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PERIODIC BOUNDARY VALUE PROBLEM
IN HILBERT SPACE
FOR DIFFERENTIAL EQUATION
OF SECOND ORDER
WITH REFLECTION OF THE ARGUMENT

BORIS RUDOLF

ABSTRACT. The differential equation —z" +a?z+ f(t, z(t), z(~t)) = h(t) with
periodic boundary conditions is studied. The existence of a solution in case when
f is a completely continuous operator and in case when f is only continuous and
bounded is proved. The connectedness of the set of solutions is studied.

The aim of this paper is to extend the results of Chaitan P. Gupta
[1] for the boundary value problems in a Hilbert space involving the reflection
of the argument to the case of the periodic boundary conditions.

1. Some preliminary results
We deal with the differential equation
—z" + o’z + f(t,2(t),z(—t)) = h(t) (1)
with periodic boundary conditions
g(-m)=z(r),  &'(-m)=2(n), (2)

where h(t): (~m,7) - H, f(t,z,y): (—7,7) x H x H - H and H is a real
Hilbert space with norm || - ||.
We assume a € R, a > 0.

We use the following function spaces:

Ly((-m,x),H) withnorm |jully = [ [lu(t)]dt,

AMS Subject Classification (1991): Primary 34G20.
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Ly((—m,x),H) withnorm |ul; = (f ||u(t)||2dt)5,

C ((-m,x),H) withnorm |lullo= sup [u(t)],
te(—m,m)

and assume h(t) € L; and f is a completely continuous function.
In the case H = R we obtain the scalar problem (1), (2), for which the

homogeneous problem
—z" 4o’z =0 (2)

has only trivial solution.
That means we can find the Green function

1 1 { e2am ea(t—a) +ea(s-—t) t T

G(t,s) = o~ (3)

eam ]

I7ANMIYAN
A 1IN
IA 1IN

-7 S
ea(t—s) +e2am ecls—t) _r<s<t< g

such that the scalar problem (1), (2) is equivalent to the equation
z(t) = /G(t,s)[h(s) - f(s,z(s),:r(-—s))] ds. (4)

For reference to our first lemma see [1, p. 377]. (Though this lemma is not
explicitly formulated there.)

LEMMA 1. If the scalar problem (1), (2) is equivalent to the equation (4), then
also the problem (1), (2) in the Hilbert space H 1s equivalent to the equation
(4), and the Green function G(t,s): (—m,w) x (—m,7) = R is given by (3).

Using the Lemma 1 we obtain that the existence of a solution to the problem
(1), (2) is equivalent to the existence of a fixed point for a completely continuous
operator T'.

LEMMA 2. Let f: (—m,m) x H x H - H be a completely continuous operator
and h(t) € Li((—m,7),H).
Then the problem (1), (2) is equivalent to the operator equation

z=Tz (5)
where T 1s a completely continuous operator, T: C((—m, ), H)—-C((—~,7), H).
Proof. We define

Tz(t) = /G(t,s)[h(s) - f(s,x(s),x(—s))] ds. (6)
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Continuity of G(t,s) on (—=,n) X (—=,7) implies the continuity of the function

Tz,ie. Tz € C((—7r,7r),H) .
Continuity of the operator T'.
Let z, - z in C((—m,7),H). Then

f(t,za(t),za(=t)) = f(t,z(t),z(—1)) for every t € (—m,7).
Moreover, for every n € N, and every t € (—m,7) there is

1£(t:2a (), 2a(-t)) || £ M.

Then the Lebesgue convergence theorem implies

/ G(t,s)[h(s) - f(s,zn(s),xn(—s))] ds —

— / G(t,s) [h(s) - f(s, z(s), z(—s))] ds.

From the inequality

[Tzn(t1)=Tza(t2)|| §/IG(t1,S)—G(t2,S)|(Ilh(8)ll+||f(s,In(S),l‘n(—S))ll)ds

< 2me(||R(s)]| + M)

we obtain that Tz, converges uniformly to T'z.

Compactness of T'.
Let {z,} be bounded in C((—W,W),H) . Then {Tz,} is equicontinuous. The
set {Tz,(t),n € N} C H is a relatively compact set for every t € (—m, 7).
The Theorem of Ascoli [5, p. 18] implies now the complete continuity of the
operator T'.

The relative compactness of the set {T:L',,(t),‘n € N} is proved in the follow-

ing way. Denote the integral sum associated with the partition [so = —T,...,Si,
27
eea 9 Sk =7l'] y Si41 — 8 = 7 as

k
I = ZG(t,S.')f(Se,wn(S.-),a:n(—s,‘))(S.'-H — $i).

1=0
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The complete continuity of f and the continuity of G implies that for every

te (—mm)
G(t,s,-)f(si,xn(s;),xn(—s.-)) € K,

where K is a compact subset of H. Then

Iy € conv(27k)

and

Txzn(t) € conv(27k)

where the set conv(27k) is a compact subset.
The assumption of the complete continuity of the function f is essential. For
further references to the preceding lemma see [6, pp. 281-282].

2. The estimations

In this section we derive the inequalities which we use to estimate the norm

of a solution to the equation (5).

LEM®-~ ~ Let y(t) € AC((—m,7), H), y/(t) € La((=m,7),H), [ y(t)dt =0

and y(t) satisfies the periodic boundary conditions (2). Then

Iv(®lo < /31 Ol )

Proof. We consider the real function z(t) € AC((—,x),R) such that
Z'(t) € Lo((—m,m),R), [ 2(t)dt =0, z(—n) = 2(x), 2'(—7) = 2'(x).

The mean value theorem implies the existence of ¢ € (—m,7) such that
Z(t()) =0. .
We consider now the function z(t) on (to,to+27), defined by z(¢) = 2(t—2n)

for ¢ > m. The inequality
m
PO

is for such 2(t) derived in [4]. For y(t) satisfying the assumptions of the lemma,
there is to € (—m, ) such that

llyllo = sup )Ily(t)l = [ly(to)ll-

te(—m,
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The Hahn-Banach theorem implies the existence of w € H with ||w|| =1 such

that
ly(to)ll = (y(to), w)-
We denote

2(t) = (y(t),w)

and we obtain
) <3 / V(O0) dt ST / I at,

l(®)llo = (u(to), w) f WOz

The following estimation is in a real case well known as the Wirtinger in-
equality [2, p. 185].

In the rest of this part we assume that H is a separable Hilbert space and
{e:} is an orthogonal basis in H .

LEMMA 4. Let y(t) € C((—m,x),H) . Then
y(t) = Zai(t)eia
=1

where a;(t) are uniformly continuous functions and

vl =3 [ laoP at

(ot
Proof. For every tg € (—m,w) is y(to) € H, y(to) = ) ai(to)e; and
=1
ai(t) = (ai(t)ei,ei) = (y(t),ei). The uniform continuity of y(t) implies the
uniform continuity of a;(t).
For y(t) € H we use the Parseval equality

lv®I? = 3 laso)P
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n
The sequence Y |ai(t)|* — ||ly(t)||> for n — oo, for every t and

=1

Do lai@®P S lly@l*.
i=1

The Lebesgue dominated convergence theorem implies that
oo "
Il =Y [ laoP a.
=10

LEMMA 5. Let y(t) € C'((—m,7),H). Then
(1) =Y dt)e,

i=1

where a}(t) are uniformly continuous functions and
00 "
@ = [l .
=17,

Proof. From the Lemma 4 we obtain that

y(2) :—-Z (t)e; and

=1

oo
y'(t) = Z b.(t)e;, where b,(t) are uniformly continuous functions.
1=1

Moreover y € C! implies that

a.(t) = (y(t),e,) € C'((—m,7),R) and

bi(t) = (Zb (tey, ) = (¥(t), ) = al(t)

The rest of the proof is similar to the proof of the Lemma 4.
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LEMMA 6. Let y(t) € C'({(—m,7),H), y(t) satisfies (2) and f y(t)dt = 0.
Then o
ly®ll2 = Iy (DIl (8)

Proof. Obviously

/ai(t) dt=0 for every i€ N

-

and a;(t) satisfies (2).
From the Wirtinger inequality we obtain

/ﬂlai(t)l2 dt £ /" la(8)|? dt

and the inequality (8) follows now from the Lemmas 4 and 5.
LEMMA 7. Let H be a separable Hilbert space and {e;} the orthonormal
basis in H. Then {ei,coskt - e;,sinkt - e;}$5_, is the orthogonal basis in

Ly((-m,7), H).
Proof. The orthogonality is obvious. We prove the completeness. Let y(t)
€ C({(—m,7),H). Then y(t) = ¥ ai(t)ei, ai(t) are uniformly continuous func-

=1

tions and
af | 1~ i
ai(t) = 2 + - Z ay. cos kt + b} sin kt.
k=1
Supposing

—}r (y(t),e,-) dt = 0, f(y(t),cos kt - e,-) dt = 0,

-7

=2

(y(t),sinkt - e;)dt = 0

3

we obtain [ ai(t)dt = 0, [ coskt-ai(t)dt =0, [ sinkt-bi(t)dt =0 and

then af =0, ai =0, bl =0.
This implies that a;(t) = 0 for every ¢ € N and then also y(t) =0.

Since the space C({—w,n), H) is dense in Ly((—, =), H), then the system
{ei,cos kt - e;,sinkt - e;} is complete.
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LEMMA 8. Let y(t) € C*'((—m,7),H). Then

ly®llo < ally'@®ll2 + byl a,beR 9)

Proof. The continuity of y(t) implies that there is ¢ sura that

lyCto)ll = _sup )lly(t)ll = [ly(®)llo-

€(—m,m

We choose again w € H, ||w|| =1 such that

(y(to),w) = lly(to)ll-
Then

t

(y(t), ) = (y(t1),w) + / (u(s), )" ds = (y(t1),w) + VERIW'(1) |1

t

Using the mean-value theorem we take t; € {(—m, ) such that

T

/(y(t),w)2 dt = (y(fl),w)227r

-

and

(¥(®)w) = \/glly(t)llz +Verlly'(t)ll2  for every t € (~m,7).

3. Existence theorems

THEOREM 1. Let f: (—w,m) x Hx H — H be completely continuous operator
and for every (t,z,y) € (—m,7) x H x H 13

(f(t,:c,y),z) 2 —a|||® = bllz]l||v]l, where a+ |b| < a?.

Then there is a solution to the problem (1), (2) for every h(t) € Li((—m, =), H) .

Proof. The problem (1), (2) is equivalent to the equation
z=Tz (5)
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where T is a completely continuous operator.
Let = be a solution to the equation

z =Tz for A€ (0,1). (10)
Then

—/(x”(t),:z:(t)) dt+/a2(z(t),z(t)) dt+//\(f(t,n:(t),z(—t)),z(t)) dt

- - -n

g

= /(h(t),m(t)) dt,

-

and

1
l2"117 + o®llzl3 = (a + B)llz]lz < IR@II: (\/ o lellz + V2W!II'I|2) :
The last inequality can be rewritten in the form

ll2"11 — All2"ll2 + (¢® = (a + b)) lzl3 — Bllzll2 £ 0 - (1Y

where A, B are constants.

Obviously if (11) is valid then ||z|]|]z £ C; and ||z'||2 £ C2, Cy,C2 are

suitable constants.
Then if z is a solution to (10), there holds

, 1
”.’E“o § gcl +V2rC, =C.

The existence of the solution to the equation (5) follows from the Leray-
Schauder theorem.

THEOREM 2. Let H be a separable Hilbert space, f: (—m,7) x H xH — H

be a completely continuous operator. Suppose that there are a,b,c,d,e € R such
that a+ |b| <1+ a? and

(ft,2,9),2) 2 —allz||® - bllz[lllyll — cllel| — dllyl| — e

for every (t,z,y) € (—m,m) x H x H.
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Suppose that either
(1) sz t)dt =0 and fyt)dt—O then ff(tx(t) y(t))dt =0,

-

or

(ii) _f _f (F(t, 2(t), 2(~1)), 2(s)) dt ds 2 0,

J T (2, 2(=0),2(5)) dtds
(iii) liminf T > —a?,
] ato)ae)?

where S = {x(t), _f 2(t) # 0},

holds.
Then there is a solution to the problem (1), (2) for every h(t) € Li((—m,x),H),

[ h(t)dt =0.

Proof. The problem (1), (2) is equivalent to the equation (5). At first we
prove that under the condition (i) there is

T(K)C K (12)

where
I = {x(t) €c, /:v(t)dt - o}.

Operator T is given b~ (6) and it is ea y to prove that

] h(t)dt —0  impli /" l ] G(t,s)h(s)ds] it 0.

-7

It 1s obvious no to s e that the condition (i) impl'e (12)
Let z(t) € I be a solution to th equation

AT Ae(01) (10)

Then
() +ata() +AF(E (1) (—1) A 1) (13)
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and
llz'll3 + @®||zll3 — allzll7 — [blllz]|3 — 27(c + d)l|zllo — 1A()ll1]lz]lo —e S 0. (14)

We use the inequalities (7) and (8) from Lemmas 3 and 6. Supposing a? —
(a+ [b]) < 0, we obtain

(1+a* = (a+ BD)lI"ll; — Bllz"lz —e £ 0

where B = (2r(c+d) + Hh(t)”l\/g is a constant.

The last inequality implies that ||z'(t)||2 < C1, where C; is a suitable constant.

In case a? — (a + |b|) 2 0 we argue similarly as in the proof of the preceding
theorem.

In both cases we obtain the estimation

lz®)llo = C,

and we can use the Leray-Schauder theorem in subspace K . This theorem im-
plies the existence of a solution z(t) € K to the equation (5).

In case that (i) or (iii) holds, we prove that if z(t) € C({(—m,7),H) is a
solution to (10) then

™

/ 2(£)dt = 0.

G -

Eéuation (13) implies that

L

o? / z(t)dt + X [ f(t,z(t),z(—t))dt =0 and

= = -
| / z(t)dt“2+,\ / / (F(t, 2(t), 2(~1)), 2(s)) dt ds = 0.

- =7

Condition (ii) implies that [ z(t)dt =0.

-7
Now using the same argumentation as in the preceding part we obtain that
for a solution z(t) to the equation (10) holds
llz(®llo = C-
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The existence of a solution to the equation (5) follows again from the Leray-
Schauder theorem.

Case (iii).
It follows from (15) that

T 2 ™ mw
_a:’“/:c(t)dt” > //(f(t,z(t),z(—t)),z(s)) dt ds.
We use (iii) and choose C; such that for every z(t), ||z(t)||2 > C) is

f f (f(t’z(t)az(—t)),l‘(S)) dtds

- —7

v
|
Q
~

EGLT

Last two inequalities are in a contradiction, which implies that ||z(#)| 2 £ C)
for every solution to (10).
This estimation and the inequality (14) give the inequality

ll='[l3 = Allz"ll = B £ 0,
where A, B are constants. From the last inequality we obtain the estimation
2ll2 < Ca.

Finally, from the inequality (9) follows that

/1
||a:”0 é %Cl + V27TCz = C,

and we can again use the Leray-S hauder theorem.

4. Existence when f is continuous

The continuity instead of the complete continuity of the operator f is as-
sumed in this part. The operator T, defined by (6), is not nece arily completely
continuous. Adding other assumptions for the operator f we can prove the ex-
istence and uniquene s of the solution to the problem (1) (2) al o in this ca e.

In following we a ume that

(A) H iss parable Hilbert space, {e,} is the orthonormal ba isiu H, the
operator f: (—m,m) x H H — H is contin us and bounded and
h(t) € Ly ((—m, =), H) .
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THEOREM 3. Assume that (A) holds and that for every z,y,u,v € H and
every t € (—m,m)

(f(taza y) - f(t>u,v)’$ - u) g —a”'T - u“2 - b”l‘ - U”Hy - v”a (16)

where a+ |b| < a?.
Then there is a unigque solution to the problem (1), (2).

Proof.

Uniqueness.
Let z;,z2 be two solutions to the problem (1), (2), z;,z2 € C; ((—1r, m), H).

Then

—(z1 — 22)" + a*(z1 — z2) + f(t, 21(2), 21 (—1t)) — (¢, 22(t), z2(—1)) =0
and

lzy — 23113 + @®||z1 — z2]I3
™

+ /(f(t,xl(t),xl(—t)) — f(t,z2(t), z2(—1)), 21 (t) — z2(2)) dt = 0.

Using (16) we obtain

lle1 — 25113 + (¢® — a — [b])[lz1 — ||z S 0. (17)
The last inequality implies that

”1:'1 - x’2||§ =0 and llz1 — :v2”f§ =0.

Then z;(t) = z(t) for every t € (—=,7).

Existence.
Denote by E, C H, E, = [e1,.-.,é€n] the finite-dimensional subspace of H , by

P, the orthogonal projection onto E,, F, = {z € L, z(t): (—=,7) — E,},
Pn the orthogonal projection of Ly onto F;,, and denote z, = Ppx. (We use

simply L,, C instead of Lg((—ﬂ,ﬂ'),H), C((—W,W),H).)

Denote also L: D(L) — L2 the operator Lz = —z" + o’z and N: C - C
the operator Nz = f(t,z(t),z(—t)), where D(L) = {z € C, ¢’ € AC and
A= LQ} .
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Let us consider the problem

—zn(t) + azxn(t) + Pnf(t,:cn(t), zn(—t)) = P,h(t) (18)
en(=m) = za(7),  zp(=7) =2y (7). (2)

Obviously the operator P,f: (—w,7) x E, x E, — E, is continuous and
bounded. Since E, is the finite-dimensional subspace, P,f is completely con-
tinuous.

From the inequality (16) for u = v = 0 we obtain
(Paf(t,z,y),2) 2 —allz]|* = bllzl[ly]l - cll=ll, (19)

where ¢ = max || P.f(¢,0,0)].
te(—m,m)

Theorem 1 implies the existence of a solution to the problem (18), (2) and a
priori estimations

Izl = C1, 2"l =Co zllo £C

for the solution, where C;, C,, C are suitable constants independent of F,.
The complete continuity of the operator T,: C — C and the a priori esti-
mations mean that the set of the solution to the problem (18), (2) is compact
in (C,| - |lo) for every n € N. Moreover the set of solutions is compact in
(L2, - ll2) - (These statements are trivial in case when Th,z = z has a unique
solution. The proof is to be used also in a more general case.)
Denote by U, the set of solutions to (18), (2) and V, = Ej U . Obviously
3

=n

Vo D Vay1 and V, is a bounded set for every n € N.

Let W,, =V, be the weak closure of V,, in Ly . Then W, is weakly compact
and W, D Wy,41. Then means there is

oo
Ty € ﬂ W,
n=1

and the sequence z, € V, such that z, — z¢.
Obviously ||zl]|2 < ¢, where ¢ is a suitable constant. That means we can
choose from {z,} such subsequence that

n .
Ly, =—z, + a’z, —v in Lo.
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Since the graph of L is a closed convex set it is weakly closed and v = Lzo,

Tg € D(L) .
We prove the inequality

((L+N)u—h,u—=z)20.
Let u € D(L)N Fy, zn € Fp and n 2 m. Inequality (16) implies

((L+N)x—-(L+N)y,x-—y>

T

—m

2 |z’ = y'll3 + (&® —a— |p]) = —yllz 2 0.

Then

(20)

= |l =y 3 +ellz—yl3 + / (f(t,2(t), (=) = (&, y(8), y(~1)), 2(t) —y(?)) dt

0 S(L+N)u—(L+N)xn,u—zn)={L+N)u—h,u—z,)—(L+N)z,—h, U—Tn).

Since H=F,® F}, u—z, € F,, 'Pn((L-’f—N)xn - h) € F,,, then
<(L + N)zp, — h,u— z'n) =(Pa((L+ N)z, — h),u —z,) = 0.
The last equality follows from the fact that z,(t) is a solution to (18).
Then
0= <(L+ N)u — h,u —:cn),

and for n — oo we obtain
0= ((L—i—N)u—h,u—a:o).

Now we prove the inequality (20) for every u € D(L).
Using the Fourier series from Lemma 4 and 5 we obtain

u(t) = Z ai(t)ei, u'(t) = Z d\(t)e;, u'(t) = Za’,-’(t)e,-

where a,(t) = (u(t),ei) € C*((—7,7),R) and a!(t) € Ly((—m,7),R).
We denote

n

un(t) =Y ait)e,.

1—1

79



BORIS RUDOLF

The sequence u,(t) — u(t) in H for every t € (—m, ). Since
l[un(s) = un(®)ll = | Pau(s) = Pau(®)l| < [lu(s) — w(@)],

the sequence {u,} is equicontinuous. The same is true for {ul}.

Then

un = u, ul, 3, and ul — u” in L.
As u, € F,, the inequality
0= ((L + Nup — hyu, — :r0> 1s valid.
The fact that Lu, — Lu and Nu, — Nu in L, implies that
0S{((L+N)u—h,u—zo) forevery u€ D(L).
Let now v € D(L), 720 and u = z¢ + 7v. Then
0= <(L+ N)(zo + Tv) — h,v)

and for 7 —» 0
0 < ((L+ N)xo — h,v).

The density of D(L) in L, implies that

(L+ N)zo = h.
THEOREM 4. Assume that (A) holds and that (16) holds for a+|b| < 1+a?.
Further assume that (i), (ii), or (iii) holds. Then there is a solution to the problem
(1), (2) for every h(t) such that }h(t)dt = 0. In the case (i) or (ii) the
solution 13 unique. -

Proof. Let z, y be two solutions to (1), (2). By the same method as in
proof of Theorem 2 we obtain in case (i) or (ii) that

™

fz(t)dt: ]y(t)dt =0.

-7 -
Using the inequality (8) in (17) we obtain
(1+a? —a—pl)lz -yl <0
Then ||z — y||2 =0 and since z,y € C!, z(t) = y(t) for every ¢.
The proof of the existence of a solution is similar to that of Theorem 3, only

the existence of a solution to the finite-dimensional problem (18), (2) follows
now from Theorem 2.
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5. Critical case

Let a =0 i.e. we consider the problem

—z"(t) + f(t,2(t),z(~t)) = h(t) (21)
z(—m) =z(m), z'(—=)=2z'(m). (2)

The homogeneous problem has a nontrivial solution in this case and there is no
Green’s function associated to the problem (21), (2).

Instead of (21) we consider the equation

—z"(t) + a®z(t) + f1(t,z(t), z(=t)) = h(t), (22)

where
fi(t,z,y) = f(t,2,y) — o’z (23)

Because the function a’z, as function H — H, is only continuous and

bounded (and is not completely continuous), we have the same assumptions for
f, and use the same method as in Theorem 3 and 4.

THEOREM 5. Assume that (A) and the inequality (16) hold for a+ |b| < 0.
Then the problem (21), (2) has a unique solution.

Proof. We use the equation (22), where f; is given by (23). Inequality
(16) implies that

(fi(t2,y) = fult,u,0),7 — ) 2 —a?lz = ul — alle — ul* = blla - ullly - o,

and obviously o? +a+ |b] < a?.
Theorem 3 implies the existence and uniqueness of the solution to the problem

(22), (2) and then also to (21), (2).
THEOREM 6. Assume that (A) and (16) hold for a+|b] < 1. Assume that (i)

(i”) there is B > 0 such that
I ] (F(t,2(t), z(=t)),2(s)) dtds 2 ﬂ[l_f z(t)dt||®

-7 -
or

f f (f(ta (L‘(t), -T(—t)),.’t(s)) dtds
(iii’) lim inf == ~ >0,
he(Shg oo | f :v(t)dt”2
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where S = {z(t), f z(t) # 0} holds.

Then there is a solution to the problem (21), (2) for every h(t) such that
J h(t)dt =0 and if (i) or (ii’) holds, the solution is ezactly one.

Proof. We use again the equation (22). Assumptions (i), (ii’) resp. (i11’) for
the function f imply that (i), (ii) resp. (iii) is true for the function f;. In case
(ii) we choose a such that 0 < a < . Using Theorem 4 we obtain Theorem 6.

6. Connectedness of the set of solutions

LEMMA 9. Let the assumptions of Theorem 1 hold. Assume that (16) holds
for a+ b =a?.

Then the set of solutions to the problem (1), (2) is nonempty, compact and
connected. If z,y are solutions to (1), (2), then £ —y = const.

We omit the proof of the lemma since it is similar to the one of the following

THEOREM 7. Let the assumptions of Theorem 2 hold. Assume that (16) holds
for a+ |b|=a?+1.

Then the set of solutions to the problem (1), (2) is nonempty. Moreover it
i3 compact and connected in case (i) or (ii).

Proof. The existence of a solution follows from Theorem 2. Proving that
theorem we have obtained the estimation ||z(t)|lo < ¢ for a solution to the
equation

z=ATz A€ (0,1), (10)
where T is given by

Tz(t) = —L™'Nz(t) + L7 h(t).

Moreover for every solution z(t) [ z(t)dt = 0 is valid when (i) or (ii) holds.

-

For z,y solutions to (1), (2) we obtain

0= /(l‘" y" + o’ (z —y) + (8 2(t), 2(—1) — f(t,y(t),y(=1)), =(t) — y(#)) dt

=l =y'll; +o*[le—yll; + / F(t,2(), 2(=) = f(t, (1), y(=1)), 2(t) = y(2)) dt
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and using the estimation (8) we get

T

(1+012)||fv—y||§+/(f(taf(t),x(—t))—f(t,y(t),y(-t)),-r(t)—y(t)) dt £ 0. (24)

—m

We use Krasnoselskij’s theorem [7, p. 155]. We choose f,(¢,z,y) =
Anf(t,z,y), where 0 < A, <1 and )\, — 1. Obviously fp satisfies the same
assumptions as f,i.e. fn is completely continuous and satisfies (i) resp. (ii).

We define the operator T;, by
Tnz(t) = =L Npz(t) + L A(2),

where

Noz(t) = falt, z, (), z(~t)).

Then the sequence {7T,} and the operator T satisfies the assumptions of
Krasnoselskij’s theorem.

Really, if we choose Q = {z(t) € C, ||z(t)|lo < ¢}, then

sup [| Tn(z) — T(z)llo — 0,
€N

the estimation ||z|lo < ¢ implies that the Leray-Schauder degree
dI-T,9Q,0)#0 and Tz#z on O0Q.

Using the estimation (24), we obtain that there is at most one solution to the
equation
z=Thz+2 for every z € C.

The Krasnoselskij theorem implies that the set of solutions is compact and
connected.
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