( x 0 ) ^ g(x0). Let d = | / (x 0 ) — g(x0)\. We can choose a neighbourhood 
V of x0 such that V C U and | / (x) — / ( x 0 ) | < min(d/2,£:) and an open 
set W C V such that \g(x) — g(x0)\ < min(d/2,e),. Then | max(/,g)(x) — 
max(/ ,#)(x 0) | < e for x G W. 

(b) / ( x 0 ) = <7(x0). Let V be a neighbourhood of x0 such that V C U and 
| / (x) - / ( x 0 ) | < e/2 for x G V, and let W C V be an open set such that 
\g(x) - g(x0)\ < e/2 for x G W. Then |max(/ ,#)(x) -- max(/ ,^)(x 0 ) | < e for 
xeW. 
Thus yVTm a x=C. 

Since — / G A4max iff / G A4min , we obtain the equality Mm\n = C. 

I I I . The lattices generated by quasi-continuous functions defined on R with 
the Euclidean topology and the density topology are studied in [4], [5]. Now we 
improve these results. 

LEMMA 1. Let (X,T) be a regular, dense-in-itself space with a countable basis 
(notice that such spaces must be metrizable). If A is a nowhere dense subset of 
X, then there exists a sequence (KniTn)n N m<n of open sets such that: 

(1) if KnyTn n Kij ^ 0, then n = i and m = j , 

(2) V x G A V U G r (x G U => Vm 3n>m KnyTncU), 

(3) if x £ A, then there exists U G r such that x G U and the set 

{(n,ra), U fl Kn^m =fi 0} has at most one element. 

R e m a r k s . The condition (2) implies that A C (J Knym for each m G N. 
n > i 7 i 

From (3) it follows that the set A U (J Kn,m is closed. 
n.m 

P r o o f . Let B = (Bn)n be a countable basis of (X,T) and let (TVn)n 
be a sequence of open sets such that A = p | Wn and W\ D W<i D . . . . Such 

nGN 

sequence exists because every closed set in a regular space with a countable basis 
is a Gs set. Let (Gn)n be a sequence of all sets from B such that Gn fl A ^ 0 
for each n G N . For every number n G N we chose (inductively) a non-empty, 
open set Kn such that Kn C Gn fl Wn \ (A U (J if j) . It is possible because 

i<n 
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the set Gn n Wn \ (A U (J I\,) is non-emp ty, open and X i regular . Chosen 
i<n 

in this way the sets Kn have the following proper t ies: 

(i) If n n A = 0 for n G N and # n n # m = 0 for n ^ m , 

(ii) for every x E . 4 and for every neighbourhood U of x the set 

{n : I\n C U} is infinite, 

(iii) if x £ A, then there exists a neighbourhood U of x for which the set 

{n: I\n n U ^ 0} has at mos t one elemen t . 

Eviden t ly, (i) and (ii) hold . We shall verify (iii). Let x £ A . There exists n 0 G N 

and a neighbourhood V of x such that V n Wno = 0 . Thus if V n ~Kn ?- 0 , 

then n < n 0 . If x G I\ m for some m < n 0 , then U = V \ \J Kn . If x £ Kn 
n<n0 
n^m 

for every n < n0 ^ then U = V \ [J I\n . Fix n G N . 
n<n0 

We choose (inductively) a sequence ( I \ n . m ) < of nonempty, open subsets 

of X such tha t 

(iv) Kn?m C Ivn for m G N and I\ n , m n I\ n,t = 0 for m ^ t. 

T h e cons truc t ion of ( I v n r n ) is the following. Fix a poin t x0 G A"n . Let 

(L)n) be a basis of (X, r ) at x0 . We choose a sequence ( x m , Um, Ivn,m) G 

I\n x r x T (m < n) such that 

(v) xx G I\n\{x0}, x0 G Ui C Ui C I \ n n D i \ { x i } , xi G I\n,i C tf„,i C 

(vi ) X m + 1 G ^ m \ { ^ o } , ^0 G Um+1 C Um-fl C Um H F>m + 1 \ { l m + l } J 

^m-f l G IVn,m+l C I.Tn.m+l C Um \ t Im+1 • 

Chosen in this way the sequence ( I \ n . m ) < f N has the desired proper t ies . 

L E M M A 2 . The family Af of all functions f: X —> R /OT which the set A(f) = 
X \ Q(f) is nowhere dense forms a lattice. 

P r o o f . (For X = R see [4].) Let f,g G M and h = max(f,g). It is 

enough to prove that the set C = A(h) \ A(f) U A(g) is nowhere dense. Let 

U be an open set such that U C\ A(f) U A(g) = 0 and x0 G U C\ C . T h e n 

there exists e > 0 and a neighbourhood Ui of x0 such that for every open 

set 0 ^ V C Ui there exists a poin t x G V such that \h(x) — h(x^)\ > c. 

Assume that h(x0) — f(x0) > g(x0). Let 0 ^ V C Ui be an open set such 

that \f(x) — f(x0)\ < - for each x G V and let xx G V be a p int for which 

| l i (x i ) — / ( x 0 ) | > e. Then h(x\) — g(x\) > / ( x : ) and there exi t an op n set 
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M ^ C V such that \g(x) - g(xx)\ < | for x G W. Thus g(x) > f(x) for 

x G W and h \^y = g | jy is quasi-continuous at each point x G W. 

PROPOSITION 2. Let X0 be a set of all isolated points of X . If the subspace 
Xf = X \X0 satisfies the assumptions of Lemma 1, then C(Q) = Af. 

P r o o f . Of course, Q C Af and by Lemma 2 we have C(Q) C Af. We 
shall prove that Af C C(Q). Let / G Af, A = A(f) and let (Kn)m)m<n be a 

sequence of open sets which satisfies the conditions (l)-(4) from Lemma 1. Let 
(wn)n be a sequence of all rationals. We define functions y,- (i = 0,1,2,3) as 
follows: 

( f(x) for x G l u l o , 

?.(*) = < Wm for X G |J ifn,4m-H, m ^ 
nGN 

/ (x ) otherwise. 

Then gi, i = 1,2,3,0 are quasi-continuous. It is enough to verify that gi is 
quasi-continuous at every point x0 G A. Fix i = 0, x0 G -4, a neighbourhood U 
of Xo and e > 0. There exists m G N such that tDm G (/(zo) —£,/(zo) + £) and 
there exists n G N such that 4m < n and if-i^m C U. Then |^o(^)—go(#o)| < £ 
for x G KnAm • Thus go is quasi-continuous. Similarly we verify quasi-continuity 
of gi for i = 1,2,3. Since / = min(max(y0,.gi), max(y2,g3)), / G C(Q). 

R e m a r k 1. Observe that we have also / = max(/ii, / i2) , where /ii = 
min(max(</o,gi), gi) a n c - ^2 — niin(max(yo,g2), gi) but there exists a function 
/ G Af such that / ^ max(<7,/i) and / ^ min(y,/i) for each g,h G Q (e.g. 
/ (x ) = x for x G { — 1,1} and / (x) = 0 otherwise). 

I V . 

LEMMA 3 . Let (X,T) satisfy all assumptions of Proposition 2 . If g0,g\: 
X —• R are quasi-continuous and f = max(go,gi) , then the set A(f) of all 
points at which f is not quasi-continuous is nowhere dense and lim f(x) > 

f(x0) for each x0 G A(f). 

r 0 
* € Q ( / ) 

R e m a r k . Notice that if (X, r ) is the real line with the Euclidean topology, 
then Em f(x) = Em f(x) [4]. 

x€Q(/) xecu) 

P r o o f . By Proposition 2 the set A(f) is nowhere dense. Let us suppose 
that xo G -4(/), f(x0) = g0(x0) and lim f(x) < f(x0). Then there exist 
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a neighbourhood U of xo and a constant c £ R such that f(x0) > f(x0) — 
c > lim f(x) and therefore f(x0) — f(x) > c for each x £ U fl Q(f) • Since 

- € 9 ( / ) 

f(x) *> go(^) ? we obtain g0(x0)
 _ 9o(x) > c for each x £ U D Q(f). Since the 

set Q(f) is dense in U, #0 is not quasi-continuous. 

PROPOSITION 3 . For every function / : R —> R the following conditions are 
equivalent: 

(1) / = max(<7o,gi) for some functions g0,g\ £ Q, 

(2) the set A(f) is nowhere dense and lim f(x) > f(x0) for each 

xo € A(f). 

x0 
*€<?(/) 

P r o o f . The implication (1) ==> (2) follows from Lemma 3. 

(2) = > ( l ) :Le t (In) be the sequence of all components of the set R \ A ( / ) , 

In = (a n ,6 n ) and mn = mini s u p / , n) for each n £ N. For every n £ N 
\ r n / 

J n 

we choose 3 sequences of pairwise disjoint, closed subintervals Jn,t,m C In (i = 
0,1,2) with the following properties: 

(i) the end-points of Jn,,,m are continuity points of / , 

0 0 U Jn,i,k \ U Jn,i,k = {an , bn} , 
i,k i,k 

(iii) if i = 0 and k = 1,2,. . . , n, then / (x ) > ran for x £ | j Jn o,fc , 
it 

(iv) Jn,i,Jt \ cin and Jn,2,]t / bn (The symbol Jn,i,jt \ an means 
k—>oo k — 00 k — 00 

x < y if x £ Jn,i,jt, y £ Jn,i,< and k > t , 

and {a n} = U jn.i f* \ U j n, i ,* ), 
it A: 

(v) if i £ {1, 2} and k = 1, 2 , . . . , then osc / < — , 
Jn,i k k 

(iv) if lim f(x) > f(an) , then inf / > f(an) - - and 
ar — a j In,l,Jfe K 

x£C(f) 

if hrrT / (x ) > f(bn) then inf / > f(bn) - - . 
X—>bn Jn,2 k rC 

Let (iDn) be a sequence of all rationals. We define functions gt: R —> R as 
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follows. 

9г(x) = « 

{ f(x) for x G -4(/), 

wk if x G Jn,o,2*-t and wk < m n , k = 1,2,... , .£ , ( - ) , 

/ ( a «) ~ I" i f x G ^n,i,2Jfc-t and inf / + - > / ( a n ) , 
& Jn,l,2Jfc-i & 

•f (M " r i f x E Jn,2,2k-i and inf / -f - > / (b n ) , 
K Jn,2,2Jfc-i & 

^ f(x) otherwise. 

It is easy to see that / = max (#o, gi) • We shall verify that g0 G Q. It is 

enough to prove that go is quasi-continuous at every point x0 G A(f) . Then 

lim f(x) > f(x0) . Fix e > 0 and a neighbourhood U of x0 . We shall consider 

two cases. 

(a) xo is an end-point of some interval In (e.g. x0 -- an ) and lim f(x) > 
-6C(?) 

/ (x0) . Then there exists k G N such that - < £, Jn,i,2fc C U and inf / + T - > 
k Jn,i,2fc k 

/ ( x 0 ) . We have £0(z) = / ( a ™)~r f o r x G n̂,i,2ifc and hence \go(x)-go(x0)\< e 

for x G Jn,l,2*. 

(b) There exists a subsequence (Itn) of the sequence (In) such that 

Ifn ----> xo and lim m<n — lim f(x) > f(x0) . Let i/;* be a rational number 
n—• o o X—XQ 

« € C ( / ) 

such that e > /(xo) — ivfc > - £ . There exists no such that rno > k, I<nQ C U 

and f(x0) — mtno < - . Then Jtno,o,2fc C U and iv* < m*n0
 a n ( ^ consequently, 

flf0(a?) = ™fc for x G Jtno,o,2*. Thus |#0(z) -0o(-*o)| < £ for x G J*no,o,2*. This 
finishes the proof of quasi-continuity of #0 at the point xo . Similarly we can 
verify that g\ is quasi-continuous. 

R e m a r k 2. Obviously, a function being the maximum of quasi-continuous 
functions must be pointwise discontinuous. 

If / is a function of the Baire class a (a > 1) or Lebesque measurable, 
then the functions #0 and g\ defined in the proof of Proposition 3 belong to 
the adequate class. 

We shall verify this fact in the case when / is a Baire 1 function. Let C c R 

be an open set. Then ^ ( G ) = / - 1 ( G ) n ( ] 4 ^ u ( R \ ( A ( ^ U U Jn,i,k)))uB, 
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where B is a sum of count ably many closed intervals of a type Jn,i,k (thus B is 

a Fa set). Since the set A(f) U IJ Jn,iyk is closed, the set A(f) U ( R \ ( ^ ( / ) U 

U Jn,i,k) ) is Fa and consequently, #0 ^ G ) is a Fa set. 
n,i,k 

R e m a r k 3. Similarly as in Lemma 3 we can prove the following implica­
tion. If / = max(g,li) for some quasi-continuous functions with the Darboux 
property g, h: R —* R, then 

( * ) t h e s e t A(f) is nowhere dense and min( lim f(x), lim f(x)) > f(x0) 
x-xo x~*xt x 

*ecv) -ec(/) 
for each x 0 E R (See [2], Theorem 3). 
We are not able to prove that the condition (*) implies that there exist quasi-
continuous functions with the Darboux property g,h: R —> R such that / = 
max(#, h). 
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