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Math. Slovaca 29,1979, No. 4, 333—345 

INTEGRAL REPRESENTATIONS 
OF NON-LINEAR FUNCTIONALS 

JAN SIPOS 

The purpose of the present paper is to establish the integral representation of 
some non linear functional L on SB (SB is a linear lattice of real functions on a space 
X) in the form 

Lf=jfdfi for / in SB, 

where \i is a suitable set function depending on the functional L. 
When we consider such a general integral representation, several questions arise. 

What is the suitable family of sets Q) on which /i should be defined? Is this 
representation unique? What conditions (imposed on ii) guarantee that ff &ii can 
be defined? 

In papers [3] and [4] we presented the theory of integration with respect to some 
non-additive set functions; namely to the pre-measure (a non negative, monotone, 
at an empty set vanishing set function n). By the help of this theory of integration 
we are able to prove the representation theorems for a special type of nonlinear 
order continuous functional, namely for pre-linear, strong sublinear and strong 
superlinear functionals. These are natural generalizations of a non-negative linear 
functional. 

In the original Riesz representation theorem [2] the space SB is the space of all 
continuous real functions on the interval (0,1) and L is a bouded linear functional. 
Many authors have extended and generalized the classical studies of Riesz for the 
case when X is a special (e.g. compact) topological space, SB = ^(X) is the space of 
all continuous functions on X and L is linear. So the question arises whether in the 
case SB = ^(X) or ^o(X) a nonlinear L may be represented as an integral. We show 
that the answer is positive for a so-called strong sublinear order continuous 
functionals. 

To prove the last mentioned problem we shall need the Daniell extension scheme 
for strong sublinear functionals. We show that this extension scheme works also in 
this case, but the method used is only a slight modification of the method given by 
Riecan (see [1]). 
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The last part of this work deals with the representation theorem for not 
necessarily continuous functional. 

§ 0. Preliminary 

Let X be a non empty space. By an affine pre-Iattice of functions we mean 
a family of functions S£ defined on X with following property 

(i) If / e !£, then af e5£ for every real a. 
(ii) If / e 5£, then f /\a and /' — / A a are in 5£ for every non-negative real a. 

Lemma 1. If !£ is an affine pre-Iattice, and f e 5£, then f+ and f~ and also in 5£. 
Proof. This follows from the definition of an affine pre-Iattice, since 

f+ = f-f A0 and / " = - ( / A 0 ) . 

A functional L defined on an affine pre-Iattice ££ will be said to be pre-Iinear iff 
(i) L is monotone (f^g^Lf^Lg). 

(ii) L is homogeneous (L(af) = a Lf). 
(iii) L is additive in a horizontal sense, i.e., 

Lf = L(fAa) + L(f-fAa) 

for / e 5£ and for a non-negative real a. 
A functional L is said to be order continuous or only continuous iff 
(i) fn/f=^g(fn,ge$) implies limn Lfn=^Lg. 

(ii) fn\f = g(fn,ge$) implies limn Lfn^Lg. 

Lemma 2. IfS£is an affine pre-Iattice, L is a pre-linear functional on ££, then 

Lf = Lf+-Lf~ 

for every f in 5£. 
A pre-space is a pair (X, 2), where 3) is a family of subsets of X containing the 

empty set. 
An extended real valued, monotone, at empty set vanishing set function defined 

on 3) is called a pre-measure. 
A pre-measure \i is called continuous iff 
(i) An/A =>B(An, Be<3)), implies limn / i (A n )^ .u (£) . 

(ii) A n \ A <=B, /x(Ai)<oo (An, B eQ)) implies limn ^i(An)=\fi(B). 
The function /:X—»( — oo, oo) is£# — measurable or only measurable if the sets 

{x ; f(x) = a} and {* ; f(x)^ —a} are in 3) for every a >0. 
We denote by !£($)) the set of all 3)-measurable functions, f eS£(3>) is called 

a simple function if the range of / is finite. The set of all simple functions from 
5£(3) will be denoted by £s(<3)). 
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In [3] we introduced a notion of integration with respect to a pre-measure as 
follows. 

Let r J b e a family of all finite subsets of ( — oo, oo) which contains zero. Let F e : f 
with F= {bm<bm-\< ... < 6 o = 0 = ao<ai< ... <an}, and let / be a ^-measura­
ble function. We put 

S(f, F) = j?(ai-ai-1)n({x; f(x)^at}) + 
i = \ 

+ ^(bi-bi-1)n({x;f(x)^bi}) 

if the right-hand side expression contains no expression of the type oo- oo. 
Since & is directed by inclusion, the triple (S(f, F), ZF, ID) is a net. We put 

ff = ^f=ffdii=\imS(f,F) 
Fe& 

if the limit exists. 
/ is called integrable iff $J is finite. We denote by !£\ =5£\ (X, Q), pi) the set of 

all integrable functions. 
The main properties of S^ are: 

1° <$»XA =V(A) for A in 9). 

2° ^ / = s u p { ^ a ; ge%s(Q)),g^f} f o r / S O . 
3° !£\ is an affine pre-lattice. 
4° &„ is a pre-linear functional on 5£\. 
5° If pi is order continuous on ®, so is Jtl on 5£\. 

§ 1. Representation theorems on measurable functions 

In the following two assertions ££ will be an affine pre-lattice of elements of 
Z£(Q)) with Z£S(Q)) a5£. We shall say explicitly whether 5£ has any other properties. 

Lemma 3. Let L be a pre-linear functional on 5£. Let pi be a set function on Q) 
defined by 

II(A) = II^(A) = LXA-

Then \i is a pre-measure and 

L / S 4 / 

for f in %+. 
Proof. Since L is monotone and L%A = 0 , it is clear that \i is a pre-measure. Let 
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n 

Q G-w (9)) and let au a2, ..., an be the range of g ; then g = 2Xa. - A . - O X A ^ where 
1 = 1 

^ = \* ; g (*) = a.} and a0 = 0. By the horizontal additivity and homogenity of L 
n n 

L g = S ( f l ' ~ fli-l) L*A. = 2( f l i ~ fli-lM-^i) = ^ g • 
. = 1 i = l 

Thus by Lemma 2 L# =/^Mg for every g eS£s(3)). Let / be in S£+ and let g be in 
i?,(@) with flfg/; then 

L/.SLflf=^flf 
and so 

L / ^ s u p { ^ ; # eSBs(®), g S / } =.*./ 
by 2°. 

Theorem 4. Let L be an order continuous pre-linear functional on SB. Then there 
exists a unique order continuous pre-measure /i = fiL on 3) such that 

L / = ^ / 
for f in L. 

Proof. Let |UL be the same as in the last lemma. Let / be in S£+. By 
Proposition 13 of [3] there exists a sequence of non-negative S) -simple functions 
/„ eSB+ with / . / " / . By the preceding lemma L/n =$Jn. By the continuity of L and 
the theorem of Beppo—Levi (see [3]), we get for ^M 

L/ = limn Lfn = Hmn 3Jn = J J. 

Thus we showed that 

L / = ^ / 
for / in SB+. 

If now / is from SB, then the proof follows by 

L/ = L/+-L/- = ^ r - ^ r . 

It remains to show that JU is monotone and order continuous on 3), but this is an 
easy consequence of the order continuity of L and the definition of [i. The unicity 
of [i is trivial. 

We turn now our attention to the case when 3) and SB have some special 
properties. Until Corollary 6 S> = SB will be a ring, SB <z\S£(SB) will be a linear lattice 
with Stone's condition containing SBS(SB) and L is an order continuous strong 
sublinear (superlinear) functional on SB, i.e., L is pre-linear and 

L < / + a ) ^ L ( / л Ә ) + L ( / v ö ) Š L / + Lø 
(L(f + й ) Š L ( / л f l ) + L ( / v 9 ) Š L / + Lfl) 

for / and g from if+. 
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Theorem 5. Under the above conditions for J£ and L there exists a unique order 
continuous strong submeasure (strong supermeasure) \i on &> such that 

L/ = ^ / 

for every f in 5£. 
Proof. Since ££ is an affine pre-lattice and L is pre-linear it remains only to show 

the strong subadditivity (superadditivity) of [i. 

ti(A nB) + fi(A vB) = L%AOB + L^A^B = L(XA AXB) + 

+ L(XAVXB)=:LXA +hXB = I*(A) + ii(B). 

The case of a strong superlinear operator is similar. 

Corollary 6. Let I be an order continuous monotone linear functional on !£. Then 
there exists a unique o-additive measure \i on £f such that 

for every f in 5£. 

§ 2. The Daniell extension scheme 

In paper [1] Riecan proved that the Daniell extension scheme works also in the 
case of subadditive functional. In this paragraph we shall show that this is true also 
when the extended functional is a strong sublinear map defined on a lattice of 
functions satisfying Stone's condition. 

Let if be a set of functions and let L be a functional defined on 5£. L is said to be 
exhausting if fn ^/n+i.= ... ^ / , /n , f e5£ and limn L/n<oo implies 

l im n L( / n + 1 - / n ) = 0. 

In this paragraph L will be a linear lattice of functions with Stone's condition, and 
L will be a continuous, strong sublinear and exhausting functional on 5£. 

Let J b e a family of functions with % =>5£. We say that Jt is LCT full iffO^g^f, 
fn/f, /„ e-S? (n = 1, 2, ...) and limn L/n = 0 implies geft. 

Theorem 7. There exists a unique continuous strong sublinear extension L o / L 
to the smallest LCT full, conditionally complete o-lattice 2?=>5£. 

We give first the construction of L, the proof will follow in the subsequent 
lemmas. 

We put 

5£a = {g ; 3gneS£, gn/g, limn L0„<oo} 
5£a = {h\ 3hn e5£, hn\h, limn L/zn > - oo} 
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and define 

Finally we put 

L a(ø) = lim„ Lgn gn/g,gnє5£. 
Lô(1г) = lim„ Lhn hn\h,hnєž£. 

£={f;Ve>0 3ge£a,hece6,h^f^g,La(g-h)<e} 
Lf = mi{Lag;g^f,geSea}, for feS. 

Lemma 8. The definitions of La and L6 are correct. 
Proof. Let fe££a, and fn/f, gn/f, where /„, gne$. Then 

L/„=limm L(fnAgm) 
and so 

lim„ L/„ =lim„ limm L(/„ A0m)^lim„ Lgm. 

The other relation may be obtained in this way too. The proof of the correctness of 
L6 is similar. 

Lemma 9. La and L6 are strong subadditive, positively homogeneous and 
horizontal additive functional. Moreover 

La(-f)=-L6f and L6(-f)= - L a / . 

Proof. If/, g eJ£a, then there exists /„, gn e^£ such that fn/f and g n /g i ,andwe 
may assume that /„, g„^0. 

Then 
L(fnAgn) + L(fnvgn)^Lfn + Lgn; 

limiting this we get 

La(/Afif) + L a ( / v ^ ) ^ L a / + Lag. 

Let now a^O. Then clearly La(a/) = a Laf, obviously fnj\a/f/\a and /„ —/« Afl / 
f — f Aa and so from 

L/„=L(/„Aa) + L(/„-/„Afl) 
we obtain 

La/ = La(/Aa) + L a ( / - / A a ) . 

The other assertions of the lemma are trivial. 

Lemma 10. 2 is a linear lattice with Stone's condition. 
Proof. Let e>0. Let / , ge&; then there exist elements fu gie&s and /2, 

g2e£a such that / i S / S / 2 , g^g^g2 and La(f2-f1), La(g2-gi)<e'2- Then 
/i + 0i S / + flf ^f2 + g2,fl + g1eX6,f2 + g2e&aandLa((f2 + g2) - (fi + 9i))<£> 
since La is subadditive on !£a and so f + g e£. 
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The proof of the assertions fvg,fAg,f-g,f — fAg,afeJ£ is similar. Let now 
a 1^0; then/iAa ^ / A A ^ f2 A a ; /i X a is a member of if6 and f2 A a is f rom <£a and 
f2Aa-fiAa ^ / 2 - / 1 , and so by the mono tonicity of La we have 

La(/2Aa - / , A f l ) S L ( / 2 - / 1 ) < e / 2 . 

Hence / A O is from 5 . 

Lemma 11. L is a strong sublinear functional on & and 

L/ = sup {L6h ;h^f,h e£e6}. 

Proof. I. We prove first the second assertion. Let h^f^g, La(g —h)<e, 
h e££6, ge££a. Then 

Lf^Lag ^La(g -h) + L6h<e+ L6h 
and so 

L / ^ s u p {L6h ;h^f,h e££6}. 

The opposite inequality is trivial. 
II. Let e>0. Let / , ge&+, take fl9 gxe^£a with Lf + e ^ La/i, / ^ / i and 

Lflf +ei^La^i, g^gi. Since i?a is a lattice and fvg ^fivgu and f Ag ^ fiAguwe 
get 

LZ + Lg f+Ze^L^ + L^ ! 
^La(/1vflf1) + La(/1ASf1) 
^L( /V f ir) + L(/A^). 

III. By Lemma 9 and the definition of L it is clear that L is homogeneous. 
IV. Let now fe£ and a ^ 0 ; then 

L / = inf {Laflf;fifG^a,^^/} 
= inf {La(gf Aa) + La(gf -g Aa); g e££a, g = / } 
^inf {Lagi; g^^a, gi^f Aa} + 
+ inf {Lag2;g2e££a,g2^f-fAa} 
= L( /Aa) + L ( / - / A a ) , 

where we used the horizontal additivity of La. 
Now we prove the opposite inequality. 

L/ = sup {L6h ;he£6,h ^f} 
= sup {L5(hAfl) + L6(h —hAa); h eS£6, /i = / } 
^ s u p {L6hx; h\e5£6, hx^f /\a} + 
+ sup {L6h2; h2eS£6, h2^f — f Aa} 
= L(fAa) + L(f-fAa). 

V. The mono tonicity of L follows from its definition. 
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Lemma 12. ([1] Proposition 3). Let fn e£ (n = 1, 2, ...) / „ / / and {Lfn} be 
bounded. Then f e £ and 

L/ = lim„ L/„. 

Note that also the dual assertion to the last lemma holds. 
Proof of T h e o r e m 7. It is easy to see that £ is a conditionally complete 

a-lattice and that £ is La full. Hence it suffices to prove the uniquess of L (see [1]). 
Let H be a strong sublinear, continuous functional on £ which is an extension of L. 
Put 

Jf={fe£;Lf = Hf}. 

By the assumption ./V=> j£. Moreover 

Indeed, take /„ e£ with / „ / / . Then 

Lf = L0/ = lim„ L/„ = lim„ H/„ = H/. 

Similarly Lf = H/ for / in £s. 
Let fe£. Then to any E>0 there exists g and h such that g eJ£a, he<£s, 

h^f^g and La(g-h)<r. Therefore 

Lh^Lf^Lg=L(h+g-h)<Lh+f 
and 

Lh=Hh^Hf^Hg=Lg <Lh+£. 

From this it follows | L / - H / | < e . Therefore L/ = H/ and so 

We shall show now that the continuous extension of L need not exist when L is 
not exhausting. 

E x a m p l e 13. Let X= {0, 1, ..., n, . . . } , £= { / ; / is a real valued function on X 
and f(x) = 0 except on a finite subset of X } . Let L/ = max / - m i n / . 

Then X is a linear lattice with Stone's condition and L is a strong sublinear map 
on Se which is order continuous. The conditionally complete a-lattice generated by 
5e is the set of all bounded real functions on X, denote it by £. L has only one 
extension and this is 

Lf = sup / — inf / . 

It is clear that this extension is not continuous since if 

A „ = X - { 0 , 1, . . . , « } , 
then 
XA„ \ 0 and limrt LxAn = 1. 
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§ 3. Representation theorems on a lattice of functions 

Theorem 14. Let !£ be a linear lattice of functions with Stone's condition. Let L 
be an exhausting, order continuous strong sublinear functional on 5£. Then there 
exists a o-ring Sf and a unique continuous strong submeasure [i on Sf such that 

L/ = ^ t / 
for f in 5£. 

Proof. By the preceding theorem there exists a unique extension L of L to the 
conditionally complete a-lattice £ with Stone's condition containing X. Put 

Vo={{x;f(x)=l};fe£} 

Let fe£. Put /„ = n ( / A l - / A ( l - l / 7 i ) ) ; then fne£ and /„\x(x;/(x^i} . 
Since J? is a conditionally complete a-lattice, we get Xix;/(x)i=i} e£. In other words 
we proved that if A e&o, then XA e£. And so we may put 

lio(A ) = LXA for A in :3V 

Let Sf be a a-ring generated by 6 0̂. We put 

li(A) = sup {iio(B); B c A, B e<fo}. 

I. We prove first that Sf0 is a ring with the following property: 
If A„ eif0 with An c.A„+i and with limrt JU 0 (A„)<O° , then u„A„ etf0. 
Let An = {x; /„(*) = 1} ; then %Art ^XA„+1 and lim„ LxAn<oo. By the theorem of 

Beppo—Levy which holds for L on £ we get lim„ XAn e £, from which we obtain 

u„A„ = {x ; limrt XA„ = 1} e ¥0. 

Let now A, B e^0; then XA, XB e£. Since £ is a linear lattice, we get that the 
sets AuB = {x ; XA VXB = 1} and A -B = {x ; XA ~XB = 1} are in £f0. 

II. We shall show now that every function / eSt is Zf0 measurable. Let a > 0 and 
let / e i ? . Then since J? is a linear space, the sets 

{x ; / (x ) iSa} = { x ; ( l / a ) / ( x ) § l } , 
{x ; / ( x ) g - a } = {x ; - ( l / a ) / ( x ) I = l } 

are from ,9V 
III. From Theorem 5 we get that L/ = S^J for / in J£\ especially 

for / in J£, since L is an extension of L. 
It is clear that n is a continuous strong submeasure on Sf and that ^O = JU/5^0; 

hence 
L/ = ^ / 

for all / in if. 
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Theorem 15. Let ££ = <€(X) be a family of all continuous functions on 
a topological space X. Let L be an exhausting order continuous strong sublinear 
functional on 5£. Then there exists a o-ring Zf and an order continuous strong 
submeasure n on tf such that 

for every f in S£. 
Proof. The proof is 1) a simple conclusion of the fact that a family of all 

continuous functions on a topological space is a linear lattice with Stone's condition 
and 2) the last theorem. 

Since every linear order continuous functional is exhausting we have: 

Theorem 16. Let 5£ = C€(X) be a family of all continuous functions on 
a topological space X. Let L be an order continuous linear monotone functional on 
5£. Then L can be represented as an integral with respect to some measure on some 
o-ring. 

Theorem 17. Let X be a locally compact Hausdorff space. Let C€0(X) = 5£be the 
set of all continuous functions with compact support. Let L be an exhausting order 
continuous strong sublinear functional on Z£. Then there exists a o-ring S£ of subsets 
of X containing all compact G6 sets and an order continuous strong submeasure \i 
on Sf with the properties: 

H(E) = ml {pi(U)\ EczUetf, U is an open set} 
li(E) = sup {ii(C);C<zE,Ce¥,Cis compact} 

And moreover for f in 5£ 

L/ = ^ / . 

Proof. Let Sf, S£0 and /x be the same as in the proof of Theorem 14. We shall 
prove first that the compact Gs sets are in Sf. 

Let C be a compact G6 set. Let C = nnGn, Gn being an open and G„ a 
compact set. Let /„ be a continuous function which is 1 on C and vanishes on 
X - G „ . Clearly fn\xc and fne£ for n = 1, 2, 3, ...,. By the theorem of 
Beppo—Levi %c e 5 and so C e Sf0. 

We shall show now that \i has the desired property. Let E e£f with ^(B)<oo; 
then XE €&+ (see the proof of Theorem 14). Let gne£a,hne%6, hn ^XE=gn and 
La(gn-hn)^l/n. 

Let 
Cn = {x\hn(x)=\l/n} 

and 

Un = {x,gn(x)>l-l/n}. 
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The sets C„ are closed since h„ is the infimum of continuous functions and the sets 
U„ are open since g„ is the supremum of continuous functions. Clearly 

and so 
XE^Xun^gn + (l/n)xun 

Li(U„) -ii(E) = Lxun - LXE 
^Lg„+ii(U„)/n-Lh„ 
^L(g„-h„) + ii(U„)ln 
^(l+li(U„))/n, 

hence 
li(E) = inl{yi(U); Uz>E,Uisopen, UeSf}. 

Now it is obvious that 
h„-h„Al/n^Xcn. 

By the mononicity and horizontal additivity of L 

LH„-L(h„Al/n)^-ii(C„)^ii(E)^L(g„), 
hence 

li(E)-n(C„)^Lg„ -Lh„ +L(h„ A 1/n) 
^L(g„-h„) + L(h„Al/n) 
^(l+li(E))/n. 

And so by the compactness of C„ we get 

li(E) = sup {11(C); CczE,C — compact, Ce£f}. 

If ii(E) = 00, then the proof is clear. 
We generalized some representation theorems of linear functional. We do not 

believe the ordinary theorem about the representation of the linear functional on 
the space 5£p to be valid, for sublinear functional, since the most usefull and 
deepest theorem, the Radon—Nikodym theorem is not valid for strong 
submeasures. 

§ 4. Representation without continuity 

We turn our attention to the case of not necessary continuous functional. We 
give first the representation theorem for linear functional. 

Theorem 18. Let 5E be a linear lattice of bounded functions with J£s(.s4)c:J£ cz 
££(.<rt). (.<rt is an algebra of subsets of a space X). Let I be a linear monotone 
functional on !£. Then V(A) — IXA is a finitely additive measure on .tf and 

lf=(fdv 
for f in £. 
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Proof, v is clearly a finitely additive measure. If / is a simple function, then 
obviously // = / / dv. If / is from SB* and / . = / , then If^lf = / / dv and so 

/ / ^ sup / f d v = / / d v = . A / 
tef 

f—simple 

We proved that 
lf^ffdv=#vf 

for / in S£*. Let / be such a function from SB* that // > / / dv. We may assume that 
/ ^ l . T h e n 

/ l = / ( l - / ) + / / > ^ v ( l - / ) + y v / ^ ^ v 1, 

a contradiction. And so lf = $f for / in if+. Hence 

// = //+ - //" = A / + " * / ~ = -*v/, 

and so we get 

// = * / . 
for / in # . 

For the rest of the paper s4 will be an algebra of subsets of X. SB will be a linear 
lattice of some bounded functions from SB (s4) which contains all simple functions. 
L will be a strong sublinear functional on SB and [i will be a strong submeasure on .9/ 
defined by \i(A) = L%A for A in s4. 

Let us denote by Jftl the set of all non negative, finitely additive measures v on s4 
with v(A)^fi(A) for A in .7/, and by JiL the set of all monotone, linear functionals 
on SB with //L=L/ for / in SB*. 

We shall need the following two lemmas for proving the main theorem of this 
paragraph. 

Lemma 19. Lef / be in S£+; then 

^ / = m a x : i / , 

Proof. See Theorem 22 of [4]. 

Lemma 20. Let f be in SB*; then 

L / = max // 

Proof. Let / be in SB*. We define a linear functional /0 on the linear space 
E0 = {af; a is real} by h(af) = aLf. By Theorem 6 of [5] there exists an extension / 
of /o such that I ̂ L on SB* and / is linear and monotone. Clearly L/ = // and so 

L / = max //. 
/ Є Л Í L 
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Theorem 21. L/ = J>J for f in £. 
Proof. By Lemma 3 

L / i = ^ / 
for / in £+. 

We prove now the opposite inequality. Since / is in J£+, we have 

L/ = max// = max l / d v / ^ s u p | / d v = ^ , < / . 

The first equality follows by Lemma 20, the second by Theorem 18 and the last by 
Lemma 19. Hence L/ = SJ for / in 58+. The proof for a not necessarily non-negat­
ive function is now a simple conclusion of Lemma 2. 
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ПРЕДСТАВЛЕНИЕ НЕЛИНЕЙНЫХ ФУНКЦИОНАЛОВ В ВИДЕ ИНТЕГРАЛА 

ЯнШипош 

Резюме 

Главная цель, которую мы преследовали - определить по нелинейному функционалу Ъ 
пред-меру ц = ^ ь , и получить представление Ъ в виде интеграла. 
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