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INTEGRAL REPRESENTATIONS
OF NON-LINEAR FUNCTIONALS

JAN SIPOS

The purpose of the present paper is to establish the integral representation of
some non linear functionals L on & (& is a linear lattice of real functions on a space
X) in the form

Lf=[fdu for f in %,

where @ is a suitable set function depending on the functional L.

When we consider such a general integral representation, several questions arise.
What is the suitable family of sets & on which u should be defined? Is this
representation unique ? What conditions (imposed on u) guarantee that [f du can
be defined?

In papers [3] and [4] we presented the theory of integration with respect to some
non-additive set functions ; namely to the pre-measure (a non negative, monotone,
at an empty set vanishing set function 1 ). By the help of this theory of integration
we are able to prove the representation theorems for a special type of nonlinear
order continuous functionals, namely for pre-linear, strong sublinear and strong
superlinear functionals. These are natural generalizations of a non-negative linear
functional.

In the original Riesz representation theorem [2] the space £ is the space of all
continuous real functions on the interval (0,1) and L is a bouded linear functional.
Many authors have extended and generalized the classical studies of Riesz for the
case when X is a special (e.g. compact) topological space, &£ = €(X) is the space of
all continuous functions on X and L is linear. So the question arises whether in the
case &£ = 6(X) or €o(X) a nonlinear L may be represented as an integral. We show
that the answer is positive for a so-called strong sublinear order continuous
functionals.

To prove the last mentioned problem we shall need the Daniell extension scheme
for strong sublinear functionals. We show that this extension scheme works also in
this case, but the method used is only a slight modification of the method given by
Riecan (see [1]).
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The last part of this work deals with the representation theorem for not
necessarily continuous functionals.

§ 0. Preliminary

Let X be a non empty space. By an affine pre-lattice of functions we mean
a family of functions £ defined on X with following property
(i) If feZ, then af e £ for every real a.
(ii) If feX, then faa and f—fAa are in &£ for every non-negative real a.

Lemma 1. If £ is an affine pre-lattice, and f € £, then f* and f~ and also in %.
Proof. This follows from the definition of an affine pre-lattice, since

f'=f=fAa0 and f = —(fA0).

A functional L defined on an affine pre-lattice £ will be said to be pre-linear iff
(i) L is monotone (f=g=>Lf=Lg).

(ii) L is homogeneous (L(af)=a Lf).

(iii) L is additive in a horizontal sense, i.e.,

Lf=L(fAaa)+L(f—fAa)

for f e £ and for a non-negative real a.
A functional L is said to be order continuous or only continuous iff
G) fu/'fZ29(fn, 9 €ZL) implies lim, Lf, =Lg.
(i) f.\f=9g(fn, g € £) implies lim, Lf,=Lg.

Lemma 2. If £ is an affine pre-lattice, L is a pre-linear functional on &, then

Lf=Lf*—Lf"

for every f in £.

A pre-space is a pair (X, 2), where 9 is a family of subsets of X containing the
empty set.

An extended real valued, monotone, at empty set vanishing set function defined
on @ is called a pre-measure.

A pre-measure u is called continuous iff

(i) A./A oB(A., Be®), implies lim, u(A,)Zu(B).

(i) AxNA cB, u(A))<» (A., Be®) implies lim, u(A,)=u(B).

The function f: X — ( — o, ©) is 9 — measurable or only measurable if the sets
{x; f(x)Za} and {x; f(x)= —a} are in D for every a >0.

We denote by £(2) the set of all @-measurable functions. f e £(D) is called
a simple function if the range of f is finite. The set of all simple functions from
ZL(P) will be denoted by £, (D).
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In [3] we introduced a notion of integration with respect to a pre-measure as
follows.

Let & be a family of all finite subsets of (—o, ) which contains zero. Let F e ¥
with F={b, <b,_-1< ... <bo=0=ao<a;< ... <a.}, and let f be a P-measura-
ble function. We put

S(f, F)=i=21(a.» —ai-)u({x; f(x)Za:})+

+ ;(bi =bi-Ju({x; f(x)=b;})

if the right-hand side expression contains no expression of the type o — o,
Since & is directed by inclusion, the triple (S(f, F), &%, o) is a net. We put

If =F.f = [f du =lim S(f, F)

if the limit exists.
f is called integrable iff $.f is finite. We denote by £, =%, (X, &, u) the set of
all integrable functions.
The main properties of $, are:
1° $xa=u(A) for A in 9.
2° $.f=sup {F.9; g€L(D), g=f)} for f=0.
3° %, is an affine pre-lattice.
4° ¢, is a pre-linear functional on %,.
5° If u is order continuous on 9, so is %, on ;.

§ 1.' Representation theorems on measurable functions
In the following two assertions £ will be an affine pre-lattice of elements of
L(D) with £, (D) = £. We shall say explicitly whether £ has any other properties.

Lemma 3. Let L be a pre-linear functional on £. Let u be a set function on &
defined by

u(A)=u(A)=Lxa.
Then u is a pre-measure and
Lf=J.f

for f in ¥".
Proof. Since L is monotone and Ly =0, it is clear that u is a pre-measure. Let
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9 €Z£; (D) and let ai, a,, ..., a, be the range of g ; then g = Z(a,» — ai-1)Xa;, Where
i=1

Ai={x;g(x)z a;} and ao= 0. By the horizontal additivity and homogenity of L
Lg= Z(ai —ai-1) Lxa, = Z(ai —ai-Ju(A)=44.

Thus by Lemma 2 Lg = $,g for every g € £.(D). Let f be in £* and let g be in
Z(D) with g =f; then

Lf=Lg=9%.4
and so
Lf=sup ($.9;9€L(D), g=f}=9f
by 2°.

Theorem 4. Let L be an order continuous pre-linear functional on &. Then there
exists a unique order continuous pre-measure u =y, on % such that

Lf=3.f
for f in L.

Proof. Let u. be the same as in the last lemma. Let f be in ¥*. By
Proposition 13 of [3] there exists a sequence of non-negative & -simple functions
f. € £* with f, /'f. By the preceding lemma Lf, = 4.f.. By the continuity of L and
the theorem of Beppo—Levi (see [3]), we get for £,

Lf =lim, Lf, =lim, %.f, = 5.f.
Thus we showed that
Lf=9.f

for f in £*.
If now f is from £, then the proof follows by

Lf=Lf"—Lf =9.f" - 9.f "

It remains to show that u is monotone and order continuous on 2, but this is an
easy consequence of the order continuity of L and the definition of ¢. The unicity
of u is trivial.

We turn now our attention to the case when ¥ and £ have some special
properties. Until Corollary 6 & = & will be a ring, £ < £(¥) will be a linear lattice
with Stone’s condition containing Z,(¥) and L is an order continuous strong
sublinear (superlinear) functional on %, i.e., L is pre-linear and

Lf+g9)=L(farg)+L(fvg)=Lf+Lg
(Lf+9)=L(fAag)+L(fvg)=Lf+Lg)

for f and g from £".
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Theorem 5. Under the above conditions for £ and L there exists a unique order
continuous strong submeasure (strong supermeasure) u on & such that

Lf=4.f

for every f in &£.
Proof. Since £ is an affine pre-lattice and L is pre-linear it remains only to show
the strong subadditivity (superadditivity) of u.

u(AnB)+u(AuB)=Lyane + Lxavs =L(Xa AXxs)+
+L(xavxs)=Lxa +Lxs =pu(A)+u(B).

The case of a strong superlinear operator is similar.

Corollary 6. Let I be an order continuous monotone linear functional on ¥. Then
there exists a unique o-additive measure u on & such that

If =9.f
for every f in £.

§ 2. The Daniell extension scheme

In paper [1] Riecan proved that the Daniell extension scheme works also in the
case of subadditive functionals. In this paragraph we shall show that this is true also
when the extended functional is a strong sublinear map defined on a lattice of
functions satisfying Stone’s condition.

Let £ be a set of functions and let L be a functional defined on £. L is said to be
exhausting if fa=f.ai1=...=f, fa, feZ£ and lim, Lf, < implies

lim, L(fas1—fx)=0.

In this paragraph L will be a linear lattice of functions with Stone’s condition, and
L will be a continuous, strong sublinear and exhausting functional on £.

Let 3¢ be a family of functions with % > £. We say that % is L, full iff 0=g =f,
fu/fs faef (n=1, 2, ..) and lim, Lf, =0 implies g € .

Theorem 7. There exists a unique continuous strong sublinear extension L of L
to the smallest L, full, conditionally complete o-lattice > <.

We give first the construction of L, the proof will follow in the subsequent
lemmas.

We put -

Po={9;39. €2, g,/ g, lim, Lg, <o}
Ps=1{h; 3. €L, h,\\h,lim, Lh, > — »}
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and define
L.(g)=1lim, Lg. g../9g,9.€X%.
Ls(h) =lim, Lk, ho\h, ho € £.
Finally we put
F={f;Ve>03geL,,heLs,h=f=g,L.,(g —h)<e}
Lf=inf{L.g;9g=f,.ge%), for feZ.

Lemma 8. The definitions of L, and Ls are correct.
Proof. Let fe%,, and f.'f, 9./ f, where f,, g. € £. Then

Lf. =lim. L(f. Agm)
and so
lim, Lf, =lim, lim,, L(f. Agm)=lim, Lgm.

The other relation may be obtained in this way too. The proof of the correctness of
Ls is similar.

Lemma 9. L, and L; are strong subadditive, positively homogeneous and
horizontal additive functionals. Moreover

Lo(=f)=—Lesf and Ls(—f)= —L.f.

Proof.If f, g € £, then there exists f,, g» € £ such that f, /'f and g../'g, and we
may assume that f,, g.=0.

Then -
L(fangn)+L(favgs)=Lf.+Lg.;

limiting this we get
Lo(fAg)+Lo(fvg)=L,f+L.g.

Let now a Z0. Then clearly Lo(af) = a L.f, obviously f.Aa /fra and fo —fara /
f—f~Aa and so from

Lfa=L(f.Aa) +L(fa — fa ra)
we obtain
Lof =L,(fAa)+L,(f—fAa).

The other assertions of the lemma are trivial.

Lemma 10. Z is a linear lattice with Stone’s condition.

Proof. Let £>0. Let f, g €Z; then there exist elements f,, g, €ZLs and f3,
g.€%, such that fi=<f=f,, g:1=g=g, and L,(f2—f1), Lo(g>—g1)<£/2. Then
fitgi =S f+g = fatga,fitgi€Ps, fa+92€%, and L, ((f2+ g2) — (1+91)) <&,
since L, is subadditive on %, and so f+g € Z.
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The proof of the assertions fvg, fAg,f—g,f—fAg, af € £ is similar. Let now
az=0;thenfina = faa = fona; fina is amember of £ and f,Aa is from £, and
farna—fina = fo—fi, and so by the monotonicity of L, we have

L.(f2rna —fina)=L(f—f1)<e/2.
Hence fAa is from 2.
Lemma 11. L is a strong sublinear functional on ¥ and
Lf=sup (Loh : hSf, h e 2).

Proof. I. We prove first the second assertion. Let h=f=g, L.(g —h)<e,
he%s, ge¥,. Then

LfsL.,g=L,(g—h)+Lsh<e+Lsh
and so _
Lfssup {Lsh; h=f,he%).

The opposite inequality is trivial.
II. Let £>0. Let f, ge 2", take fi, g1e £, with Lf+&¢ = L.f,, f=fi and

Lg +e=L.g:1, g =g:. Since &, is alattice and fvg =f,vg;,and fAag = fing., we
get

Lf+£g+2£qu 1+Log1

ZL,(fivgi) + Lo(fings)
ZL(fvg)+L(frg).

III. By Lemma 9 and the definition of L it is clear that L is homogeneous.
IV. Let now fe Z and a=0; then

Lf=inf {L.g; g€, gZf}
=inf {L,(g Aa)+L.(g —gAra);ge%L,, g =f}
Zinf {Log1; g1€ %o, g1=fAa} +
+inf {L.g2; g:€ Lo, g2=f — f Aa}
=L(fra)+L(f—fnra),

where we used the horizontal additivity of L,.
Now we prove the opposite inequality.

Lf=sup {Lsh; he%Ls, h=f}
=sup {Ls(haa)+Ls(h—hnra); heLs, h=f}
=sup {Lshi; hieLs, hi=faa}+
+sup {Lsh,; hoe Ls, ha=f —fAra}
=L(fra)+L(f—fAa).

V. The monotonicity of L follows from its definition.
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Lemma 12. ([1] Proposition 3). Let f,e £ (n=1, 2, ...) f../'f and {Lf.} be

bounded. Then f € £ and
Lf=1lim, Lf,.

Note that also the dual assertion to the last lemma holds.

Proof of Theorem 7. It is easy to see that £ is a conditionally complete
o-lattice and that £ is L, full. Hence it suffices to prove the uniquess of L (see [1]).
Let H be a strong sublinear, continuous functional on % which is an extension of L.
Put

N={feZ;Lf=Hf}.

By the assumption ¥ >.%¥. Moreover
NoL,us.
Indeed, take f, € £ with f,/'f. Then
Lf =L.f =lim, Lf, = lim, Hf, = Hf.

Similarly Lf=Hf for f in Zs.
Let fe%£. Then to any ¢ >0 there exists g and & such that ge%,, he%s,
h=f=g and L,(g —h)<e¢. Therefore

Lh=Lf=Lg=L(h+g—-h)<Lh+¢
and
Lh=Hh=Hf=Hg=Lg<Lh+e¢.

From this it follows |Lf — Hf| <e. Therefore Lf = Hf and so
NoZ.

We shall show now that the continuous extension of L need not exist when L is

not exhausting. .

Example 13. Let X={0, 1, ..., n, ...}, £={f; f is a real valued function on X
and f(x)=0 except on a finite subset of X}. Let Lf =max f —min f.

Then £ is a linear lattice with Stone’s condition and L is a strong sublinear map
on £ which is order continuous. The conditionally complete o-lattice generated by
Z is the set of all bounded real functions on X, denote it by £. L has only one
extension and this is

Lf=sup f—inf f.
It is clear that this extension is not continuous since if

A,=X-{0,1, ...,n},
then
xa, N0 and lim, Lya,=1.
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§ 3. Representation theorems on a lattice of functions

Theorem 14. Let £ be a linear lattice of functions with Stone’s condition. Let L
be an exhausting, order continuous strong sublinear functional on £. Then there
exists a o-ring & and a unique continuous strong submeasure u on ¥ such that

Lf=4.f
for f in &£.

Proof. By the preceding theorem there exists a unique extension L of L to the
conditionally complete o-lattice Z with Stone’s condition containing £. Put

Fo={{x;f(x)Z1};feZL)

Let feZ. Put f,=n(fAl—fa(1—1/n)); then f,eZ and f.\Y x:rz1)-
Since £ is a conditionally complete o-lattice, we get X (x: rx)=1) € Z. In other words
we proved that if A €%, then xa € £. And so we may put

to(A)=Lya for A inFo.
Let & be a o-ring generated by %,. We put
uw(A)=sup {uo(B); Bc A, BeFo}.

. We prove first that %, is a ring with the following property:
If A, e% with A, = A,., and with lim, po(A,) <o, then U,A, € Fo.
Let A, ={x; f.(x)=1}; then xa, =Xa,,, and lim, Lya, <. By the theorem of
Beppo—Levy which holds for L on £ we get lim, xa, € £, from which we obtain

UnAn = {x;1im, xa, =1} € Fo.

Let now A, B € %o; then xa, xs € Z. Since Z is a linear lattice, we get that the
sets AUB = {x; xavxs=1} and A —B={x; xa —xs =1} are in %,.

I1. We shall show now that every function f € Z is ¥, measurable. Let a >0 and
let fe Z. Then since £ is a linear space, the sets

{x;f(x)=a}={x; (l/a)f(x)=1},
{x;f(x)=—a}={x; —(1/a)f(x)=1}
are from %,.
III. From Theorem 5 we get that Lf =%, f for f in #Z, especially

Lf'_" jl‘of

for f in &, since L is an extension of L.
It is clear that u is a continuous strong submeasure on & and that po=u/%;
hence
Lf=3.f
for all f in &.
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Theorem 15. Let £ =%(X) be a family of all continuous functions on
a topological space X. Let L be an exhausting order continuous strong sublinear
functional on ¥. Then there exists a o-ring & and an order continuous strong
submeasure u on & such that

Lf=~¢uf

for every f in &. _

Proof. The proof is 1) a simple conclusion of the fact that a family of all
continuous functions on a topological space is a linear lattice with Stone’s condition
and 2) the last theorem.

Since every linear order continuous functional is exhausting we have:

Theorem 16. Let £ =%(X) be a family of all continuous functions on
a topological space X. Let L be an order continuous linear monotone functional on
&£. Then L can be represented as an integral with respect to some measure on some
o-ring.

Theorem 17. Let X be a locally compact Hausdorff space. Let €o(X) =% be the
set of all continuous functions with compact support. Let L be an exhausting order
continuous strong sublinear functional on £. Then there exists a o-ring & of subsets
of X containing all compact Gs sets and an order continuous strong submeasure u
on & with the properties:

u(E)=inf {u(U); EcUe%, Uisanopenset}
p(E)=sup {u(C); CcE,Ce¥, Cis compact}

And moreover for f in £ -
Lf=4.f.

Proof. Let &, ¥ and u be the same as in the proof of Theorem 14. We shall
prove first that the compact G; sets are in &. _

Let C be a compact Gs set.- Let C=n,G., G. being an open and G, a
compact set. Let f, be a continuous function which is 1 on C and vanishes on
X = G,. Clearly fa\xc and f.eZ for n=1, 2, 3, ...,. By the theorem of
Beppo—Levi xc € £ and so C e %,.

We shall show now that u has the desired property. Let E € ¥ with u(E)<wo;
then xs € £” (see the proof of Theorem 14). Let g, € £,, h, € L5, ha = xs = g and
Lo(gn—h)=1/n.

Let

C={x;h(x)= 1/n}
and

. Un={x;ga(x)>1-1/n}.
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The sets C, are closed since h, is the infimum of continuous functions and the sets
U, are open since g, is the supremum of continuous functions. Clearly

Xe = xu, =gn + (1/n)xu,

and so
!l(Un)—M(E)=I:~Xu,.—LXE i
=Lg.+u(U,)/n—Lh,
=L(g. —h,)+u(U,)/n
=S(1+uU)/n,
hence

uw(E)=inf {u(U); UoE,Uisopen, Ue¥}.

Now it is obvious that
h,—h,Al/n=xc,.

By the mononicity and horizontal additivity of L

LH, —L(h.A1/n)=u(C)=u(E)=L(g.),
hence
u(E)—u(Cy)=Lg.—Lh. +L(haA1/n)
=L(gn—ha)+L(h.Al/n)
=(1+u(E))/n.

And so by the compactness of C, we get

u(E)=sup {u(C); C<E, C —compact, C € ¥}.

If u(E)= o, then the proof is clear.

We generalized some representation theorems of linear functionals. We do not
believe the ordinary theorem about the representation of the linear functional on
the space £° to be valid, for sublinear functionals, since the most usefull and
deepest theorem, the Radon—Nikodym theorem is not valid for strong
submeasures.

§ 4. Representation without continuity

We turn our attention to the case of not necessary continuous functionals. We
give first the representation theorem for linear functionals.

Theorem 18. Let £ be a linear lattice of bounded functions with £.(A)c ¥ <
ZL(A). (A is an algebra of subsets of a space X). Let | be a linear monotone
functional on £. Then v(A)=Ixa is a finitely additive measure on %/ and

1f=J’f dv
for f-in £. _
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Proof. v is clearly a finitely additive measure. If f is a simple function, then
obviously If = [f dv. If f is from £* and f=f, then IfZIf = [f dv and so

If= sfup ffdv=[fdv=4f
=f

f—simple

We proved that
fZ[fdv=sf

for f in #". Let f be such a function from £* that If > [ f dv'. We may assume that
f=1. Then -

N=I10-f)+If>I.(1-H)+IfZ5, 1,
a contradiction. And so If = f for f in £”. Hence
f=If"—If = 5f - 5f =5,

and so we get
If=9.f
for f in £. '

For the rest of the paper .4 will be an algebra of subsets of X..£ will be a linear
lattice of some bounded functions from £ (.«¢) which contains all simple functions.
L will be a strong sublinear functional on £ and u will be a strong submeasure on .24
defined by u(A)=Lyxa for A in 4.

Let us denote by ¥, the set of all non negative, finitely additive measures v on .«¢
with v(A) =u(A) for A in ¢, and by . the set of all monotone, linear functionals
on & with IfSLf for f in £".

We shall need the following two lemmas for proving the main theorem of this
paragraph.

Lemma 19. Let f be in £*; then

Suf =max ¥ f.

vVeEN,

Proof. See Theorem 22 of [4].

Lemma 20. Let f be in £ ; then
Lf =max If
leu

Proof. Let f be in £*. We define a linear functional /, on the linear space
Eo= {af ; ais real} by lo(af) = aLf. By Theorem 6 of [5] there exists an extension /
of losuch that /=L on %" and [ is linear and monotone. Clearly Lf = If and so

Lf =max If.

leMy -
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Theorem 21. Lf=$.f for f in &£.

Proof. By Lemma 3
. Lf=5.f
for f in £*.

We prove now the opposite inequality. Since f is in £, we have

Lf = max If = max ff dvi=sup |fdv=4f.
lean LeMy veN,

The first equality follows by Lemma 20, the second by Theorem 18 and the last by
Lemma 19.-Hence Lf = 4,f for f in £*. The proof for a not necessarily non-negat-
ive function is now a simple conclusion of Lemma 2.
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