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We use the standard notation R for the real line, R™ for the Euclidean space

m
of dimension m > 2 equipped with the usual scalar product z -y = Y z;y; for
i=1
= (x1,..sTm), ¥y = (Y1,--.,Ym) € R™ and the Euclidean norm |z| = (2 - z)1/2.
For M C R™ the symbols OM, cl M and int M will stand for the boundary, closure
and interior of M, respectively. N is the set of natural numbers. If £ € N, then A4
denotes the outer k-dimensional Hausdorff measure with its natural normalization

(so that Ak ([0,1]%¥) = 1). The open ball with center z € R™ and radius r > 0 will be
denoted by
B(z,r) ={z € R™;|z — z| < r},
Tm = Am-1(8B(0,1)) = 21™/T(1m)
is the area of the unit sphere in R™. If z € R™ is fixed, then the fundamental
harmonic function with pole at z is given by

1

(m—2)om

h.(z) = |t —2>"™, 2z € R™\ {2}

if m > 2, while for m =2
1
ha(e)= lnfo -2, s e R\ {2},
For M C R™ and = € R™ the upper density of M at z is defined by

d(M,z) = lim sup A (M N B(z,7)) /Am(B(z,7)).
rl0
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The so-called essential boundary of M will be denoted by
0.M = {z € R™; d(M,z) > 0,d(R™\ M,z) > 0}.

If U C R™ is open, then ‘6”0(1)(U ) is the class of all continuously differentiable func-
tions ¢ with a compact support spt i) contained in U. We will fix a Borel set A C R™
with a compact boundary and put G = R™ \ A. Let

¢ (94) = {f]04; f e " (R™)}

be the class of all restrictions to 94 of functions in ‘6’0(1)(R’"). Given f € ¥V (0A)
and z € R™ \ 0A we choose a 5 € %él)(R"‘) such that

z¢sptos, @f|0A=f

and define (compare [1], [7], [11], [15])

WAf(2) = / grad ps(x) - grad h,(z) dAm(z).
G

It is easily verified that this quantity does not depend on the choice of ¢ s with the
above properties (cf. [11], Lemma 2.1). The function

WAf =20 WAS(2)

is harmonic on R™ \ 9A (cf. [11], Lemma 2.4) and will be called the double layer
potential of the density f. If ¢ € ‘é’o(l)(R"‘) and z € R™ \ spt ¢, then

/ grad o(z) - grad b (z) dAm(z) = 0,

which shows that WA f(z) = —WYf(z). Since one of the sets A, G is bounded,
we may assume without loss of generality that G is bounded when we investigate
WAf = Wf. If 1) denotes the constant function equal to 1 on M C R™, then easy
calculation shows that

-1 forz € intG,

1 W1 =
M) 0a(@) {0 for x € int A

(compare [10], p. 21). We will fix a point 7 € 9A and a lower-semicontinuous function
q: A — [0, 400] which is bounded and strictly positive on 9A \ {n}. Let €' (A, q)
be the linear space of all continuous functions f: 0A — R satisfying the condition

F(&) = fn) =o(q(&)) as €—n, £€IA

268



We define the norm in (94, q) by

1fl, = max{ sup LEOZSDL eyt
€€aA\{n} q(§) €coA

In the subspace 6p(04,q) = {f € €(0A,q); f(n) = 0} this norm is equivalent to

_ 1 (6)]
Illa0 = eeg,l;{){n} q(€)

Clearly, ¥’(0A, q) and %5(0A4, q) (when normed as shown above) are Banach spaces.
We will see below (in Lemma 1) that

(2) / g dAm_1 < 00
8. A

is a necessary and sufficient condition for the operator WA = W: f — W f to be
continuous from ¥ (8A) N € (A4, q) into the space of all harmonic functions on
R™ \ A equipped with the topology of uniform convergence on compact subsets
of R™ \ 0A. We will always assume (2) which permits to extend the operator W
continuously to the whole space ¥'(9A4,q). For any f € € (94, q) we thus have the
corresponding double layer potential W f which is a harmonic function on R™ \ 9A.
We will be engaged in the existence of angular limits of double layer potentials W f
at 7). In order to be able to formulate some sample results we adopt the following
notation. The contingent of a set M C R™ at a point £ € R™ (cf. [16], chap. IX,
§2), to be denoted by contg(M, &), consists of all half-lines

3) H(¢,0) = {¢+10;t > 0}
for which there exists a sequence of points z, € M \ {{} such that
Zn — f

lim —— =46.
n—oo |z, — |

Introducing for 8 € 9B(0,1) and £ € R™ the sum
(4) n(6,6) = > qz), z€dANH(ED),

we obtain a non-negative extended real-valued function of the variable § € 9B(0,1)
which is A,,—;-measurable (cf. Lemma 3 below), so that we may put

(5) vi(E) = = /6 oy W10, D 6).

Om
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Let

(6) L(f:"") = {E} U H(f, w) U H(f, -w)

be the line of direction w € dB(0,1) passing through the point £ € R™. If w €
0B(0,1) is fixed then for any open set U C R™ the sum

(7) n%w,{;U)zZq(a:), reUNJd.ANL(&w),

is a Am_1-measurable extended real-valued function of the variable £ on {¢€ € R™;
¢ w =0} = N(w) and we may define

®) HO) = [ w,6U) dhnei (9
N(w)
With this notation we may formulate the following result.
Theorem 1. Let S C R™ \ 0A be a connected set, n € cl SN IA,

contg(dA,n) N contg(S,n) = 0.

If6 € 8B(0,1) and

‘9—(z_n)’=0(|z—n|m_1) as z-mn, z€85,
|z =l

then a necessary and sufficient condition for the existence of a finite limit

9) lim W f(z)
zeé7

for every f € C(0A,q) consists in

(10) vi(n) + sulg =" ud (B(n,r)) < oo.
>

Defining further
(1) won= [ gan.,
M. A

for any Borel set M C R™ we have also the following result.
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Theorem 2. Suppose that S; C R™ \ 0A are connected sets such that

n € clS;NIA, }i_r)r}’(z—n)/lz—m =0; (j=1,...,m).

z€S;
If the vectors 64, .. .,0,, are linearly independent, then the condition
(12) v9(n) + supr' " pd(B(n,r)) < o0
>0

is necessary for the existence of finite limits

(13) zll_I)I}]Wf(z) (G=1,...,m)
z€S;

for all f € C(0A,q); if
contg(0A,n) Ncontg(S;,n) =0 (j=1,...,m),

then (12) is also sufficient.

Proofs of these theorems depend on a series of auxiliary results. We will extend
q from JA to R™ defining ¢ = sup ¢(8A) on R™ \ 9A4; thus ¢ > 0 is bounded and
lower-semicontinuous on R™, ¢ > 0 on R™ \ {n}. If @ # U C R™ is open, then
J#(U) denotes the space of all harmonic functions on U equipped with the topology
of uniform convergence on compact subsets of U.

Lemma 1. The operator W: f — W f acting from €V (8A) N € (dA,q) into
J€(R™ \ OA) is continuous (where €(0A,q) is equipped with the norm || ...||,) iff
(2) holds.

Proof. Assuming (2) we conclude that, for each bounded open set U C R™
with clU C R™ \ {n}, Am-1(U N 8.G) < co. This implies that G has locally finite
perimeter in R™ \ {n} (cf. [5], chap. 4 and [19], section 5.8) which means that the
distributional first order partial derivatives of the indicator function xg of G are
locally in R™ \ {n} representable by signed Radon measures. Let us recall that a
unit vector n € 9B(0,1) is termed Federer’s exterior normal of G at £ € 4G if the
symmetric difference of G and the half-space P,(¢) = {z € R™;(z — £) -n < 0} has
vanishing density at &:

d(G\ Pa(§),6) = 0=d(P.(§) \ G,9).
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Obviously, there is at most one vector n € dB(0,1) with this property which will
then be denoted by n®(€); we put n¢(€) = 0 (€ R™) if no Federer’s normal of G
at & exists in the above described sense. Then

9G = {£ € 8G; |n% ()] = 1}

is a Borel set (cf. [4]) which is called the reduced boundary of G. Clearly, aG =
0A C 8. A =09.G,n% = —n”. Since G has locally finite perimeter in R™ \ {1},

(14) Am-1(8.G\8G) =0

and for any vector-valued function v = (vi,...,vn) with components v; €
" (R™ \ {n}) the divergence formula holds

(15) /A v-nC dAm—1 =/ (Zaj’vj) dX,.-1,
¢ \i3

oG

where 0; denotes the partial derivative with respect to the j-th variable. Using this
formula we get for g € (V) (0A) vanishing near n and any 2z € R™ \ 04

Wg(z) = /A gn% -grad h, dAm_1,
G

and this formula extends easily to any g € €V (9A) N 6,(0A,q). Using (1) we
conclude that for any f € € (0A) N F(04,q),

(16) W) = —Fmxa(z) + /6 U0 = [0 (6) - grad () dhnoa o).
Denoting by
dist(z, M) = inf {|z = £|; £ € M}
the distance from z to M C R™ we get
an  WIEN <]+ [istE06 Il o [ g ey

Im JEG

oG

Om oG

<IIfll {1 + [asitz,00) " = [ g dAm_l}

which shows that W maps €1} (0A) N €' (0A, q) continuously into S (R™ \ 9A).
Conversely, let W act continuously from (1) (9A) N €' (94, q) into S (R™ \ HA).
Using the argument from [11] (cf. the proof of Thm. 2.12) we shall first show that G
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has locally finite perimeter in R™ \ {n}. For this purpose we fix affinely independent
points z1,...,2z™*! € R™\ OA. There is a ¢ € [0, 00[ such that

(18)  feeWM(0A)NG(04,9) = [Wf(Z")| < cllfllgo, 1<k<m+1

Consider an arbitrary bounded open set U with clU C R™ \ {n} and denote by
0¢ = 0 - grad the derivative in the direction of § € dB(0,1). We wish to show that,
for any fixed 6 € 8B(0,1),

Let IT; be the hyperplane containing all points in {z*;k # j} and notice that

m+1

U (R™\ II;) = R™. There are infinitely differentiable functions a; with compact
Jj=1
supports spta; C R™\ ({n} UIL;) (j = 1,...,m + 1) which form a decomposition

of unity near clU in the sense that

m+1

a = Z Qj
j=1
equals 1 in a neighborhood of clU. We then have
/ Oy AN, = / a(z)0e(z) dAm(z)
G G
for ¢ € ‘50(1)(U ) so that it suffices to verify
(19) sup { / a;(z)0p(z) dAm(z); ¥ € G (U), [¥] < 1} < 00
G

forj=1,...,m+ 1. We will do this, e.g., for j =m+ 1. Fix ¢ € ‘é)()(l)(U) such that
|| < 1. For x € spt 41 the vectors  — z!,... 2 — 2™ are linearly independent so
that, in a neighborhood of spt am+1,

6= Z ar(z) grad h,x ()
k=1

with infinitely differentiable functions ax(z). Hence
/ U106 dAm = / am+1(2)ak(z) grad ¥ (z) - grad b (z) dAn, (2).
G pasilre]
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Fix k € {1,...,m} and put F(z) = ami1(z)ar(z). Then F € £ (R™ \ {z¢}) and

| F@) erad (o) - grad o (o) dn(2)
- /G grad (F(2)$(x)) - grad hox () dAm(2)
- /G ¥(z) grad F(z) - grad hox (z) dAm (2).
Clearly,
l /G () grad F(x) - grad he () dAm (@)
< i/clgradF(z)l z = 24 A () < 0o

Noting that ¢ is strictly positive on A N sptam,+1 D A Nspt F we can choose
a € [0,00[ such that |F| < aq on A and (18) yields

/ grad (F(z)y(z)) - grad h,x (z) dAm(2)| < ac.
G

Thus (19) has been verified for j = m+1 and, of course, the same reasoning works also
for j =1,...,m. We now know that G has locally finite perimeter in R™ \ {n} and,
consequently, (16) holds for f € €(1)(0A)NE(AA, q) vanishing near 1, z € R™ \ dA.
It follows easily that

(20) / 2O)|n%(€) - grad hu(€)] dAm-1(€)

5G
=sup {Wf(2); f € ¥ (8A) N%1(34,9), [Ifllao <1}, z€R™\BA.
Since the points z!,...,2z™*! are affinely independent, there is a constant b € ]0, oo]
such that
m+1
Y [n(€) - gradhx(€)] 2 b, €€ 0A.
k=1

Combining this with (18), (20) (where we set z = zF, k= 1,...,m + 1) we arrive at

m+1
/ g dAn_; <b7! Z /A qn® - grad hi| ddm—1 < b7 H(m + 1)e,
8G k=1 YOG

which together with (14) proves (2). O
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Remark 1. In what follows we always assume (2) which guarantees that G has
locally finite perimeter in R™ \ {n} and (14) holds. The operator W extends, by con-
tinuity, from €N (0A) N E(94,q) to € (94, q). For f € €(0A,q) the corresponding
function W f € S#(R™ \ 0A) is given by (16) for z € R™ \ 0A.

Notation. We fix an infinitely differentiable function ¢ on R with spt ¢ C |—1,1]
such that

/(,0 dA =1, @(=r)=¢(r), reR,
R

and define for each locally integrable function g: R — R and each n € N

Ang(t) = n /R a(t - r)p(nr) dr(r).

Then A, g is infinitely differentiable and for each integrable function 1 with compact
support in R we have

/’(/)Ang d/\1 = / gAnw d/\1
R R
Suppose now that Z is a non-void set. For each f: Rx Z — R and each z € Z define
f-:R— R by
f-(t) = f(t,z), teR.
If f. is locally integrable for each z € Z then we define A,,f: R x Z = R by
(Anf). = Anf., z€Z,neN.

If the finite derivative (f,)’ exists on R for each z € Z then 9f denotes the partial
derivative on R x Z given by

0f): =(f2), z€Z

Assuming that 9f: R x Z — R is well defined as above and, for each z € Z, both f.
and (f.)" are locally integrable on R, we have

A,0f = 0A.f, neN.

Let now A be a o-algebra of subsets in Z and B the o-algebra of Borel sets in R. If
Ih: R x Z — Ris B x A-measurable and h; is integrable for each z € Z then

J /R h(t, ) dA (¢)

is A-measurable on Z. Hence it follows (cf. [9], Remarks 1.2) that A, f is B x A-
measurable provided f: R x Z — R is B x A-measurable and f, is locally integrable
for each z € Z. Consequently, for such an f also 9A,, f is B x A-measurable. Keeping
this notation we can formulate the following slight modification of Lemma 1.3 in [9].
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Proposition 1. Let A > 0 be a measure on A. For each k € N let ¥, be a class of
B x A-measurable functions on R x Z such that the following conditions (P;)-(Pg)

are satisfied:

(P1) ¥ C ¥rt1, kEN.

(P2) v € ¥ = —9p € V.

(P3) Foreach € ¥ = |J ¥ and each z € Z, 1), is a continuously differentiable

keN
function with compact support in R; besides, both 1 and 0v are integrable with

respect to Ay X Aon R x Z.
(P4) For each k € N there is a nx € N such that

(Y €TV, n2ng) = Ap €U

(Ps) Given k € N, there is a B x A-measurable function pi: R x Z — [0, co[ such
that, for each bounded B x A-measurable h: R x Z — R,

sup {/ hy d(A1 X A); ¢ € \I/k} =/ |hlpe d(A; x A).
RxZ RxZ

(P¢) If g: R —» R is a bounded B-measurable function then, for each z € Z and

keN,
SUP{/gd)z dAi; 9 € ‘I'k} =/Ig(pkz dAy,
R R

where pr, = (px). and py occurs in (Ps).
Suppose now that f: Rx Z — R is a bounded B x A-measurable function and let

Fo) =sw{ [ 100, aviver), sez
R
Then F: Z — [0,00] is A-measurable and

/Fd)\zsup{ fawd(/\le);we\I’}.
z Rx Z

Proof. We will follow the ideas employed in the proof of Lemma 1.3 in [9];
for convenience of the reader we include the details. Having fixed z € Z we get

from (P4) for k € N and n > ny
sup { / f2(0ARY), A\ ¢ € \I/k} = Fin(z) < F(2),
R

so that
F.(z) = lilginf Fin(z) < limsup Fin(2) = Fi(2) < F(2).

n—o0
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In view of (P;) we have for any k € N
(21) Fy(2)  Fi44(2),  Fi(2) < Frpa(2)

and
lim Fi(z) < F(2).

k—o0

On the other hand, for each ¢ < F(z) there is a ¢ € ¥ such that

/R £.09), dh > c.

Thanks to (P3) all functions A, (d%), have supports in a fixed compact subset of R
and converge uniformly to (9v), as n — oo; choosing k£ € N such that ¢ € ¥ we
obtain

F.(z) > /02 f2(0¢), dA > c.

We conclude that
(22) F(z) = lim F;(z) = lim Fk(z).

k—oo k—oo

If € Uy and n 2 ng (cf. (Py)), then

/ fz(aAn"/))z dA\ = / fz(Anaw)z d/\l = "‘/(aAnf)zL/)z d/\h
R R R

whence using (P3), (Pg) we get

(23) Fkn(z) =/R|(8Anf)zlpkz d/\l.

We see that Fj, is A-measurable and, consequently, the same holds of F, =

1inl> inf F,, and F = klim F;.. The proof will be complete when we verify
n—oo —00

/Fd/\gsup{ fawd(/\lx/\);we\l'}zs,
zZ RxZ

because the opposite inequality follows from the definition of F' by Fubini’s theorem.
Referring to (22), (21) we have

/ F dX = lim F, d\ < lim liminf [ Fg, dA.
Z oo /7

k—oo n—oo [
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The condition (Ps) together with (23) yields

/F;m d/\=sup{/ (3Anf)1,/1d(/\1><)\);111€\11k}.
zZ RxZ
It remains to notice that, for ¢ € ¥ and n > ny, we have by (Py4), (P2)

/ (OALf)Y d(Ay x A) = — FOALY d(A X \) < s.
RxZ

RxZ

a

Definition 1. If H M C R™ (m > 1) are Borel sets, then z € R™ will be called
a hit of H on M provided

M (B(z,r)nHNM) >0and A (B(z,r) N (H\ M)) >0

for each r > 0 (compare 1.7 in [11] and [7]). We will use the symbol H® M to denote
the set of all hits of H on M.

Lemma 2. Let p: R — [0,00] be a lower-semicontinuous function, U C R an
open set and M C R a Borel set. If

Ulp) = {$ € €V(U); 9| < p on spty},

then

(24) sw{ [ vavivevmf= ¥ s

teUOM

Proof. If v € U(p), then ¥ = 0 almost everywhere on p~1(0) = {t € R:
p(t) =0}. If I, ..., I, are all components of U \ p~!(0) intersecting spt ¢, then

Y dA = / ¥ d
M ; MAl;

and

YooY p< Yo opl.

j=1tel;oM teUeM

’ / P d\
M

In order to prove

< >0 o

teUOM
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it suffices to verify

(25) ' /MﬂI~ d)’ d/\l

for any component I; = ]a, b[ for which the right-hand side in (25) is finite. There
is a compact interval [a, ] C ]a, b[ such that spt YN ]a, b[ C [a, b] and inf p([a, b]) > 0.
Under these circumstances the set

< Y, )

tel;oM

[@,b)Nn (I; ® M) = {e1,...,es},

where ¢, < ... < es, must be finite. No component of [a,b] \ {e1,...,es} can meet
both M and R\ M in a set of positive A\;-measure; consequently, these components
in their natural order are alternatively almost entirely contained in one of the sets
M and R\ M (cf. the reasoning in the proof of 1.8 in [11], p. 13) and

W' dA =|/ W' dA < p(8),
‘/Mnl,— ' Mn[a,b) ' Z (®

tEIj oOM
which proves (25). Denoting by a(p) and B(p) the left-hand side and the right-
hand side in (24), respectively, we have thus shown that a(p) < B(p). It remains to
establish the opposite inequality

S

S (=1)ig(er)

=1

(26) a(p) = B(p)-

For this purpose we denote by & the class of all lower-semicontinuous functions
p: R — [0, 00] fulfilling (26) and proceed by checking validity of the following asser-
tions (a)—(d):

(a) £ contains the indicator function of any open interval in R.

(b) If p € 2, then also cp € £ for any c € [0, 00

(c) If {p~} is a non-decreasing sequence of functions in &, then also lim p, € &.

() If py, ps € P, then also py + py € P. e

The assertion (a) follows from Lemma 1.8 in [11] and the proofs of (b), (c) are
easy. In order to prove (d) choose arbitrary functions p;, p2 € £ and real numbers
ck < B(pr) (k =1, 2). There are ¢x € U(py) with

/ lf)ld/\l > Ck (k=1,2).
M
It is casily seen that ¥ =91 + ¢2 € U(p1 + p2). The relation

/’(/)ld)\]:/ 'wi d/\1+/ 'l/);d/\1>01+62
M M M
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shows that a(p; + p2) > ¢1 + ¢2. Since ¢ can be chosen arbitrarily close to 8(px),

we have a(p1 + p2) = B(p1) + B(p2) = B(p1 + p2) and (d) is established. It follows
from (a)-(d) that & contains all lower-semicontinuous functions p: R — [0, co] and
the proof is complete (cf. also [10], pp. 22-24). a

Lemma 3. For any fixed £ € R™, the function 6 — n?(6,£) defined by (4) is
Am—1-measurable on dB(0, 1), so that we may define v1(§) by (5). Writing

VE=R™\{&n}, Vi(g) = {v €€ (VE); [¢] < qon sptu},

we then have
(27)

vI(€) = /,\ q|n® - grad he| dAm—1 = sup {/ grady - grad he dAm; ¥ € Vf(q)}.
aG G

Proof. Consider ¢ € ‘50(1)(V5 ). Applying the divergence formula (15) to
v =9 grad he (with v(§) =0 € R™) we get

/ grad v - grad he dA, = /A wnG -grad he dAm—1,
G FTe

whence it easily follows that

(28)  sup {/ grady - grad he dA,; ¥ € VE(q)} = /A g|n® - grad hel dAm—1.
G 8¢
Introducing the spherical coordinates and writing
ve(t) = v(E+10), Gg={t>0;6+1t0€G}

for § € 0B(0, 1) we obtain (cf. (18) in [11])

1
/ grad vy - grad he dA,, = —— [ Py (t) d)\l(t)] dAn—1(6).
le} Im JoB(0,1) LJGy
Next, use Proposition 1 with Z = B(0,1), A\ = An—1. For ¢ € V¥(q) define ¥ on
R x Z by ¥ (t,0) — e(t) and let ¥y = {1[); ¥ € VE(q), ¥ +% < qon sptz/:},

¥ = |J P%. Proposition 1 tells us that
keEN

(29) 60— sup{ ; Pp(t) dAi(t); ¥ € Vg(q)}
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is a Baire function of the variable § € 9B(0,1) whose integral (with respect to
dAm_1(0)) over 8B(0,1) is equal to (28). It follows from Lemma 2 that for any fixed
0 € 8B(0,1) with H(,0) c R™ \ {n} (cf. (3)), we have

p{/G BOMOveV@l= Y )

z€H(£,0)0G

M. Chlebik pointed out in [2] that methods of geometric measure theory (cf. [5])
permit to conclude that

Am-1({60 € 8B(0,1); H(£,0) N0.G # H(¢,0) ©G}) =0,
which shows that 6 — n9(6,€) is A\,,—1-equivalent to (29) and (27) holds. O

Corollary 1. The function & — v9(§) is lower-semicontinuous on R™.

Proof. This follows easily from the formula (27). O

Lemma 4. Let S C R™ \ A be contained either in A or in G = R™ \ A,
1 € cl SN OA. Then the limit (9) exists and is finite for every f € €(9A, q) iff

(30) lim sup v?(z) < oo.
z—n
Z€S

Proof. We have seen in (17) that, for any fixed z € R™ \ 0A, the linear
functional

frWiz)
is bounded on (94, ¢) and, according to (20), (27),

(31) sup {Wf(2); f € 60(94,q), Ifllq0 <1} =27(2).

The existence of the limit (9) implies that, for any sequence z, € S tending to 7,
the sequence W f(z,) is bounded for each f € %p(04,q); by the Banach-Steinhaus
theorem we conclude in v1ew of (31) that sup v9(2z,) < 00 and (30) follows.

Now we shall prove the converse (compare [10]). Since x¢ is constant on S, it
follows from (16) that it is sufficient to verify the existence of (9) for f € 60(0A4,q)
only. According to (30) we have for suitable r > 0

sup {v1(z); z € B(n,r) NS} = K < o0.
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From Fatou’s Lemma we conclude by (27) that also

(32) /A q|n® - grad hy| dA—1 < I
aG

We shall show that, for any f € 65(94,q),

(33) lim W f(z) = / fnC - grad b, dA,_,.
zZ—=n 56‘
z€S

Fix an arbitrary € > 0, f € %5(94, ¢) and choose § > 0 such that

lf()| < eqly), v € B(n,§NnaoA.

By (16) we then have

fn(" sgrad h, dA,—;.

9G\B(n,8)

(34) Wf(z)= /B fn - gradh, dh,_; +/

(1,6)ndG

Clearly,

lim /A fnG -gradh, d\ -1 = /A fnG -grad hy dA,—1,
ig’é’ 9G\ B(n,6) 8G\B(n,6)

because grad h, — grad h, uniformly on G \ B(n,6) as z = 1. On the other hand,

/ . fn€. grad h, d/\m_1| < 6/A glnc cgrad h;| dA,,—1 < ek,
B(n,6)n8G ETe.
z € B(n,r)N S,

and, in view of (32), this estimate holds for z = 1 as well. We conclude from (34)
that

lim sup
z>
2€S

Wf(z) - fn< - grad b, dAn—1
aG

< 2eX + limsup
o
Z€S

/ ¢ - (gradh. — grad h,) dA,—;| = 2cK¥
OG\B(n.6)

which proves (33), because € > 0 was arbitrary. O
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Lemma 5. For any open U C R™ and w € 9B(0,1) the function
(35) §—=n(w, &)

defined by (7) (cf. also (6)) is Apn—1-measurable on N(w) = {£ € R™; {-w =0}, so
that we may define ud (U) by (8). Let

Uq)={y € ‘6};1) (U\{n}); 9] < q on spti}

and denote by 0, = w - grad the derivative in the direction of w € 0B(0,1). Then

@) 0@ = [ el e =swf [ o dvsverio)
U G

noG

Proof. Fixy € (6’0(1)(U\{7]}) and apply the divergence formula (15) to v = Yw.

It follows that
/ Yw - dAp 1 :/aww dAn,
oG G

whence

(37) / e nG| dApm—1 = sup {/ O dApm; ¥ € U"(q)}.
( G

NaG

Let us agree to write for £ € N(w)
VIt = P(E+tw), tER;, G ={teR;E+tweG)

Using Fubini’s theorem we obtain

[ o= [ [ [ S ] oo
G INw) LJge dt

Next we will employ Proposition 1 with Z = N(w) and A = A,,,—; on the o-algebra
A of all Borel subscts in N(w). With any v € U"(q) we associate 1 defined on R x Z
by

B (1,6) = v (D)

and let Uy = {1,7); e UMqg), [¢|+ % < qon sptey}, k€ N. Proposition 1 tells us
that the function

(38) & sup { / dtl/yﬁ(f) dAi(t); v € Uu(q)}

lel3 d



is Borel measurable on N(w) and its integral d\,,_;(£) over N(w) is equal to (37).
For fixed £ € N(w) with L(¢,w) C R™ \ {n} (cf. (6)), Lemma 2 yields

e [, 40 M0 v €U} =T a0 telbenulec

Now we refer to the following result of M. Chlebik from [2] based on geometric
measure theory (cf. [5]):

Am-1({€ € N(w); L(£,w)NU NG # [L(E,w) NU]® G}) =0,

which implies that the function (35) is A\,,—;-equivalent to (38). Consequently, (35)
is A;m—1-measurable on N(w) and its integral d\,,—;(§) over N(w), which has been
denoted by ul (U), satisfies (36). O

Lemma 6. Let S C R™, 5 € clS. If (30) holds, then
(39)  v(n) +sup {r'"™ug (B(n,r));r >0, we dB(0,1), n+7rw € cl S} < o0,

where pd(...) is defined by (8).

Proof. Employing (30) we get by the lower-semicontinuity of v9(-) that there
is a § > 0 such that

(40) sup{v?(z); z € B(n,0) NclS} =c < oo.

Let r > 0,w € 9B(0,1), 2z =n+rw € clS. If r > 4, then using the notation (11) we

have
r' T ud (B(n, 1)) <67 uI(R™) < oo.

Let now r € ]0,0[, y € G n B(n,r). If |(y —n) - n%(y)| > r|n®(y) - w|, then

|(y - 77) i nG(y)l > lrl—mlnG(y) 'W|-

ly —n|™ 2
If |(y — ) - n%(y)| < 37|n®(y) - w|, then

I(y — z) - n®(y)|

> )" [I(z =) - n ()| = |(y = n) - n%(¥)]]
ly — 2|

> (21) " [rlo - n8 )] - 57l 7€ ()]

=27 b Gy L.
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Hence
r= 8 (y) - w| < 2™ 0, [InC(y) - grad hy(y)] + In(y) - grad h.(y)|]

and (40), (27) give
r' =" ud (B(n, )

<2, / 1[I () - grad hy(¥)] + In®(y) - grad ho(v)]] dAm-1(y)

B(n,6)ndG
< 2™, c.
0

Remark 2. It follows from Lemma 5 that ug (-), defined so far as a set function
on open sets, extends naturally to all Borel sets M C R™ by

(41) pd (M) = / qn€ - w| dApm-1.
MNaG

Proposition 2. Suppose that S; C R™ \ 0A are connected sets such that
1) € c1S; NIA, contg(Sj,m) = H(n,0;) (j =1,...,m) (cf. (3)), where 6,...,0n €
0B(0,1) are linearly independent. If (30) holds for S = G S; and pi(-) is defined
by (11), then (12) is true. =

Proof. Our assumptions on S; (j = 1,...,m) guarantee the existence of posi-

tive constants 9, ¢ such that

S
mn- n
|29 —n

(n€0B(0,1), 7 € S;NB0,8) (j=1,...,m)) = Y _
j=1

'20.

We may suppose that § > 0 has been fixed sufficiently small so that, for every
r € 10,6[ and j = 1,...,m, 8B(n,r) N S; # 0, which implies the existence of an
wj € 0B(0,1) with n + rw; = 2/ € S;. In view of (11), (14), u?(-) can be defined by

(42) WOn = [ gy
MnNoG
for any Borel set M C R™. By Lemma 6 we have for 0 <r < §

v (n) + 717" ! (B(n, )
1 m
<ot + oty ud (Bnr)
Jj=1

m
<vi(n) + = sup {,I,l—m#(?) (B(TLT))W >0, wedB(0,1), n+rwe S}

< 00.
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Obviously, for > § we have r'=™p?(B(n,r)) < 6'"™p?(R™) < oo and (12) is
verified. O

Proposition 3. Let m = 2 and let S C R? \ 0A be a connected set with 1 €
cl SN JA. Denote by

S={2y—x;2€S8)})

its reflection at n and suppose that
contg(@,n) N contg(S,n) = 0 = contg(IG,n) N contg(S, ).

Then (30) implies (12).

Proof. There are constants § €]0,n/4[, ¢ €]0,00[ such that, for any y €
aGnN [B(n, 0)\ {n}] and z € SN B(n, ), the angle enclosed by the vectors

y—-n  z—1
ly—nl" |z—mnl

exceeds 20 and the same holds for the vectors

y—n 21

ly—nl"  lz=nl

In view of (30) we may assume that p > 0 has been fixed small enough so that

0<r<p = SNIB(n,r) #0,
sup{v?(z); 2 € SNB(1n,0)} = ¢ < .

It follows from Corollary 1 that also
vi(y) <c.

Let now 0 < r < g,y € G N B(n,r), = € SNIB(n,7). If n%(y) encloses with one
of the vectors

2= -

EErRNEET

(43)

the angle not exceeding %n — 0, then

() - (v =]+ ) - (y = =) = 1Y) - (=] = reos(3z = d).
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If both vectors (43) enclose with n%(y) angles exceeding %n — &, then at least one of

the vectors
y—n _y—n

ly—nl"  ly—1l

encloses with n%(y) an angle which is less than 2Tt —26+6= % — 4, whence

In%(y) - (v —n)l = ly —nl cos(%n —9).

In any case (note that |y — z| < |y — 0| + |z — 0| < 2r) we have
) - y-—ml W) -2 L 4

+ - > 17 cos(sm — 4),
ly —nl? y-2> T4 :

whence by (42), (27) we get

= ut(B(n,r))

G- (y — Gly) - (y —
<dcos (An—3) [ %)=l | |In"() (y2 z)] () A ()
2 — |2 I
8GNB(n,r) ly —nl ly — 2|

< 8rncos™H (3 — 6)[v(n) + v7(2)] < 16nccos™ (3 — 4).

If r > p, then r~'p?(B(n,7)) < 07'uI(R?) < 0o and (12) (where now m = 2) is
verified. a

Lemma 7. Let S C R™ \ 94, n € dANclS, vi(n) < oo, contg(gé,n) N
contg(S,n) = 0. If

(44)  sup {tl‘m/tZ(B(n,t)) ;0= lj — ZI’ z€SNB(n,6), t>|z— nl} <00

for some 6 > 0, then (30) holds.

Proof. It follows from
contg(dG, 1) N contg(S,n) = 0
that there exist constants a > 0, € > 0 such that
z € SN B(n,e) = dist(z, BG) alz — 1)

(cf. [3]). Clearly we may suppose that € < d§, where § occurs in the assumption (44).
We shall first show that there is a ¢ € ]0, oo[ such that, for any z € SN B(n,e) and
any Borel measure v > 0 concentrated on 8G

(45) sup {r'""v(B(z,r)); r > 0} <esup {r'"™v(B(n,r));r > |z —n|}.
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Setting 71 = |z —n| and r = r1b we get for b € |0, a]
B(z,7r)NdG =0 (= v(B(z,r)) =0),
while for b > a
=™y (B(z,1))

< (B(n,r + 1)) = [r(1+0)]' " v(B(, (1 + b)ry)) (T

m—1
< (1:(1) sup {t""™v(B(n,t)); t > r1}.

We see that (45) holds with ¢ = a!=™(1 + a)™"!.
Now fix any z € SN B(n,¢) and put r = |z — 17|, 8 = (2 — n)/|z — n|. Defining the
Borel measures ¢ and pj by (42) and (41) we get by (27)

1 0l -w=nl , ,
B e ()

+ L/A n9y) - (-2 %) (y—n)
Im J&G

ly — z|™ ly —n|™
1
=vi(n) + — /A
Om J6G

vi(z) <

l du?(y)

ly—n™—ly—2" ¢
n7(y) - (y—n

ly —nl™ -y — 2™ W) (=)
mG(y)-("
A T e

= 2 1 (y)

1 In®(@)- -l (ly—nl\"
< 007 - . q
r dpg(y)

om Jog ly — 2™

In order to get an estimate of the last integral recall that, for any non-negative Baire
function f on R™,

fdug =/ pi({z € R™; f(z) > t}) dt.
R 0

Hence we get by (45), denoting by k the supremum occurring in (44),

(ar)™™
r/A v —2™™ dul(y) =v-/ 13 (B(z, %)) dt
oG 0

= rm/ ph(B(z,s))s™ 7™ ds

T

oo
< 7'mck/ s7% ds = mck/a.
a

r
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Ifye 55’, then |y — z| > alz — |, whence [y —n| < |y — 2|+ [z —n| < (1 + i)]y — z|.
Hence

L mcw»w—wn,oy—m>mdm@)<(a+1yﬂﬂmy

Om JoG ly - "Ilm Iy - Z| a

Finally, we arrive at the estimate

w(2) < o (S50) "o + 2

The following assertion is an immediate consequence of Lemma 7.

Corollary 2. Let S C R™\ 94, n € 9ANclS, contg(é(\}',n) N contg(S,n) = 0.
Then (12) implies (30).

Lemma 8. Let S C R™ Dbe connected, 1 € (c1S\ S) N OA and suppose that, for
suitable k € 10,00 and 6 € dB(0,1), the following implication holds:
z—n

< bl =,

(46) 2eS = '9—

|z =l

Then the following conditions (1)—(iii) are mutually equivalent:
(i) 51;13'1"‘"’#3(3(71,7‘)) < o0;

(i) sup {r'="ud (B(),7));n+rw € S, we dB(0,1)} < oo;
(iii) sup {'""™ud (B(n,t)); n+1w € S, w € 9B(0,1), t > 1} < oo.

Proof. We shall first verify the equivalence (i) <= (ii). Choose § > 0 small
cnough to have SN dB(n,7) # @ whenever 0 < r < 6. Having fixed such an r we
choose w € 9B(0,1) with n + rw € S and get from (46)

1 g (B, 1)) = wd (B, )| <ot /A 4)In®(y) - (0 = w)| dAn—1(y)
aGNB(n,r)

S kl_Lq(R”l).

For » > § and any w € 9B(0,1) the inequality r!=™ud (B(n, 7)) < ST (R™)
holds, whence the equivalence (i) <= (ii) follows at once. It remains to verify (ii)
< (iii).
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Let w € 9B(0,1), n+rw € S, t > r. If t > 6§, then t'=™pd (B(n,t)) <
3" pi(R™) < co. If t € ]0,4], then we can choose w;, € dB(0,1) with 1 + tw, € S.
We then have

" ud (B(n, 1)) — pd, (B(n,t))| < ¢ [ / a®)InC () - (w = )] dAm1(y)

dGNB(n,t)

+ / dIC W) - (6 = wo)| DAy (v)
8GNB(n,t)
< 2kp?(R™),

which shows that (ii) <= (iii). O

Now we are in position to prove Theorems 1, 2 announced in the introduction.

Proof of Theorem 1. If the limit (9) exists for every f € €(94,q), then
(30) holds by Lemma 4 and (39) follows by Lemma 6. The implication (i) = (i)
from Lemma 8 yields (10). Conversely, (10) and Lemmas 8, 7 imply (30) and
Lemma 4 guarantees the existence of the limit (9) for every f € €(94,q). a

Remark 3. The above proof shows that for Theorem 1 to be valid, the assump-
tion concerning contg(S,n) can be weakened to

contg(S,n) N contg(dA, ) = 0.

Proof of Theorem 2. If the limits (13) exist for each f € €(9A,q), then

(30) holds for S = |J S; by Lemma 4 and (12) follows by Proposition 2. Conversely,
j=1
assume (12) and suppose that

47) contg(S;,n) N contg(cg)-z\‘l,n) =0, 1<j<m.

Since () = pi(-) for any # € 8B(0,1) we get by Lemma 7 that (30) holds for

m

S = |J S; and Lemma 4 implies the existence of the limits (13) for any f € €(9A4,¢).
i=1

a

Remark 4. As we have observed in the above proof, the weaker assumption

(47) concerning the contingents of S; suffices for validity of Theorem 2. In the plane

case m = 2 we obtain the following result concerning angular limits of double layer
potentials.
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Theorem 3. Let m = 2 and let S C R?\ A be a connected set withn € c1 SNIA.
Denote by
S={2n-=zz€S}

the reflection of S at 1 and suppose that
contg(gC\?,n) N contg(S,n) =0 = contg(ga',n) N contg(S,7n).
Then the limit (9) exists and is finite for every f € € (0A,q) iff

(48) vl(n) + sug 1 (B(n,r))/r < co.
>

Proof. If the limit (9) exists for every f € ¥(94,q), then (30) holds by
Lemma 4, and (12) (with m = 2, which is just (48)) follows by Proposition 3.
Conversely, (48) together with the inequality p9(-) > pg(-) valid for each 8 € 9B(0,1)
yields (30) by Lemma 7, and Lemma 4 guarantees the existence of (9) whenever
feC(0A.q). O

Remark 5. Our main results concerning angular limits of the double layer po-
tentials were based on obtaining geometric conditions on the boundary guaranteeing
the validity of the relation (30) occurring in Lemma 4. The same relation serves
as a basis for obtaining geometric conditions on dA guaranteeing the cxistence of
ordinary limits (along int A or int G) of the double layer potentials at a boundary
point 1. The following result from [10] may serve as an illustration.

Theorem 4. Suppose that either S =int A or S = int G, € 3S. Then the limit
(9) exists and is finite for every f € €(0A. q) iff

(49) lin supv?(y) < oo.
y—n
y€odSs

Proof. We know from Lemma 4 that (30) is necessary and sufficient for the
existence of (9) for ecach f € €(9A,q). It follows from the lower-semicontinuity of
v1(-) (cf. Corollary 1) that (30) implies (49). The converse implication (49) = (30)
has been proved in [10], p. 32. a

Remark 6. There is a vast literature concerning boundary behaviour of double
layer potentials. Various results on angular limits which are close in spirit to those
occurring in the present paper may be found in [3], [6], [8], [12], [13], [14], [17], [18].
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