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ABSTRACT. The paper deals with the asymptotic behaviour of solutions of the 
delay differential equation 

x(t) = a(t)x(t) + b(t)x(r(t)) + f(t), t G [t0, oo) , 

where a is a positive function and the ratio |b | /a can be est imated by means 
of a continuous and nonincreasing function. Some known asymptotic formulae 
concerning this equation are improved and extended to a more general case. 

1. Introduction 

This paper is concerned with the nonhomogeneous linear differential equation 

x(t) = a(t)x(t) + b(t)x(r(t)) + f(t), t e I := [t0, oo), (1) 

where a, b, r , / are continuous functions. Throughout this paper we assume 
that functions a and b are not identically zero on I. 

The asymptotic behaviour of (1) has been analysed, under various assump­
tions, by many authors. From papers, related to our further investigation, we can 
mention those by F .V . A t k i n s o n and J. H a d d o c k [1], H. B e r e t o g l u 
and M. P i t u k [2], J. D i b l i k [6], T. K r i s z t i n [8], [9] and others. Particu­
larly, our aim is to generalize the asymptotic results derived by T. K a t o and 
J. B. M c L e o d [7], E. B. L im [10] and J. C e r m a k [3], [4], where special 
cases of (1) have been considered. Papers [7] and [10] discussed the asymptotic 
behaviour of 

x(t) = ax(t) + bx(Xt) + f(t), 0 < A < 1, t > 0 . 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34K15, 34K25, 39B22. 
K e y w o r d s : delay differential equation, functional equation, asymptotic behaviour. 

Published results were acquired using the subsidization of the Ministry of Education, Youth 
and Sports of the Czech Republic, research plan MSM 0021630518 "Simulation modelling of 
mechatronic systems". 
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It was shown that if a > 0, b ^ 0 and f(t) = 0(exp{aT(l;)}) as t -> oo, then 
the solution x either grows exponentially or is polynomial. These results have 
been generalized in [4], [3] to equations 

x(t) = ax(t) + bx(r(t))+f(t), a>0, b^O, t e l , (2) 

resp. 

x(t) = a(t)[x(t)-kx(r(t))]+f(t), & / 0 , t e l , 

where a e C°(I) is positive and nondecreasing on I and T e CX(I), T(t) < t 
for all t e I, T(t) ->oo as t —> oo, 0 < f < A < 1 on I. It follows from the 
assumptions on r that considered equations have an unbounded lag. Our wish 
is to derive the relevant asymptotic formulae also provided a is decreasing and 
we do not suppose explicitly that the lag is unbounded. Moreover, we show that 
in some cases these formulae can be given in a more precise form. 

Let us denote I0 := [T(£0)5^0] • ̂ s ̂  is customary, the function x is called a 
solution of (1) if x e C° (l0) VI Cl(I) and satisfies (1) for all t > t0. If we are 
given a continuous function x0 defined on I0, then there is a unique solution x 
of (1) such that x = x0 on I0. 

2. Preliminary statements 

In this section we formulate some auxiliary results, which we utilize in the 
proof of the main result. 

PROPOSITION 2 . 1 . ([11; Corollary 1]) Consider the functional differential 
equation 

x(t) = g(t,x(T(t))) , tel= [t0,00), (3) 

where T e C°(I), T(I) < t on I and mi[r(t) : t e 1} > —00. Further, let 
g(t, x) be a continuous function for which there exist a real C and a continuous 
function r fulfilling the relations 

\g(t,xi)-g(t,x2)\ <K*)ki - ^ 1 (4) 
and 

\g(t,0)\<Cr(t) (5) 

for any t e l and xx,x2 e R. If 

r(t) dt<oo, (6) 

* 0 
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then for every solution x of (3) exists a real L such that 

x(t) —> L as t - > o o . 

Moreover, if 
oo 

/ * ) dt < 1, 

to 

£/ien /or even/ L G R tlWe exists a solution xL of (3) defined on I such that 

XL W "~̂  ̂  a 5 t —> OO . 

LEMMA 2.2. Consider the functional differential equation (I), where 
a,b,r,f G C°(I), r is subject to the same assumptions as in Proposition 2.1. 

f(t) = 0 ( |b(t)|exp< J a(s) ds > ] as t —> oo and tfte integral 

00 ( ^ 

j \b(t)\exp\- f |b(t)|exp^ - / a(s) ds V dt 

to ^ r(t) ' 

converges. If x is a solution of (1), then there exists a real constant L such that 

exp< — / a(s) ds >x(t) -> L as M o o . (7) 

to 

Conversely, for every L G R there exists solution xL of (1) such that 

>< — / a(s) ds \xL(ť) —> L a5 t —> oo . exp<^ — / a(s) ds f x L ( t ) —> L as t —> oo . (8) 

to 

P r o o f . Setting 

z(t) = expi - / a(s) ds \x(t) (9) 

to 

into the equation (1) we get 

t 

zv: *;•; J 
T(t) ' V *0 

j(t) = 6(í)expi - i a(s) ds \Z(T(Í)) + /( í )expi - í o(s) ds \ . (10) 
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Equation (10) is equation (3) with 

g(t,z(T(t))) = b(t)z(r(t)) expl-j a(s) ds 1 + f(t) expj - j a(s) as 1 

т(t) ' v t0 

Further, put r(t) = \b(t)\ exp< — f a(s) ds >. Then it is easy to check that the 
I T(t) J 

relations (4), (5) and (6) are satisfied. Hence, using the backward substitution 
in (9) our assertion follows from Proposition 2.1. • 

P R O P O S I T I O N 2.3. Let aeC°(I), r G Cl(I), r(t) < t, r(t) -> oc as t -> oc 
and let the relation 

0 < a(r(t))f(t) < Sa(t) (11) 

hold for a suitable real 0 < S < 1 and all t G / . T/ien 

t 

Һ lim / a(s) ds — oo . 
t—>oo 

r(t) 

P r o o f . First we show that a(t) > mp(t)/(p(t))a for a lH G / , where m > 0 
and 0 < a < 1 are suitable reals and p £ C1 (I) is fulfilling the functional rela­
tion p(r(t)) = Xp(t) with a suitable real 0 < A < S. Let a(t) > mp(t)/(p(t))a 

for all t G [ T ^ Q ) , ^ ] and 

a = ( l o g ( A / < 5 ) ) / l o g A < l . 

Then for all t G [< 0 , r _ 1( t 0)] we get 

^ ^ « ( T W) T ( l ) ^ p(T(!))T( l) \p(t) p(t) 
a(t) > — x > m / 7 \ \ a = m 7— \<* = m " S - (p(r(t)))a6 \«(p(t))a5 (p{t))c 

Repeating this procedure we get 

a(t) > m , [a for all t G I. 
(p(t)) 

Using this we have 

t 

^ rl.Q > rn I 

(P(s)) 

t 
1-a 

Һis)dsгmíшřd"=1-^ш"° 
r ( í ) r( í ) 
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Since p(t) -» oo as t —> co (this fact follows from assumptions on r) and a < 1, 
we have 

lim / a(s) ds = oo . 
t->oo J V J 

т(t) п 
The next functional equation plays the key role in our further asymptotic 

investigations. Let us consider 

<p(t) = c(t)<p(T(t)) , t e l , (12) 

where c is a continuous function depending on a and b. The following simple 
statement ensures the existence of a solution of (12) with required properties. 

PROPOSITION 2.4. Consider the functional equation (12) where c, r G C°(I), 
c(t) > 0, r(t) < t for all t £ I and r is increasing on I. Let (p0 G C°(I0), 
where I0 := [T(£0),£0] - be a positive function satisfying 

¥>o(*o) = c (*oM r (*o)) • 
Then there exists a unique positive solution (p G C°(I) of (12) such that ip(t) = 
(p0(t) for every t e l 0 . 

P r o o f . The statement can be proved by the step method. • 

LEMMA 2.5. Consider the functional differential equation 

x(t) = a(t)x(t) + b(t)x(r(t)) , t G / = [*0, oo), (13) 

where a,b G C°(I), r G CX(I), a(t) > 0, r(t) < t for all t G / . r(t) -> oo 
as t -» oo and let there exist a nonincreasing function c G C°(I) such that 
\b(t)\ < c(t)a(t) for all t G / . Further assume that the relation (11) is valid for 
a suitable real 0 < S < 1 and arbitrary t G / and let (p G C°(I) be a positive 
solution of (12). If x is a solution of (13) fulfilling 

exp< — / a(s) ds \x(t) -> 0 as t -> oo, (14) 

^ to J 

£/zen x(£) = 0((/?(£)) as t -> oo. 

P r o o f . First, let us denote 

* n : = T " n ( * o ) a n d / n + l : = - * n > * n + l - > W = - 1 , 0, 1, . . . . 

From (12) we get 

¥>(*) = c(t)¥>(r(t)) = c(t)c(T(t))v(r2(t)) =••• 

= c(t)c(T(t))c(T2(t))---c(Tn(t))<p0(T
n+1(t)) (15) 

>M0c(t)c(T(t))---c(Tn(t)) for any t € / n + 1 , 

353 



PETR KUNDRAT 

where M0 = mm ip(t). The relation (15) will be used in the end of the proof. 
££Io 

Now let us multiply the equation (13) by the term exp< — J a(s) ds > to get 

_d_ 

dí 
exp< — j a(s) ds \x(t) = b(t)exp< — l a(s) ds \x(т(t)) . 

to to 

Since the relation (14) is assumed, integrating the previous equality over [£, oo) 
we obtain 

t 

exp< 

Z x OO s U N 

•/.(.) d.},(.) = /K.)«p{-/^.)d.},(r(.))d.. 
to J t K t0

 J 

ing inequality is valid for all t >t0: 

t -v OO • U -v 

/ a(s) ds> |O(H)|exp< — / a(s) ds >| 

to ' t { to ' 

to t to 

Hence, the following inequality is valid for all t >t0: 

OO • u 

\x(t)\ < exp{ I a(s) ds \ / |O(H)|exp< - / a(s) ds >\x(r(u))\ du. (16) 

to ' t { to ' 

Now let M be a suitable positive real such that 

\x(t)\<Mexp< / a(s) ds > for all t > t0 . 

to 

Using (16) we derive the following estimate of x(t) valid for all t >t1: 

t 

{
t ч CXJ • U ч 

/.(.) /|Є<.)|.Ч,(-/ф> |,(r(.))|d. 
ío J t к t0

 J 

Í
t ч OO ( U Л ( ^^ ì 

/ a(s) ds> |O(H)|exp< - / a(s) ds >Mexp< / a(s) ds > 

{ t -v OO s U -v 

/ a(s) ds> c(u)a(u) exp< — / a(s) ds > du 

t0
 J t ^ r(u) J 

— Mexp< / a(s) ds > x 
to 

X I-a(u)tlыl))i(u)MЄXĄ- I a(s)áS}) ÚU-

du 
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Using Proposition 2.3 and the fact that c is nonincreasing we get 

l*(*)l< ^ T j e x p j y o ( s ) d a W - ^ - í e x p | - f a(s) ás\\ 

jexpj-/ 

dH 

to t T(u) 

— — exp< / a(s) ds *> exp^ — / a(s) ds 

^ t0 ' { T(t) 

Hence 

( r{t) 1 
\x(t)\ < Y^ exPS / a(s) ds [ > t > h • (1 7) 

^ to ^ 

Now we derive the analogous estimate for all t >t2. Substituting the estimate 
(17) in (16) we get 

\x(t)\ < exp< / a(s) ds > x 

oo ( u "j / ( T(T(U^ \ 

x / | 6 ( ^ ) | e x p J - f a(s) ds\ °_g' expi f a(s) ds \ du 

t to to 
/ \ ( t -v OO s U -v 

< — —exp< / a(s) ds > / c(u)a(u) exp< — / a(s) dá > dw 

^ tO ' t ^ r 2 ( u ) J 

Mc(r(t)) f / , , - 1 
< 1 _ V y exp^ / a(s) ds > x 

^ to ' 

oo / r ^ 1 \ 
X / -a(u) + a(r-ta)Mr(t,))ř(«) 1 M " / ^ d 4 ) áU 

^ (f-ixi-S) e x p{ /a ( s ) d 4 e x p{- / °W d 4 
^ ÍO J K

 T 2 ( ť ) ' 

Mc(r(í))c(í) / 7^ ^ , I 
— exp^ / a(s) ds > . (І-Ő)(І-Ő*) 

4 ío 
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Using the same procedure as above we can derive the following estimate of x(t) 
for all t> t n , n = 1,2,... : 

{
TnW X 

J a{s)ds\-
to J 

Now, it is easy to see that for n = 1,2, 3 . . . it holds that 
n . 

exp< / a(s) ds > < exp< / a(s) ds > < Mx for all t < tn+1 , 

where M 1 > 0 is a real constant. If we put 

П (1 - # ) 

then we can write 

k ( * ) | < M * c ( t ) c ( r ( t ) ) - - - c ( r n _ 1 ( * ) ) for all t G 7 n , n = 1 ,2,3, . . . . 

Now using the relation (15) we have 

M* 
1̂ (̂ )1 < „ , n,.,M*) fora11 t G / n , n = l , 2 , 3 , . . . . 

M 0 c ( r n ( t ) j 

Since c is nonincreasing, we get 

M* 
\x(t)\< M <p(t) for all t e l n , n = 1,2,3,.. . 

and the lemma is proved. D 

3. T h e m a i n resul t a n d some consequences 

Summarizing the preliminary results we can formulate the asymptotic de­
scription of all solutions of (1). In accordance with Lemma 2.2 we denote by 
xL a particular solution of (1) possessing the property (8) for a given arbitrary 
real L. 

THEOREM 3.1. Consider equation (1). where a, 6,/ G C°(I), r G Cl(I), 
a(t) > 0. r(i) < t for all t G / . r(t) —r oo as £ —•> oo . 

тҷt; 

/(í) = o( |Ь( í) |exp| | a ( S ) d ő | ) 
(*) 

l ] as t -> oo 

ío 
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and let there exist a nonincreasing function c G C°(I) such that \b(t)\ < c(t)a(t) 
for all t G / . Further assume that the relation (11) is valid for a suitable real 
0 < 8 < 1 and arbitrary t G / and let cp G C°(I) be a positive solution of (12). 
If x is a solution of (1), then there exists a real constant L such that 

x(t) = xL(t)-{-0((p(t)) as t-^oo. 

P r o o f . First we verify that all the assumptions of Lemma 2.2 are valid. 
Indeed, 

oo ( \ 

/ |6( í ) |exp | - / a(s) ds\ dt 

t0 ^ T(t) ' 

OO • t -v 

< c(t0) / a(í)exp< — / a(s) ds > dí 

OO V í t 

, . / Ф) d Í / / 
C{t°Ч -a(t) + a(r(t))Ңt)lГt^{-J ӣ{ 

to L V т(t) 
to 

I a(s 

dť 

<c(t0)- тexp- !,- / a(s) ds 1> < oo 

by use of Proposition 2.3. 

Now let x be a solution of (1). In accordance with Lemma 2.2 there exists 
a constant L such that (7) holds. Then y(t) = x(t) — xL(t) is a solution of the 
homogeneous equation 

y(t) = a(t)y(t) + b(t)y(T(t)), t e l , 

fulfilling the relation 

v +„ 

exp^ — / a(s) ds }y(t) -> 0 as t -> oo . 

to 

Hence, using Lemma 2.5, we have y(t) = 0(cp(t)) as t -» oo, i.e., x(t) = 
X L ( 1 ) + ?/(*) = X L W + ° ( ^ ( * ) ) as t -> oo. • 

R e m a r k 3.2. In a more general way, any solution (p* of the inequality 

<p*(t)>c(t)<p*(r(t)), t e l , (18) 
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can be considered instead of a solution (p of equation (12) occurring in The­
orem 3.L Then the assertion of Theorem 3.1 can be proved using the same line 
of arguments as it has been done previously. 

In the remaining part of this paper we show that Theorem 3.1 generalizes 
some known asymptotic results. In these particular cases we consider also delays 
intersecting the identity function at the initial points. It is easy to see that the 
result of Theorem 3.1 holds also for this case. 

If we put a(t) = a > 0, b(t) = b ^ 0 and r(t) = Xt, 0 < A < 1, then we 
have: 

COROLLARY 3.3. Consider the equation 

x(t) = ax(t) + bx(Xt) + f(t), 0 < A < 1, t > 0 , (19) 

where a > 0, b ^ 0 are constants, f E C°([0,oo)) and let f(t) = 0(exp{aXt}) 
as t —> oo. Then for any L G M there exists a solution xL of (19) such that 

exp{—at}xL(t) —» L as t -» oo . 

Moreover, for any solution x of (19) there exists a suitable L E M such that 

\n(a/\b\) 
x(t) = xL(i) + 0(ta) as t-roo, a = 

lnЛ 

P r o o f . The proof follows immediately from Theorem 3.1, where c(t) = 

c = \b\/a and ip(t) = ta , a = ^ ™ • D 

Remark 3.4. This statement was published in a weaker form in [10], resp. [7]. 
Its generalization to equation (2) with a more general form of a delay has been 
done in [4] and also in [5], where equation (1) with b(t) = ka(t), k / 0, has been 
considered. We emphasize, that the key assumption in [3] is a nondecreasing. 
The following example illustrates that Theorem 3.1 works also for the case a 
decreasing. 

E X A M P L E 3.5. Consider the equation 

x(t) = \ [x(t) -x(Vt)]+ f(t), t > 1, (20) 

where / E C°([l, oo)) and f(t) = 0(1/y/t) as t -> oo. It is easy to verify that 
all assumptions of Theorem 3.1 are fulfilled. Then for any L G K there exists a 
solution xL of (20) such that 

xL(t)/t -> L as t -> oo . 

Moreover, for any solution x of (20) there exists L G M such that 

x(t) = xL(t)+ 0(1) as £ - > o o . 

The following example demonstrates the case when solving of the correspond­
ing functional equation (12) is not trivial. 
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EXAMPLE 3.6. Consider the equation 

x(t)=ax(t) + ̂ x(\t)+f(t), 0 < A < 1 , t>l, (21) 

where a > 0, b ^ 0 are reals, / <G C°([l,oo)) and let f(t) = OQexp{aA*}) 
as M o o . Then in accordance with Theorem 3.1, for any L E R there exists a 
solution xL of (21) such that 

exp{—at}xL(t) —•> L as t -* oo . 

Now it is easy to check that functional equation (12) has the form 

<p{t) = l^(Xt) 

and admits the solution 

log |6|/cx i ( logt . A 

ip(t) = t^*-1 ^logx-i" 1" 1;^ 

which is the function tending to zero as t -> oo. Hence, by Theorem 3.1, for any 
solution x of (21) there exists L G M such that 

(
l o g | b | / q 1 / l o g t , ,\ \ 

/logA-1 2 V l o g A - l + ^ j as t -> oo . 
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