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ON THE OSCILLATION OF NONLINEAR DIFFERENTIAL
SYSTEMS WITH RETARDED ARGUMENTS

PAVOL MARUSIAK

1. Introduction

We consider systems of nonlinear differential inequalities with retarded argu-
ments of the form

yi@)=f(t, yori(1), yirs(hia(1))) =0, i=1,2,...,n—1, S)
{ya(®) + fa(t, yi(1), yi(hi(£)))} sgn yi(m(1))<O.
where the following conditions are always assumed:
(a) h:[a,©)>R (i=1, 2, ..., n) are continuous and
h()=t for tZa, !Lrg h(t)=omo, (i=1, 2, ..., n);

(b) f: [a,®)XR*>R (i=1, 2, ..., n) are continuous,
vf(t,u,v)=0 (i=1,2, ..., n) for uv>0
and not identically zero on any subinterval of
[a, ©); f(t,u,v) (i=1, 2, ..., n—1) are nondecreasing
in u and v for each fixed te[a. ).

Denote by W the set of all solutions y(t) = (yi(?), ..., ¥.(t)) of the system (S)
which exist on some ray [T,, ©) c[a, ®) and satisfy sup {Z lyi(0)]: t= T}>0 for
i=1
any T=T,.

Definition 1. A solution y e W is called oscillatory (resp. weakly oscillatory) if
each component (resp. at least one component) has arbitrarily large zeros.

A solution y e W is called nonoscillatory (resp. weakly nonoscillatory) if each
component (resp. at least one component) is eventually of a constant sign.

Definition 2. We shall say that the system (S) has the property A, if every
solution y e W is oscillatory for n, even, while for n odd it is either oscillatory or y;
(i=1, 2, ..., n) tend monotonically to zero as t— o,
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The oscillatory properties of solutions of two-dimensional differential systems
with deviating arguments are studied in the following papers: Kitamura and
Kusano [2, 3], Varech, Gritsai and Sevelo [4], Sevelo and Varech [5, 6].
The oscillation results for the system xi(t) = fi (¢, x(g:(2)), ..., x(g.(1))), k=1, 2,
..., n were studied, followd by Foltynska and Werbowski [1].

In the present paper we proceed further in this direction to extend the theory
developed in [4—6] to the systems of the form (S). Our results in lude some of the
results in [1, 5, 6] and they do not follow from Theorem 1 1n [1].

2. O cill tionth orems

We introd ce the notation :
v.()=sup {s=0; h(s)<t} for t=a,i—1,2 .. n,

y(8) ~max {(1), ..., v.(1)} .

Lemmal. Lety (yi,..,y.)eW be a weakly nonosillatory solution of (S),
then y is nonoscillatory.

Proof. Suppose that y, is a nono cillatory component of solution y=(y , ..., y,
...y Vo) €W and yi (1) #0 for t=t,=a.

i) Let 1<k=n. With the help of (a), (b), the system (S) implies that either

Vi 1()Z0 or yi ()=0 for t=y(t))— t, @))

and not identically zero on any infinite subinterval of [t,, ©). We remark that
yi (1)#O0 for all t=6,=¢t,. If y« 1(t)=0 for t=t,, then yi (t)=0 for t=t, and
the (k —1)-st equation of (S) qwes that fi ((t, yu(t), y«(h)))=0 for all t=1t,
which contradicts assumption (b). From (S) we get that y, ,(t) is the monotone
function and thus there exists a ;=1 such that y, (t)#0 for t=t. We have
proved that y, , is the nonoscillatory component of y. Analogously we can
prove that y._»(t), ..., y:(t) are also nono cillatory components of y.

ii) Let k=1. From the n-th inequality of (S) we obtain y.(¢) sgn y,(h.(£))=0
for t>t, and not identically zero on any subinterval of [t,, ©). Thus there exists
a ts=t, such that y,(¢) # 0 for t =t,. If we consider now the case i) for k — n, we get
that all components of y are nonoscillatory.

The proof of Lemma 1 1s complete

Lemma 2. Suppose that
y=(, .., ya)eW (2)

is a nonoscillatory solution of (S) in the interval [a, ©) If
f lfu(t, ¢, ¢)| dt=o forall c#0,k=1,2,..,n 1, 3)
T
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then there exist an integer l€ {1,2, ..., n}, n+1 even, and a t,= a such that
yi()y:(£)>0 on [t,, ©) for i=1,2,...,1, 4)
(=D y(y()>0 on [ty, ®) for i=1+1,...,n (5)

hold.

Proof. Without loss of generality we may suppose that y,(t)>0 for t=a.
Similar arguments hold if y,(¢) <0. According to (a) there exists a T, = y(a) such
that y,(h,(t))>0 for t=T,. Then the n-th inequality of (S) implies that y,(t') is
nonicreasing on [T, ) and not identically zero on any infinite subinterval of
[T\, ). We shall show that y,(t)>0 for t=T,=T,. If y.(t) <O for some t,= T,
then y,(1)= y.(t,) = ¢, <O for t=1t,. Taking this into account and then integrating
the (n —1)st equation of (S) from t,=y(t,) to t, we have

y.,-n(t)= y.._x(tz)+f fn=1(S, Ya(8), ya(ha(s))) ds =

§)’n—l(t2)+j fa-1(S, Cuy C) ds— — 0 as t— 0.
2

Then there exists a t; = y(t.) such that y,_(t) = ca-1<0, Yu-1(ha-1(t)) = ca-1 for
t =1t;. Integrating again the (n —2)nd equation of (S) we prove that y,_,(t)— —
as t— o, Similarly we shall prove that y,(f)»> —© as t—»>» (i=n-3,...,2,1),
which contradicts y,(t) >0 for t=a. Therefore y.(t)>0 on [T, ©). Thus with the
help of the (n — 1)st equation we obtain that y,_(t) is a nondecreasing function for
t=T;=y(T,) and that it is eventually of one sign. a;) Let y,_(t)=c,.-,>0 for
t = T, = T,. Taking this into account and integrating the (n —2)nd equation of (S)
from T, to t, we obtain

y::—2(t)§)In—2(T4)+J' fn—Z(s, Cn—l, Cn—l) ds—)OO
. Ty

as t— o, Repeating this method, we prove that y;(t)>0 (i=1, 2, ..., n—1) for
t=Ts=T.,. Therefore (4) is true for [ =n.

bi) Let y._(t)<0 on [Ts, ). Then the (n—2)nd equation of (S) implies that
Yna-2(t) is nonincreasing for t=Ts=y(T5) and that it is eventually of one sign.
We show that y, »(t)>0 for t=T,=Ts. If y._»(t)<0 for some t,=T; then
Yn-2(t) = yn-2(ts) =cn-1<0. Similarly as in the assumption. y,(#;)<0 we can
prove that y,(t)— —o as t— o, which contradicts the assumption y,(t)>0
on [a, ®). Therefore y._»(t)>0 on [T,, ®©). According to the (n —3)rd equation
of (S) we obtain that y,_s(¢) is nondecreasing for t=Ts=y(T7) and y.-s(t) is
either positive for t=To=T; or y,._3(t) <0 for t = Ts. az) If y._s(t) >0 for t=T,,
we can prove that y,(1)>0 (i=1, 2, ..., n—3) for t=Tc=Ts. Then (4) is true
for I=n—2. by) If y,_s(t)<0 for t=Ts, we can proceed as in the case of b,),
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only instead of n—1 we have n—3. So we get that either y:(1)>0 (i=1, 2, ...,
n—4=1[)or y,—4(t)>0 and y,._s(t) <0 for sufficiently large t. Proceeding further
similarly to the case of b,), b,) we prove (4) and (5) for I=n—4, ..., 4,2
(I=n—4, ..., 3,1)if nis even (odd). This completes the proof.

Lemma 3. Suppose that the assumptions of Lemma 2 hold. If a component y;
(ke{1, 2, ..., n}) of a solution y =(yi, ..., y.) €W has the property

lim inf lye(8)] = Lu,

then

a) lim y,(t)= + (- ), (i=1, 2, ..., k=1) when L, >0, k>1;

b) liminf |y(t)| =0, (i=k+1, ..., n) when Ly <o, k<n.

Proof. Lemma 3 may be proved in the same way as Lemma 2 [1] and therefore
we omit here the proof.

Theorem 1. Suppose that
f.(t, x, y) is nondecreasing in x and y for each fixed tZa. (6)

If, in addition,

f Ifi(t, ¢, c)|dt=o for k=1,2,...,n (7)
JT

for every c¢+# 0, then the system (S) has the property A.

Proof. Suppose that the system (S) has a nonoscillatory solution y=
=(y1, ..., y.) € W. Without loss of generality we may suppose that y,(t)>0 for
t=ty=a. According to (a), y.(h.(t)) >0 for t=t, = y(t,). Then the n-th inequality
of (S) implies y,(t)=0 for t=¢, and it is not identically zero on any subinterval of
[t;, ©). As yi(£)>0, y.(t)=0 for t=t, by Lemma 2 there exists an integer
le{l,...,n}, n+1lis even and a To=t, such that

yi(t)>0 or [Ty, ©) for i=1,2,...,1, (8)
(—1D"*'yi(t)>0 on [T,, ») for i=I[+1,...,n
hold.
I. Let [=2. In view of (8) and (a) we have y,(t)>0, y.(t)>0 for t=T. Then by
the 1st equation of (S), in view of (b) we get yi(t)=0 for t=t, = y(T,) and not
identically zero on any subinterval of [t,, ©). The function y,(t) is nondecreasing

and therefore y,(t)=d, >0 for t = t,. From the n-th inequality of (S), we have, with
the help of (b) and (6),
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YuO)=—fu(t, yi(1), yi(hi (D))= —f.(¢, d\, dy) for tZ=t,=y(t).

Integrating the last inequality from t; to ¢, we obtain

J,' fo(s, diy i) ds = yu(ts) = ya(D) = ya(52),

which contradicts (7) for k=n, as t— .

II. Let =1 (nis odd). According to (8) and (b) we have y,(t) <0, y,(h,(t)) <0
for t=t, = y(t,). Then the 1st equation of (S) gives that y,(t) is nonincreasing and

therefore %itg yi(t)=8=0. We suppose that 6 >0. Proceeding analogously as in
the proof of I, we obtain a contradiction to (7). Therefore 6 =0. Then applying
Lemma 3 we get lim y/(1)=0 for i=1,2, ..., n.

The proof of Theorem 1 is complete.
Theorem 1 generalizes the results in [5, Theorem 1] and in [1, Remark 1].

Theorem 2. Suppose that (3) holds and in addition

fa(t, x, ¥)=pa(t)gu(x, ¥), 9

where p.: [a, ©)—[0, ©), g.: R>> R are continuous functions with p, not
identically zero on any subinterval of [a, ®©), yg.(x,y)>0 for xy>0 and
lilnll inf |g.(x, y)|>0 for all x#0.

e

If

[ @y ai=e, (10)

then the system (S) has the property A.
Proof. Arguing as in the proof of Theorem 1 we can show that (8) holds. a) In
case I (i=2) we have proved that y,(t) is a nondecreasing function for which

yi(t)=d, >0for t=t, and !Lrg yi(t)=d,=0, where either d,<® or d, = «. Thenin

view of (9) there exists a K> 0 such that
g,.(y.(t), yl(h,(t))éK fOr t;t:;:‘y(tz).

From the n-th inequality of (S) with the help of the last inequality we have

YO = =ty yi(0), yi(a(0))) = = Pa()ga (3:(), Y1 (u(D))) =
=—Kp.(t), for t=t,.

Integrating the last inequality from ¢; to ¢, we obtain
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K[ pu(s) ds=3.(6) = 3 (09,0,

which gives a contradiction to (10) as t— .
b) Let [=1. Analogously as in case II of the proof of Theorem 1 we can show
that lim y,(¢1)=0. Then by Lemma 3 we ge lim y/(1)=0 for i=1, 2, ..., n.

The proof of Theorem 2 is complete. This Theorem generalizes Theorem 2 [6].
We turn now to the system (S), where

fit, x,y)=p(x, i=1,2,...,n-2 (11)
felt, x, y) sgn y=p(Oly|*, a>0,k=n-1,n,
where
pi: [a, ®)—=[0, ), i=1,2,...,n (12)

are continuous functions and not identically zero on any subinterval of [a, ©),
f () dt=w, i=1,2,. . n—1.
P

The system (S), in the particular case where (11), (12) hold and p,(¢)>0,i=1, 2,
., n—1, a,_1=1, h,(t)=t on [a, ©), is equivalent to the n-th order scalar
differential inequality

(6w 6w Gy ®) ) - )) +p0lytmai}
-sgn y(hi(1))=0.

We introduce the notation. a,-,=a, a, =f;

p:(t)=min {p(s); t/4<s<t}, t=a,i=1,..,n—1

Pi(t)=p;(t)p;-1(t) ... p:(t) for i=j,
Pi(t)=1 for i>j, Pi(t)=P(1).
Let ire{l,2, ..., n}1=k=n-1 and t, s€[a, ©). We define I,=1=1J,, and

Ik(ts NN pika ey pik)=j pik(x)Ik—l(x’ S5 p"k—x’ (X232 ] pll) dx )

Jk(t, S35 Digs +oes pil):J' p,-l(x)fk_.(t, X5 Digs +eey piz) dx.

Lemma 4. Suppose that (11), (12) hold. Let y be a solution of (S) on the
interval [a, ). Then the following relations hold:
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=S 1Yy DLt 53 Prarors o p) + (13)

+(-1)" iJ" Pn l(x)ly,,(h,,(x))l" sgn Y. (h. (XD n-ici(x, 85 pu 2, ..., p.) dx,

for a=s=t,i=1,2,...,n—1;

y‘(r)=2)’i+i(s)-’j(r,$;l?n coes Divj-1) F (14)
=0

+[,yi$m+l(x)p,-+,,.(x)lm(r, X3 Diy-evs Divm—1) dx,
for rz5zq,i<n-1,0<sm<n-i-1.
Proof. a) Let a=s=y. It is evident that
y()=y(t)- J:’yi(x) dx=y/(t)— J:'p,(x)ym(x) dx, (15)
for i=n-2,
Yo () =Yam(0)- [ P () Iy (K| s ya (o (x)) dx.

We calculate the second integral in (15) by parts. Denote:

v(0)= [ p(®) dr=L(x, 53 p), u(x)= i),
Then we obtain

1) = 0O =y DL, 53 p)+ [ ViCOLCr, 53 p) dx =

=y() =y (DL(t, s; p.) +f Yir2(X)piri(x)Li(x, 55 pi) dx
for i<n-2.

If i=n-2, we get (13).
Using further the method by parts (n—2—1i) times (i<n—2) on the last
integral, we obtain (13).
b) Let a=s=t and let i<n—1. It is clear that
y.(t)=y.-(5)+f yé(x)dx=y,(s)+f yin(x)p.(x) dx. (16)
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For i=n—2 (14) is true. Let i <n —2. We calculate the last integral in (16) by

parts. Denote v(x)= —J pi(7) dt, u(x)=y:.i(x). Then we have
30 =3(5)+ yees(5) | ) dx+ [ y1a(oI(e x5 p) dx =

=yi(s)+ yiri(s)i(t, s: P-‘)"‘[YHZ(X)P-'H(X)JI(% x; pi)dx.

Using further the method by parts m — 1 times on the last integral, we get (14).

Lemma 5. Suppose that (11), (12) and the assumption (i) of Lemma 2 hold.
Then there exist l€ {1,2, ..., n}, n+1is even and a T = a such that (4), (5) hold
and

lyi(t/2)| = Ct" P,y ()|y.(8)|* for t=T, (17)
where
2 =2n=i) .
G=m, t=1,2,...,n—1.

Proof. The inequality (4), (5) follows from Lemma 2. Without loss of generali-
ty we suppose that y,(t)> 0 for ¢t = t,. Then from (13) we obtain for s = t/2, in view
of (5) and the monotonicity of y,(t)

(—1)”"y,-(t/2)§J::2 (X)) *Prr(X) Lamica(x, t/25 Pz, ..oy pi) dx

v

i(y,.(t))“ﬁ,._l(t)[” (t=x)pna(X)ucio(x, t/25 pucs, ..., p) dx = ...

(t— x)n—i—l

Z(ya(D)Prs(t) ... @(0[:2 (n=i=1)! dx.

Calculating the last integral we get

(—1)f+"y,(t/2);(5‘)"_i(';’—i“_'—§;—)!(yn(t))" for 1221, (18)

and i=[,l+1,....,n—1.

According to (4) and the monotonicity of y.(t) we have from (14) for
m=Il—-i—-1,r=1/2, s=t/4

/2
yi(t/2)§y,(t/2)j PG i (12, %5 pis s 1) dx =
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t2
Zyi(t/2)p, l(t)J’ (x—=t/8)p: Ax) A(t/2, %5 piy oy P13) dx=...=
(a

—y,(t/2)p: I(t) P:(t)J” %d)ﬂ

If we calculate the last integral we obtain

YEP ()
(I=1i)!

Combining (18) for i=1 and (19) we get (17).
Remark 1. a) The inequality (4) implies |y.(t)|=|y.(t/2)| fori=1,2, ..., —1.
Then (17) can be written in the form

ly.()|=Ct" ‘P (D]y.(2)|* for ¢t=T,i=1,..,1-1. (17"
b) If 0<a =1, then it is evident that (17) holds also for i=n

y,(t/2)><) w(t/2) for tZ4t,=T,i=1,2,....1-1. (19)

Theorem 3. Suppose that (11), (12) hold. If 0<af <1 and
J (m()" Ppa(t)(Pa 1(hi(1)))" dt =0, (20)
T

then the system (S) has the property A.

Proof. Suppose that the system (S) has a nonoscillatory solution y=
=(y1, ..., y») € W. Without loss of generality we may suppose that y,(t)>0 for
t=t,=a. According to (a) we have y,(h,(t))>0 for t=t,= y(t,). Then the n-th
inequality of (S) implies that y,(t)<O0 for ¢t =¢, and it is not identically zero on any
subinterval of [t;, ). As y,(¢t)>0 and y,(t)=0 for ¢t =t,, then by Lemma 5 we get
(4), (5) and (17), resp. (17').

I. Let [=2. From (17') we have for i=1

yl(t)icnt" 'Po (D (1)), =>4
Then the n-th mequallty of (S) implies
Y (t)< Cipa ()((8))" "(Po 1(hi(1)))*(ya(h (t))) S 21
Cip.(D(h ()™ (P 1(m(1))) (ya (1))
for t=t=y(t).

In (21) we have used the fact that y.(¢) is nonincreasing.
Dividing (21) by (y.(t))* and then integrating from t; to t, we obtain

(y,.(t))' lltﬁ_ (gzn(tz))l “ﬁ< C,«)f Pn(S)(P,. I(hl(s)))ﬁ(hl(s))(n [8Yi] ds
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From the last inequality we get

[ pu ) Y as 5D T

which contradicts (20).
II. Let /=1 (mis odd). Then by (5) the function y,(t) is nonincreasing and with

regard to y.(1)>0 it follows that lim y,(f)=6=0. We suppose that 6>0.

Therefore there exists a K> () such that

Y|(t) _
O (22)

From (17) we get for i =1 with the help of (22)

y,(r)=yly('t(2) V(/2)ZKCit" P (D (1))

for =t =2t,.

Procceding further in the same way as in case I, we get a contradiction to (20).
Then lim y,(¢1)=0 and by Lemma 3 we have lim y,(¢)=0 for k=1, 2, ..., n.
Theorem 3 extends the results of Sevelo and Varech [5, Theorem 2].

Theorem 4. Suppose that (11) and (12) hold. In addition there exists
a differentiable function g: [a, ©)— R such that

g'(NZ0,0=g(O=h(r) for t=ZT=q. (23)

Ifa=1, >1 and

[ pO[ @ (o)) ds dr= oo, (24)

then the system (S) has the property A.
Proof. Suppose that the system (S) has a nonoscillatory solution y =

=(yi, ..., y.) € W. We suppose that y,(1) >0 for t = t,. Proceeding in the same way
as in the proof of Theorem 2 we get (4), (5) and (17). With regard to y,(1)>0, (4)
and (5) we have either

y(t)>0 or y,(1)<0 for t=t,>1,.

I. Let y,(t)>0 for t=t,. Then the 1st equation of (S) implies that y{(t)=0 for
g=t;=17(t,), where 7(t)=max (y.(t), sup {s; g(t)<t}) for t=a.
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We define the function z as follows

Z(t)=_Yn(t)f’ ((1(5))"(; (;5;3;‘;3”1((](5)) (25)

for t=t,=max {T, 7(1)}.

It is evident that
z(1)<0 for t>t,. (26)

In view of the n-th intequality of (S), (23) and the monotonicity of ¥ we get
from (25) the following

2 (OO0 (n()y | GO 06D g, -

)(g(t)) Cg'(DP. (9(1) >
(yi(g(1))’

20,0 [ (96D (IPa-i(9(s)) s -

—ya(t

ya(g(1)) s
~ g2y WO " (OP 1(9(D)p(9(1)/2).

If we use (17) for i=2, a=1 and we substitute g(t) for t, then from the last
inequality we obtain

202p.0 [ GO gEOP. (oD ds- @)

_y9(D)/2)g'()p.(9(1)/2)
C:yi(g(/2))"  ~

Using the 1st equation of (S) and then integrating (27) from ¢, to t, we obtain

2022+ [ 2 [ (06D g GPa-i(9() ds dx—

_2yi(g(e/2))' °
Cz(ﬂ - 1) )

In view of (24) the last inequality implies lim z(t) = o, which contradicts (26).
II. Let y.(t)<O for t=t,. The first equation of (S) implies that y,(t) is
a nonincreasing function. Then in view of y,(t)>0 it follows that !irg yi()=6=0.

We suppose that 6 >0.
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We now define the function w as follows:
w(t)= —y..(t)j (9(s))" g'(IP,(9(s)) ds. (Z=t. (28)
It is clear that w(1)<O0 for t=t..
Using the n-th inequality of (S), the monotonicity of y, and (17) for i =2, we
obtain from (28):
W’(t)ipl-(f)(yl(hl(t)))”f (9(s))" g’ ()P, 1(y(s)) ds — (29)
= .(D(g ()" g (P (9(D) =

= 8%p, (1) f (9(5))" 4" (s)Po1(9(5)) ds +

1
+ v:(9(0/2)g" (0 (9(1)/2).
Integrating (29) from . to ¢, we get

w(t)Z w(t) + 8" pao) | @) g P (9 ds dx
- Znae)2).

In view of (24) the last inequality implies lim w(t)=c0. which contradicts
w(t)<O0 for t=t. Therefore 6 =0, i.e. lim y,(¢)=0. Then by Lemma 3 we have

lim y (1)=0 for k=1,2, ... n.
Remark 2. Consider now the scalar equation
YO>) + pa (D) |y(h(D)] sgn y(hi(£)=0, nZ=2,>1, (E)

which is a special case of the system (S).
It is easy to prove that

[ n [ @y g) ds ==
iff

[ @@y di=e.

Then from Theorem 3 we get the following very wel-known
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Corollary. Suppose that (12), (23) hold. If

[ @y di==,

then every solution of (E) is oscillatory if n is even while for n odd it is either
oscillatory or tends monotonically to zero as t— .

Theorem 5. Suppose that (11), (12) and (23) hold. In addition we assume that
af>1. If

f: pa(t) dt <
and
[ @@y 9P, o@)([ pus) as) de=es, (30)

then the system (S) has the property A.

Proof. Lety=(y, ..., y.) € W be a nonoscillatory solution of (S). Proceeding in
the same way as in the proof of Theorem 4 we get (4), (5) and (17). We may
suppose that y,(t)>0 for ¢=¢,. Integrating the n-th inequality of (S) from
t(Zt,=y(t)) to T, we get

(D=3 0= = [ PN ds,

and then we have for T— »

O [ PG ds, >t G1)

I. Let [=2. Since y, is nondecreasing and y, is nonincreasing, (31) implies

Gu(a ) 20N ([ P ds)", (Z0=1(0).

From the last inequality we obtain in view of (17) for i =2 and the monotonicity of
i ‘

y:(a(0/2)Z Cla ()Y P (9o ([ pusras). G2

Multiplying (32) by g'(+)p(g(t)/2)(y:(g(£)/2))"*® and using the 1st equation of
(S), we get

yi(g(1)/2)g'() - L - .
W:Q(g(t)) g(t)Pn_.(g(t))q Pa(s) ds) )
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Integrating the last inequality from ¢; to u, we obtain

_2
aff —1

=c, f (g(t))”’z.q'(t)Pn—l(g(f))qu"(s) ds) at,

(yi(g9(r)/2))' "=

which contradicts (30) as u— oo,
II. Let I=1. According to Lemma 5, y,(t)>0 for t=1t,, we get from the st

equation of (S) y.(t)<0, y{(t)=0 for t=t,. Therefore lim y,(t)=6=0. We

suppose that 6 >0. Then, in view of the monotonicity of y,, y, we obtain from

(31):

CXCIONEL j “pi(s)ds)’, 1Zt=max (T, 1),

If we use (17) for i=2, we get from the last inequality

gD Z C:5 (g P9 [ pu(s) ds)’ (33)
for t=t,.

Multiplying (33) by p.(g(#)/2)g’(t) and using the 1st equation of (S), we obtain

Y02’ (OZ C:5" g0 g OPu(a@)( [ pu9)ds) . (39

Integrating (34) from t, to u, we obtain
2y(9(t)/2) 2

zCo @O g OPu-(a@)( [ pals) ds) ",

which contradicts (30) as u— .
Therefore § =0, i.e. !ng yi(t)=0. Then in view of Lemma 3 we have lim y, ()

=0
for k=1, 2, ..., n.
The proof of Theorem 5 is complete.
This Theorem generalizes Theorem 5 [5].
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O KOJIEBJIEMOCTU PEMIEHUN HEJNWHEWHBIX CUCTEM
C 3ATIA31BIBAHUEM

Pavol MaruSiak

Pesome

B craTthe npuBeieHbl JOCTATOYHbBIC YCIOBUS KOJeOIEeMOCTH pelleHui cucTeMbl (S) U cucteMbl
yi()=p.()y.. (1), i=1,2,....n-2,
Yo () =P, () |y.(h ()] sgn y.(h.(1)),
ya(t) sgn yi(h()< = p. (D [y (L))", 0<a,0<B.
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