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INTEGRATION OF REAL FUNCTIONS 
WITH RESPECT TO A 0-MEASURE 

A N N A KOLESÁROVÁ 

(Communicated by Miloslav Duchoň ) 

ABSTRACT. In the paper, a new definition of the integral with respect to 
0-measures in the case of real functions is suggested, and properties of this in­
tegral are studied. The reasons explaining necessity of changing the definition 
introduced in [5] are given. 

1. Introduction 

The integral with respect to 0-measures introduced by M a r i n o v a [5] is 
one of the integrals based on non-additive set functions (see, e.g., [2], [8], [11], 
[12], [13]). This integral is based on a special type of a pseudo-addition 0 on 
[0, oo] , on ordinary multiplication of real numbers, and on 0-measures. If the 
operation © is ordinary addition -f of real numbers, then the ©-integral of 
non-negative measurable functions is the Lebesgue integral. The case © = max 
leads to the integral introduced by S h i 1 k r e t [11]. 

In [4], the structure of the operation 0 considered in [5] was explained, and 
all operations satisfying conditions given in [5] were described. Due to these 
results, the connection between the ©-integral of non-negative functions and 
the Lebesgue integral was discovered (in the case of © ^ max). 

The aim of the present paper is to give another definition of the ©-integral 
in the case of real functions which would be more appropriate than that of [5]. 
The reasons for this change will be explained. We are not able to extend the 
©-integral in the case of © = max. As it will be shown, the integral obtained in 
this case has not satisfactory properties. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28A15, 28A25. 
K e y w o r d s : pseudo-addition, pseudo-additive measure, integral. 
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2. Basic notions 

Let us recall the basic notions as they were introduced in [5]. 
Let (X,S) be a measurable space, i.e., let X be an arbitrary non-empty set, 

and let S be a cr-algebra of its subsets. 
©-measure is a set function m: S —> [0, oo] such that: 

(i) m(0) = O, 
(ii) if {-4n}nGN C <S, Ai H A. = 0 for i ± y then 

m ( U An | = s u p { m ( . A 1 ) e . . - 0 m ( . A n ) } , 
\ n = l / n G N 

where © is a binary operation defined on [0, oo] with properties: 

(Al) a®b = be>a, 
(A2) (a®b)®c = a®(be>c), 
(A3) k • (a 0 6) = (fc • a) 0 (fc • 6), 
(A4) a 0 O = a, a 0 o o = oo, 
(A5) a<b = > a 0 c < 6 0 c, 
(A6) (a + 6) 0 (c + d) < (a © c) + (b 0 d), 

(A7) a n - • a and 6n -* b =4> an © bn -> a © b 

for each a,b,c,d,an,bn G [0, oo], n = 1,2,. . . , and for each k > 0. 
Note that < means usual order of real numbers, and the symbol • in (A3) 

is Lised for ordinary multiplication. We will omit it if there can be no confusion. 
The symbol + in (A6) denotes ordinary addition of real numbers. 

The integral with respect to a ©-measure for non-negative functions was 
defined in the following way: 

[A] If s is a simple non-negative measurable function defined on X, s — 
n 
T,ai'lAi (ai -^°> Ai G<S> AinAj = 0> f o r { + 2\ hi = 1 , 2 , . . . , n ) , then 
i = i 

e 
/ 5 dm = a1m(Al) 0 a2m(A2) 0 • • • 0 anm(An). (1) 

x 

[B] If / is a non-negative measurable function defined on X, then 

e re 
/ / dm = sup < / s dm ; s < f , s is simple, non-negative ^ . (2) 

x \x 

A function / is called integrable if J f dm < oo. 
x 
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In [4], the structure of © was explained. There was shown that a binary 
operation © defined on [0, oo] with the properties ( A l ) - (A7) is either V (max) 
or the operation of the type 0 r , where 

x © r y = {/xr + yr for some r > l . (3) 

Each operation © r , r > 1, is generated on the whole interval [0,oo] by any of 
the functions gr^a(x) = axr, a > 0. It means that 

x®ry = g~l [gr,a(
x) + 9r,a(v)\ • 

In what follows, we only will use the normed generator grl, gr^(x) — xr, which, 
for brevity's sake, will always be denoted by g. 

Note that V has no generator. More facts can be found in [4]. There was also 
proved that, if © ^ V, the integral of a non-negative function / with respect to 
a ©-measure m is given by 

(4) f dm = g M (gof)d(gom) 

x L x 

where the integral on the right-hand side is Lebesgue, and g is the normed 
generator of ©. 

It should be noted that M a r i n o v a ' s ©-integral, which is based on a bi­
nary operation © with properties (A1)-(A7), on ordinary multiplication and a 
©-measure, is a special type of P a p ' s integral on [0, oo] ([8]). 

The ©-integral for real functions was defined in [5] as follows: 

[C] If / : X —> (—00,00) is a measurable function and at least one of the 
functions / + = max(/ , 0), / ~ = max(—/, 0) is integrable, then 

e e e 

f f dm= / / + d m - f f dm. (5) 

A function / is called integrable if — 00 < / / dm < 00. 
x 

It is desired that certain properties of the ©-integral of non-negative functions 
remain preserved (or can be generalized) for real functions. 

Given a measurable space (X, S) with a ©-measure m and a non-negative 
integrable function / , then according to Theorem 2 in [5], a set function v* 
defined on <S by 

e 
uf(A)= I f dm, AeS, (6) 

A 
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0 0 

is a finite 0-measure on (X, S) (note that / / dm = / / • 1 A dm 
A x 

The following two examples show that this property cannot be generalized 
for real functions if the integral is defined by (5). 

E X A M P L E 1. Let X = [0, oo], S = B(X), m = A/A, where B(X) is the system 
of Borel subsets of X, and A is the Lebesgue measure on (X, S). Then m is 
a 0 2-measure, where ® 2 is the operation defined by (3), i.e., 

x ® 2 y = \/x2 + y2 , x,y e [0, oo]. 

Let A = [0,1) U [2,11), B = [1, 2) U [11, 27], and let / = 15 • 1 [ 0 ? 2 ) - 1 • I [ 2 ? 2 7 | . 
Then 

02 02 02 

f dm ^ / / dm 0 2 / / d m . 

AUB A B 

P r o o f . It is clear that A D B = 0. Let us denote / x = / • 1 A , / 2 = / • I # • 
It holds: 

/i = 1 5 * l [ o , i ) . fx = 1 - I [ 2 , i i ] a n c * J2 = 1 5 , I [ i , 2 ) » h = *'I[11,27V 

Therefore, by (5), 

02 02 02 ©2 

f f dm= f fx dm = I' / + dm - / / f dm = 15 • 1 - 1 • \/9 = 12 . 

.4 V V Y X 

Analogously, 

/ / dm = 1 5 - l - l - \ / l 6 = l l . 

B 

02 02 
The ®2-sum of these integrals is / / dm ® 2 / / dm = y/lAA+ 121 = \/265-

A B 
0 2 

If we compare this number with the value of the integral / / dm, where 
AUB 

02 
/ / dm = 15 • y/2 - 1 • ^/25 = 15 • V2 - 5, we see that 
1 1 R AUB 

02 02 02 

/ / dm ф / / dm 2 / / d m . 
-4 . . 1 - . 4 D ЛUБ 

D 
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E X A M P L E 2. Let again X = [0,oo], S = B(X). Let m(E) = s u p x , E e S. 
x£E 

Then m is a V-measure on ( X , S ) . Let a function / and sets A, B be as in 
Example 1. Then 

v v 

/ / dm = 15 • 1 - 1 • 11 = 4 , / / dm = 15 • 2 - 1 • 27 = 3 and 

v 

/ dm = 15 • 2 - 1 • 27 = 3 . 

AUB 

It means that 

V 

/ 

v v v 
I f àmф l f ám V / / dm. 

AUB 

3. New definition of the ©-integral for real functions 

In order to remove shortcomings of the ©-integral, we have to change its 
definition for real functions given in [C]. 

As it was mentioned above, the operation © with properties (Al) - (A7) is 
either V or an operation © r , r > 1, which is generated on [0, oo] by the normed 
generator g, g(x) = xr. 

Let © / V . Let us extend the generator g of the operation © into the odd 
function g putting 

f g(x) for x e [0, oo], 
g(x> = 1 / \ * c r n\ (7) 

I — 9\~x) i ° r x € [—co,0) 
(or briefly g(x) = sgn x • g(|.c|), x e [-co, oo]). 

Then we can define a binary operation © on the interval [—oo, oo] by: 

x®y = g-1[g(x)+g(y)]. (8) 

One has ©|IQ I = ©, and it can easily be shown that the operation © is 

also commutative, associative and continuous. The expression oo© (—oo) is not 
defined. 

Using the extended operation ©, a pseudo-subtraction © can be introduced. 
Let us put 

x 0 y = x © (—y) for all x, y e [—oo, oo] (9) 

except expressions oo © oo and (—oo)©(—oo), which are not defined. 
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Then, using (8) and (7) we get 

xQy = g~l[g(x)-g(y)}- (10) 

Note that this way of extending pseudo-additions was proposed in [7]. 
Instead of the definition given in [C], we suggest using the next one. 

DEFINITION 1. Let (X,S) be a measurable space with a 0-measure m. 
0 / V , and let / : X —> (—oo,oo) be a measurable function. Then 

© © © 

f dm = / / + dm 0 f~ dm (11) 

x x x 

if at least one of the functions / + , / " is integrable. 

PROPOSITION 1. Let (X,S) be a measurable space with a ®-measure m, 
© 

0 ^ V. / / / : X —• (—00,00) is a measurable function (for which J f dm is 
x 

defined), then 

(12) / / dm = g 1 (gof)d(go m) 

x L x J 
where g is the extension of the normed generator of the operation 0 , and the 
integral on the right-hand side is Lebesgue. 

P r o o f . To prove this proposition it is enough to use Definition 1, for­
mula (4), the fact that 0JrQ ^1 = 0 , and additivity of the Lebesgue integral. 

Concretely: 

e © w 
í f d m = í f+ drnG í f~ dm 

J { x 

f+ ám\-g\ f~ dm 

= 9-1\g\9-1(j(9of+)d(9orn)\ -g g^ ( j 

= 9~1\ í(9of+)d(gom)- J(gof-)d{gom)\ 

*• x * ) 

Í9°f) d(g o m) 

(g°f ) d(ífom) 
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• 
EXAMPLE 3. Let K, <S, / be as in Example 1. The operation 0 2 is generated 
on the interval [0, oo] by the normed generator a, g(x) = x2. So the extended 
generator g of 0 is given by g(x) = (sgna;) • x2, x G [—00,00]. Therefore 

ffo/ = 225-1 [ 0 , 2 ) - l - L 

and so, by (12), we obtain 

[2,27] 

/ / dm = g_1[225 • 2 - 1 • 25] = g_1(425) = V-425. 

x 
In addition, if we consider sets A, B as in Example 1, we obtain 

02 02 02 

J f dm = V216 , j f dm = \/209 and / / dra = >/425 . 

A B AUB 

02 02 _ 02 
So, it holds J f dm = J f dm 0 2 J f dm. 

AUB A B 

The last property can be proved generally. 

LEMMA 1. Let (X,S) be a measurable space with a (B-measure m, 0 7-= V. 
Let / : X —> (—00,00) be an integrable function. Then the function v - defined 
on S by 

uf(A) = J f dra, A Є S ђ 

where the integral is given by (11), is a ®-additive function on S. 

P r o o f . Since 0 7-= V, the operation 0 is generated by the normed gener­
ator g, and for A , B E 5 , A D B = 0, we have 

vf(A) ® vf(B) = / / dm / / dm 

' Г 1 

B 

g[ I fdm) +ÿ[ y /dra 

g ( (9°f) d(g o m) = r1|š[5-1í /(5o/)d(flom)j -

= 5 _ 1 | / ( j o / ) d ( $ o m ) l = J fdm = vf(AUB). 
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П 

PROPOSITION 2. Let (X,S) be a measurable space with a ®-measure m, 
0 7-- V, and let f: X —> (—00,00) be an integrable function. Then the function 
vf defined in Lemma 1 is a finite a-®-additive function on S. If f is non-
negative, then v* is a 0-measure. 

P r o o f . By Lemma 1, the set function v, is a 0-additive function on <S. To 
prove the a-0-additivity of v*, it is enough to prove its continuity from bellowr. 

Let An E <S, n = 1,2,... , and let Ax C A2 C • • • C An ... , An /A, 
A E S. Then, from continuity of g and properties of the Lebesgue integral, we 
get 

r 
lim vAAn) = lim / / dm = lim g~l / ( g o / ) á(g o m) 

n—>oo J n—•oo J n—•oo J 

= 9-1 

í - 1 

lim / (g o f) á(g o m) 
n-+oo J 

An 

" / e \ "i e 

= s-г f(9°f)d(g o rn) 

= f åm. 

Finitness of the function v r follows from integrability of / . 

Finally, as 0 has already been extended on the interval [—00,00], it makes 
sense for functions / , h: X —> (—00,00) to put: 

( / 0 h)(x) = f(x) 8 h(x) = g-1 [S(f(x)) +g(h(x))] . 

Then it can be proved (technically in the same way as in Proposition 1 or 
Lemma 1) that 

/ ( / 0 h) ám = / / ám 0 / h dra 

X X X 

(13) 

for all functions for which the expressions on both sides make sense. 

It means that, in case 0 7-= V. the suggested extended integral for real function 
is 0-additive. 

Similarly, we can show that 

/ cf dra — c f dra 

x x 
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for each measurable function / , for which the integral is defined, and each 
constant c <E (—00,00). It means that the proposed integral is a homogeneous 
functional. • 

Due to the obtained results, we can make the conclusion that, if 0 differs 
from V, Definition 1 is an appropriate definition for the 0-integral of real-valued 
functions. 

Remark 1., E. P a p [8] has introduced an integral using a pseudo-addition 0 
on the interval [a, b) C [—00,00], a pseudo-multiplication eg, and a 0-measure 
m. According to [8], the integral is 0-additive and cg-homogeneous. 

If 0 is a pseudo-addition with a strictly increasing generator cp, then the 
pseudo-multiplication is given by u eg v = (p~x [(p(u) • ip(v)] . For a measurable 
function / : X —» [a, b] the integral can be expressed in the form 

Г 
/ / g) drтz = ҷ"1 / (ҷ o /) d(ҷ o 

x 

m) 

x 

where (pom is the Lebesgue measure. 

Our 0-integral for real-valued functions, in case 0 ^ V, is based on the 
pseudo-addition 0 generated on the interval [—00,00] by the function g, and 
on ordinary multiplication of real numbers (and on the 0-measure), what means 
that it is of P a p 's integral type on [—00, 00]. 

Any P a p ' s integral based on a pseudo-addition 0 with a generator (p for 
which (p\\Q 0 0 ] = g (we continue in the above used notation) is a possible ex­
tension of M a r i n o v a ' s integral for non-negative functions. But the obtained 
integral is homogeneous (with respect to ordinary multiplication) only in the 
case of (p = g. 

In fact, let 0 be a pseudo-addition on the interval [—00, 00] with the additive 
generator (p for which </?| I-Q I = g. Let ordinary multiplication be taken as the 

pseudo-multiplication eg). Then u®v = u-v = <p-1 [(p(u)• (p(v)] , and the integral 
is • -homogeneous. 

Let a > 0 . Then (p(a) = g(a) > 0, and 

a2 = a • a = (p~x [<p(a) • (p(a)] or <^(a2) = [^(a)] • 

Hence, (p(a) = \fy>(a2) = y/g(a2). Simultaneously, we have 

a2 = (-a) • (-a) = (p~x [<p(-a) • (f(-a)] or (p(a2) = [y>(-a)J , 

what is the same as 
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As the generator (p is strictly increasing, from —a < 0, we get ip(—a) < 

y > ( 0 ) = 0 . 
Hence, p(a) = ^/g(a2) and (f(—a) = — \/g(a2), a > 0. 
We have proved ip(—a) = —</?(a), a > 0, what means that ^ is an odd 

function. Since both functions (p and g are odd and <p\\r\ 0 0] = g = g|[Q ^ i , 
we have (p = g. 

So the extension of M a r i n o v a ' s integral suggested in this paper is the 
only possible homogeneous extension. 

So far we have dealt only with operations 0 different from V. The latter 
has been excluded from our considerations as it has no generator. The question 
arises how V could be extended on the interval [—oo, oo]. Considering that V 
on [0, oo] is the limit of the operations 0 r , r > 1, i.e., 

x V y = lim x 0 y = lim {/xr -f- yr , 
i—>-oo r—>-oo 

it is natural to suggest extending V on the interval [—oo, oo] in the same way 
as the limit of the extended operations 0 r . Using this procedure we get: 

x V y = lim x ©_ y = sgn(x + y) • (|x| V \y\) . 
r—>oo 

If we again put x Qy = xV (—y), the integral of real measurable functions can 
again be defined by (11) (in Definition 1). 

E X A M P L E 4. Let X = [0,1], S = B(X), m(E) = supx , E G S. Then m 
xeE 

is a V-measure on (X,S). Let us consider the functions f,h: f(x) = x and 
h(x) = —x2, x € X. Then 

(/V/>)(*) = { * 6 * * € [ 0 , 1 ) , 
I 0 for i = l . 

v 
Using the fact that ffdm=supx- f(x), (see, e.g., [1]), we get: 

xєE 

V 

Jfdm=supx2 = i a n d j h d m = 0 y i rh~dm\ = — sup a:3 = — 1, 
xЄX 

and, analogously, f(f^h) dm = l 

From 

/. 
ffdmvlhdrn^

 v

f 

{ x i v ( - l ) - 0 and / 
x 
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V V v 

we conclude that J ( / V / i ) dm -fi J f dm V J h dm. 
X X X 

The previous example has shown that the suggested extension of V and, 
consequently, the definition of the integral for real functions are not appropriate. 

Different properties of integrals with respect to 0 r - and V-measures in the 
case of real functions are caused by an essential difference between 0 r and V. 
Their common properties are expressed by axioms (A1)-(A7). As we can see, 
both types have such important properties as associativity (A2) and continuity 
(A7). But while all operations 0 r are Archimedean, the operation V has not 
this property (a binary operation 0 on [0, oo] is said to be Archimedean if for 
each x,y G (0, oo) there exists n G N such that x 0 • • • 0 x > y). Contrary 

_n-times 

to the Archimedean operations 0 r which extensions 0 r remain continuous and 
associative, the extended operation V is neither associative nor continuous. 

Indeed, if a G (0, oo], then 

(a V a) V ( - a ) = 0 , but aV [a\/ (-a)] = a V 0 = a , 

and further, if 0 < an /* a, then 

lim [aV (-a)] = a , but a V ( - a ) = 0. 

Loss of continuity and associativity of the operation V is the reason why it 
is impossible to introduce for real measurable functions a reasonable integral 
based on the operation V. 

In the remark that follows, we turn briefly to the question of defining pseudo-
subtraction. 

R e m a r k 2. W e b e r [13] has introduced a subtraction B on the interval [0,1] 
based on a r-conorm JL (i.e., on a binary operation from the unit square into 
the interval [0,1] which is commutative, associative, non-decreasing in each ar­
gument, and with 0 as a neutral element) in the following way 

a B b = inf{cG [0,1]; 6i_c > a} . (14) 

The operations 0 considered in this paper are generalized t-conorms on the 
interval [0, oo]. We could modify (14) and define the pseudo-subtmction by 

a B 6 = inf {cG [0, oo]; b®c>a}. (15) 

For 0 < b < a < o o i t holds a B b = a 0 b, but for a < b we have a B b = 0, and 
so this way of defining pseudo-subtraction is not appropriate for us. 

But, if we used the extended operation 0 and defined pseudo-subtraction by 

a B b = inf {c G [—oo, oo] ; b® c> a} , 

we would come to the same results as by means of 0 given by a Q b = a 0 (—6) • 
This remark is valid for both types of the operation 0 which have been intro­
duced in this paper, i.e., for 0 r and also for V. 
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