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(Received September 15, 1992) 

1. INTRODUCTION 

This paper is concerned with one-dimensional nonlinear thermoelastic motion, 
which is described by the deformation function X = X(t,x) G U and the absolute 
temperature T = T(t,x) > 0, where t G U denotes a time and x G U a point in 
the unit interval ft = (0,1) which is identified with the reference body having the 
natural temperature To > 0. The equation of motion and the balance of energy are 
given by the following formulae: 

(1-1) QXtt-Sx = f, 

(1-2) (i + f X t
2) t - (SXt)x =qx + fXt + g, 

for x G Q and t > 0, where subscripts indicate partial differentiations, S denotes 
the stress, i denotes the internal energy, q stands for the heat flux, g = g(x) is a 
positive smooth function defined on ft = [0,1] describing the mass density of ft, / is 
an external force and g is an external heat supply. One of the essential assumptions 
of this paper is that / = f(x), that is, / depends only on x. Here and hereafter, all 
the functions are assumed to be real valued. As a boundary condition, we consider 
the following Neumann type condition: 

(1.3) S = q = 0 

for x G dft and t > 0, which describes the traction free and thermally insulated 
condition. Note that the boundary dfi. of IQ consists of only two points 0 and 1. And 
also, the following initial condition is considered: 

(1.4) X(0,x)=X0(x), Xt(0,x)=X1(x), T(0,x) = To(x) 

39 



for x G l l . 
Now, we shall discuss the constitutive relations of S and e. Let $ and fj be the 

Helmholtz free energy function and the specific entropy function, respectively, and 
let F be a variable corresponding to Xx. Assume that ^, fj, e and S are functions 
with respect to Xx and T only, that is, 

(1.5) ^P = ^P(XX,T), fj = ri(Xx,T), i = e(Xx,T), S = S(XX,T), 

and that i/)(F,T), r](F,T), e(F,T) and S(F,T) are in C°°(G(6)), where 

G(6) = {(F,T) e R2 | |(F,T) - ( l , r 0 ) K <*} 

and J is a positive constant. Then, the 2nd Law of Thermodynamics implies that 
the following two formulae are equivalent: 

de = SdF + Tdr) <=> d^p = SdF - r?dT, 

from which it follows that 

(1-6) s=%,e = *-T%tr, = -%. 

And then, we have the equation: 

(1-7) Trit=qx+g 

for x e ft and t > 0, which is equivalent to (1.2) under (1.1). In fact, using the 
constitutive relation (1.6) and the assumption (1.5), we have 

et = e(Xx,T)t 
_dip ^^p dty T(dip\ 
~ dfTt + ~FXtx ~Tt~^T~1 \~T)t 
= Tfjt + SXtx. 

On the other hand, multiplication of (1.1) with Xt implies that 

^xf)t = sxxt + fxt. 

Combining these two formulae, we have (1.7) from (1.2). 
For the simplicity, we assume that 

(1-8) 5 = 0, 

(1.9) q = Q(Xx,T)Tx, 

(1.10) Q(F,T) S C°°(G(6)), Q(F,T) > 0 for all (F,T) € G(S). 
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Moreover, let us assume that 

д2iþ д2гþ , „ д2ф _ . _ , „ 

( 1 Л 1 > ã _ § > 0 ' ЂғŠг*0' W2<Q mG{ð)> 

(1.12) 5 ( l , r 0 ) = 0 . 

The assumption (1.12) means that ( l , r 0 ) is an equilibrium state with / = g = 0. 
The purpose of this paper is to show a unique existence theorem globally in time of 

smooth solutions X and T to the problem (1.1)-(1.4). Moreover, we investigate that 
(_Yt,-Yx,T) converges to ( 0 , ^ , ^ ) exponentially as t —. oo, where (X'^.TQO) is 
another equilibrium state which is different from ( l , r 0 ) in general. When / depends 
on . essentially, it seems to be difficult to prove a global in time existence of smooth 
solutions even if / is bounded in t. This is different from the case of the constant 
temperature boundary condition: T = r0 (cf. [14], [12]). Such difference comes about 
in applying Poincare's inequality. 

In concluding this section, let us state recent results concerning global in time 
existence theorems of smooth solutions to one-dimensional nonlinear thermoelasticity 
for small and smooth initial data. From now to the end of this section, we consider 
the case of ft being unbounded (a half line) as well as the case of ft being bounded (a 
unit interval). And, as boundary conditions, one of the following is also considered: 

(D.D) X = x and T = r0 for x E dft and t > 0, 

(D.N) X = x and q = 0 for x G <9ft and t > 0, 

(N.D) 5 = 0 and T = r0 for x G 9ft and t > 0. 

Here, (D.D), (D.N) and (N.D) mean the rigidly clamped and constant temperature 
condition, the rigidly clamped and thermally insulated condition and the traction 
free and constant temperature condition, respectively 

M.Slemrod [14] solved the problem (1.1), (1.2) and (1.4) in cases of (N.D) and 
(D.N), where ft was assumed to be bounded. When ft is unbounded, the same 
problem as in [14] was solved by Jiang Song [5]. These authors used the usual 
L2-energy method and thanks to the special form of the boundary condition, the 
essential difficulty was not created by the boundary term. The Cauchy problem to 
(1.1) and (1.2) was solved by Kawashima [8], Kawashima and Okada [9], Zheng and 
Shen [15], and Hrusa and Tarabek [4], using also the L2-energy method. In cases 
of (D.D) and (1.3), in using the L2-energy method, the essential difficulty arose 
from the boundary. Racke and Shibata [11] overcame this difficulty by showing the 
polynomial decay rate of solutions to the corresponding linear problem, which was 
obtained by use of a spectral analysis, where the boundary condition was (D.D) 
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and ft was bounded. Subsequently, Shibata [13] also solved the problem in the case 
that the boundary condition was (1.3) and ft was bounded, by reducing the problem 
to the (D.D) case and by modifying the method developed in [11]. Afterwards, 
Muiioz Rivera [10] obtained an exponential decay result for one-dimensional linear 
thermoelasticity with (D.D) boundary condition, where ft was bounded, by using the 
L2-energy method and by choosing some multipliers wisely to control the boundary 
terms. Extending Rivera's method to the nonlinear case, Jiang Song [6] solved the 
problem in case of (D.D), where he treated the case of ft being unbounded as well as 
the case of ft being bounded. And also, Racke, Shibata and Zheng [12] proved the 
exponential stability and the existence of periodic solutions in case of (D.D), where 
ft was bounded. Being inspired by Rivera's work [10], Jiang Song [7] solved the 
problem (1.1)—(1.4) in the case that / = g = 0, where he treated the case of ft being 
unbounded as well as the case of ft being bounded. But, the asymptotic behaviour 
of solutions was obtained in the linear case only, so that one knows the asymptotic 
behaviour of solutions to the problem (1.1)—(1.4) from the present paper. Anyhow, 
our proof will proceed in the spirit of the Jiang Song and Mufioz Rivera method. 

Finally, we note that a globally in time defined smooth solutions should not be 
expected for large data in general. Indeed, Dafermos and Hsiao [1] and Hrusa and 
Messaoudi [3] showed that for specialized constitutive equations, the smooth solu­
tions to the Cauchy problem blow up in finite time provided that the initial data are 
large. To the authors, it seems that one-dimensional nonlinear thermoelasticity was 
almost settled, except for the existence of periodic solutions to the problem (1.1)-
(1.3) and the global in time existence of smooth solutions to the problem (1.1)—(1.4) 
with external force / depending on t essentially. These problems seem to be open. 

2. STATEMENT OF MAIN RESULTS 

Throughout the paper, we use the following notation. For differentiation, we put 

(ji) fjij 
vs = dsv = — , d^v = —-T- (s = t and x, v = v(t,x)), 

os osK 

w(k)=TL?' W>=w<1)'w"=w(2)'w>"=w(3) (w=w(:c))' 
Bkv = (v, dsv,..., dkv), Dkv = {dldiv \i+j = k}, Dkv = {d\div \i + j^k}. 

We denote the usual I? space on ft, its norm and its innerproduct by L2, || • || and 
(•,•), respectively. Put 

ff'= {«;(*)€ L2 | | H l i = ( E l h ( f c ) l l 2 ) 2 < ^ } , 
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H° = L2, || • ||o = || • ||, H l o o = sup \w(x)\, 
xG(0,l) 

(u,v) = u(l)v(l) - u(0)v(0), (u) = {u(l)2 + ^(O)2}* . 

For a Banach space X and an interval I C U, Cj(I,X) denotes the set of all X-
valued continuous functions which are j-times continuously differentiate on I and 
L2(I,X) denotes the set of all X-valued strongly measurable functions on I which 
are square integrable on I. As a class of solutions to the problem (1.1)-(1.4), let us 
introduce the following functional space: 

ZN(t0) = {(X(t,x),T(t,x))\ 

N 

(2.1) X(t,x)e f)&([0,to],HN-3), 
j=0 

N-2 

(2.2) T(t,x) e CN~1([0MI<2) n f | &([0,to},HN-J), 
3=0 

(2.3) d?~1T(t,x)eL2((0,to),H1), 

(2.4) (Xx(t,x),T(t,x)) e G(6) and T(t,x) > 0 for (t,x) G [0,t0] x n\. 

Let us begin with stating a local in time unique existence theorem, which was ob­
tained by W. Dan [2]. The problem treated in [2] is more general than the problem 
(1.1)-(1.4) of the present paper. Before stating the theorem, let us discuss the con­
ditions on the initial data and the right members. Of course, it is not necessary 
to assume that / = f(x) to obtain a local in time existence theorem, so that for a 
moment we shall consider the case where / = f(t,x) and g = g(t,x). Let (X,T) be 
a solution in ZN(t0) to the problem (1,1)—(1.4). Put 

(2.5) Xj(x) = d{X(0,x), Tj(x) = d{T(0,x), 

and then Xj(x) and Tj(x) are successively determined through the equations (1.1) 
and (1.7). For example, for / = f(x) and g = 0, we get 

X2(x)=S(XL(x),T0(x)y + f(x), 

T1(x) = (T 0 (o ; )^ (XoW,To(x) ) ) " 1 

x {(Q(X0(x),T0(x))T^(x))f -T0(x)^(X^ 

and so on. The conditions (2.1) and (2.2) imply that 

(2.6) Xj(x)eHN^ (O^j^N), 

(2.7) Tj(x)eHN-J (0<3^N-2), TN^(x) € L2. 
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Assuming that 1V ^ 3, we see that 

A l -2 

Tx(t,x),S(Xx(t,x),T(t,x))e f | ^([O^o],^-1^"), 
j=0 

for (X,T) G ZN(t0). Since (1.3) is satisfied for all t G [0,t0], we meet the following 
requirement from (1.3): 

(2.8) dJ
tS(Xx(t,x),T(t,x))\t=0 = 0, 

(2.9) Tj(x) = 0 

for x G dfl and for 0 ^ j < At - 2. Moreover, the condition (2.8) is written in terms 
of Xj and Tj and their derivatives (0 < j ' < At - 2). Indeed, for At = 3, we have 

(2.10) S(Xo(a;),To(a;)) = 0, 

(2.11) ^(X0(x),T0(x))X[(x) + ^(X0(x),T0(xm(x) = 0, 

(2.12) T.50) = !? (» = 0 

for x G <9ft. And then, we know the following local in time existence theorem 
(cf. W. Dan [2]). 

Theo rem 2 .1 . Suppose that (1.5), (1.6), (1.9), (1.10) and (1.11) hoid and that 
N is an integer ^ 3. Suppose that (2.6), (2.7), (2.8) and (2.9) hold and that 

A l - 2 

(2.13) f,ge f | Cj([0,to],HN-2^') and dt
N ~lf,d?-lg G L2((0, t0), L2). 

i=o 

Let 5 > 0 be a number such that 

3 1 1 

(2A4) X) ll^ll'-^+ EllIjll3-i + llI-ll + E SUP 11(^7,a^^oili-,-
j=Q j=0 i = 0 0 < » < t o 

+ | ^ ° l l ( a 2 / , a 2
5 ) ( 5 , - ) | | 2 d s } 2 < 5 . 

Suppose that 

(2.15) (X0(x),T0(x)) G G(S/2) and T0(x) > 0 for x G fi. 
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Then, there exists a time ti G (0,t0) depending on B and S essentially such that 
the problem (1.1)—(1.4) admits a unique solution (X,T) G ZN(t\) satisfying the 
condition: 

(2.16) (Xx(t,x),T(t,x)) G G(2S/3) and T(t,x) > 0 

for(t,x) G [0,h] x H. 

R e m a r k 2.2. The essential point in Theorem 2.1 is that the existence time t\ 
depends only on B, so that it is enough to get an o priori bound for \\D3X(t, -)||, 
\\DlT(t, -)||2 and \\d2T(t, -)|| to prove the global in time existence theorem, in view 
of (2.14). 

Now, we are going to state our global in time existence theorem and the estimation 
of solutions. From now on, we assume that 

(2.17) / = f(x) G HN~2 (N ^ 3) and g = 0. 

Without loss of generality, we may assume that 

(2.18) / f(x)dx= [ g(x)X0(x)dx= f g(x)Xx(x) dx = 0. 
do do do 

In fact, let us define a compensating function r(t) by the formula: 

r(t) = I g(x)X0(x)dx + t g(x)Xx(x)dx + — I f(x)dx\( g(x)dx 

Put X(t,x) = X(t,x) — r(t) and put Xj(x) = d3
tX(Q,x). Then, from the definition 

of r(t) it follows immediately that 

/ g(x)X0(x) dx = / g(x)X\ (x) dx = 0. 
Jo do 

Moreover, what Xk(x) G HN~k, 0 ^ k ^ N, is equivalent to what Xk(x) G HN~k, 
0 ^ k ^ N. Since Xk(x) = Xk(x) for all k ^ 0, the following two conditions for our 
local in time existence theorem also hold: 

d{S(Xx(t,x),T(t,x))\t=0 =0 for x G dQ and 0 ^ j ^ 1V - 2, 

(X0(x),T0(x)) G G(6/2) for x G H. 
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And also, we see that 

and that 

g(x)Xtt-S(Xx>T)x 

= g(x)Xtt - S(XX,T)X - g(x)r"(t) 

= f(x)-Q(x) f(x)dxí g(x)dx) , 

f(x)-g(x) J f(x)dx(J g(x)dx) GHN~2, 

/ \f(x)-g(x) f(x)dx[ / g(x)dx 
Jol Jo \Jo 

dx = 0. 

From this observation, we see that the assumption (2.18) gives us no restriction. 
Now, let us define an equilibrium state (X'00(x),T00) G HN~X x R which is different 

from (l,To) in general and to which the solution converges exponentially as t —> oo. 
Put 

(2.19) F(x)= f f(y)dy, 
Jo 

and then (2.18) implies that 

(2.20) F(0) = F(l) = 0. 

Integrating (1.2) over ft and using (1.3), we see that 

(221) i I! (i+1x?)dx = [ Xtfdx = ~i I! x*Fdx> 
where we have used (2.19) and (2.20) in the second equality. Integrating (2.21) over 
(0,£) and using (1.5), we have the following conservative quantity: 

(2.22) / [e(Xx(t,x),T(t,x)) + ^-Xt(t,x)2 + Xx(t,x)F(x)} dx = e0, 

where 

(2.23) eo = J {e(X0(x),T0(x)) + ^-X,(x)2 + X0(x)F(x)} dx. 

Another equilibrium state (X00(x),T00) is given in the following lemma which will 
be proved in the Appendix below. 
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Lemma 2.3. Suppose that (1.6), (1.11) and (1.12) hold and that X0(x) G H2, 
To (a;) G H1, Xi(x) G L2 and f(x) G HN~2, where N is an integer ^ 3. Then, for 
any o > 0 there exists a K > 0 such that if 

(2.24) IK^o.Ib) - (l,ro)||oo + ||Xi|| + ll/lli < « 

then there exist a XooOr) S # w and a constant Too > 0 such that 

(2.25) (X' (aO.Too) € C(<5/2) for ail i G i l , ||JC/, - 1||2 + |Too - T0\ < o 

and the following two equalities hold: 

(2.26) S(X'0,(x),T00) = -Fix) for xefl, 

(2.27) / {e(X'00(x),T00) + X'00(x)F(x)} dx = e0. 
Jo 

Remark 2.4. By (2.26) and (2.20), we see that 

(2.28) S(X'00(x),T00) = 0 for x 6 dfi. 

To state our main result exactly, we introduce an additional notation. Put 

(2.29) u(t, x) = X(t, x) - XooOr), 0(t, x) = T(t, x) - T*,, 

(2-30) N(t)= sup | |52(ux,ue,0)(5,-)| | , 
0<s<t 

3 

(2.31) E0 = \\X0 - X'^h + ||T0 - Too||3 + Y, Wxih-J + IITill- + 11?-II-
j = i 

Moreover, for a > 0 let us put 

(2.32) Na(t)= sup eas {\\D2(ux,ut,e)(s,-)\\ + \\(6xxt,6xxx)(s,-)\\} , 
0<s<t 

(2.33) Ma(t) = y e ^ l f D V - S V t f 1 ^ • 

Note that 

3 

(2.34) E0 = 1111.(0, -)ll2 + £ ||3?u(0, Olls-i + \\D10(0, -)lb + 11^(0, -)||. 
i=i 
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Under these preparations, we can state our main result in the following way. 

Theo rem 2.5. Suppose that (1.5), (1.6), (1.8), (1.9), (1.10), (1.11) and (1.12) 
hold, that N is an integer ^ 3, that (2.6), (2.7), (2.8), (2.9) and (2.15) hold and 
that f = f(x) € HN~2. In addition, suppose that (2.18) holds. Then, there exists a 
a > 0 such that if 

(2.35) \\(Xo,To) - (l,r0)||oo + E0 + ||/||i < a 

then the problem (1.1)-(1.4) admits a unique solution (X(t,x),T(t,x)) e ZN(oo) 
which satisfy the following estimate: 

(2.36) Na(t)
2 + Ma(t)

2 t^CE2 

for suitable positive constants a and C. 

R e m a r k 2.6. (1) In view of Lemma 2.3, (2.35) guarantees the existence of Xoo 
and Poo as well as the existence of global in time solutions. Moreover, IKK^, Poo) — 
(l,To)||oo, ll-^olloo and IIX^IIi become smaller according to the choice of a. Put 

3 

E, = ||X£ - 1||2 + ||Fo - ro||3 + £ H^Ha-i + P i | | 2 + ||T2|| + \\f\U. 
3 = 1 

Then, by Lemma 2.3 we see that (2.35) can be replaced by the condition: E\ < a. 
(2) In particular, (2.36) implies the following asymptotic behaviour: 

(2.37) \\D2(Xt,Xx - X'^,T - T ^ - n ^ Ce-^E2, 

that is, (Xt,Xx,T) converges to ( O ^ ^ F o o ) exponentially as t -» oo. In general, 
(X^jToo) may be different from ( l , r 0 ) . 

3. A P R O O F OF THEOREM 2.5 

Let (X,T) e ZN(t0), t0 > 0, be a solution to the problem (1.1)-(1.4) and we shall 
use the notation defined by the formulae (2.29)- (2.33), below. In a manner like that 
of §5 of the reference [11], we can establish Theorem 2.5 if we show the following 
assertion: There exist positive constants C, a and a such that the following estimate 
holds: 

(3.1) Na(t)
2+Ma(t)

2 <^CE2 
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provided that 

(3.2) N(t) ̂ a forO^t^to, 

(3.3) IK-Y^Too) - ( l , r 0 ) | | o o + M i c e + K i l l + H/ll < a. 

Therefore, we shall derive (3.1) under the assumptions (3.2) and (3.3). Below, we 

assume that 0 < a, a < 1 and the derivation will be divided into ten steps. In view of 

(1.10), (1.11) and the fact that g(x) > 0 for x G ft, we can choose positive constants 

/30 and f5\ in such a way that 

d2ib I d2%b l d2\b 
(3.4) (h<Q(x), ^(F,T), \—^(F,T)\, - ^(F,T), Q(F,T) < ft дFдT <ЭГ2 

dF2 

for all x e H and (F,T) <E G(S). Put 

(3.5) Mg(F,T) = | | ( F , T ) ^ ( F , T ) - ^(F,T)^(F,T) 

for g = e and rj. Choosing /?o and S small enough if necessary, we may also assume 

that 

(3.6) T > /30, Mg(F,T) > (30 (g = e and V) 

for all (F,T) £ G(S), because 

d£n \ drln \ d^n \ dSn \ d ^ n \ 
Qf(liT°) = ~df{l-T°> = ~rO0.=2(l.ro), —(l,r0) = g^U.ro), 

— (l , r 0 ) = Qpihro) = - r 0 - ^ ^ ; ( l , r o ) , ^ ( l , r 0 ) = - ^ - ( l , r 0 ) 

where we have used (1.6) and (1.12). Thus, (1.11) implies that 

(3.7) Ms(l,r0) = r0 {0(1,7*) (-f^(l,?o)) + J ^ 1 ^ ) 2 } > 0 

for g — e and 77. Since a will be chosen very small later on, we may also assume that 

(X'^x),^) + £(ux(t,x),6(t,x)) eG(S) for all £E [0,1] and (t,x) € [0,t0] x -1 

For K = S, e, rj and Q and for L — F and T, we put 

KL = KL(t,x) = — (X'^x) + ux(t,x),Too +d(t,x)), 

P1 3K 
K\ = K\(t,x) = J —((X'00(x),T00)+e(ux(t,x),6(t,x)))de. 
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Note that 

(3.8) ST = -T)F and S£ = -rfF, 

which follows from (1.6). Below, to denote various constants independent of a and 
cr, we shall use the same letter C. In each step of our derivation of (3.1), we shall 
frequently use the following relations: 

(3.9) p^ut,^,tf)(«,0lloo < CN(t) ^ Co ^ C, 

(3.10) WD^Q.K^KlKt^Woo <C(N(t) + ||X^||oo) < Co" ^ C, 

(3.11) | |a?P(X^+fox , TOO +«)(*, Oil <C||(ux«,ftt,tix^^ 

(3.12) i i a ^ p ^ o o + ^ r ^ 

(3.13) 

I I ^ ( ^ O O + ^x,roo + ^)(t,oil <C{||(UXM 

where 0 < £ ^ 1, Q = QtK^ + ux,Too + 0), K = 5, e, r? and Q, L = F and T 
and P(P ,T) G C°°(C(J)). In fact, relations (3.9) and (3.10) follows from Sobolev's 
inequality and the fact that o < 1. Relations (3.11)-(3.13) can be obtained easily 
by direct calculation and by use of (3.2), (3.3) and (3.9). 

Step 1. We verify the relations 

(3.14) ht(tr)\\^C\\utx(t,.)l 

(3.15) \\(ux,0)(t,.)\\^C\\(uuux,O)x(t,-)\\ 

provided that o is small enough. 

Integrating (1.1) over Q x (0,*) and using (1.3) and (2.18), we have 

/ g(x)ut(t,x)dx = 0, 
Jo 

which combined with Poincare's inequality: 

(3.16) I H I ^ C J J p(x)v(x)dx + | | t / | |} 

for v € H1, where p(x) G L2 such that J0p(x)dx / 0, implies (3A4). Put 
Soo = S(X'00(x),T00). Since S - Soo = 0 on dtt (cf. (2.28),) by another Poincare's 
inequality: 

(3.17) \\v\\<C{(v) + \\v'\\} 
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for v e H1, we have 

(3.18) Us-SoolKCIKs-SooU. 

Since S - 5oo = SFux + ST6 as follows from the Taylor expansion, it follows from 

(3.18) and (3.10) that 

(3.19) \\(S°Fux + S°0)(£, .)|| < C{\\(uXJ0)x(t, OH + <j\\(ux,0)(t, 011} • 

Since e(Xx,T) = e(X,
00(x),T00) + e°Fux + eT9 as follows from the Taylor expansion, 

combining (2.22) and (2.27) implies that 

(3.20) 
«1 

/ [e°Fux + e°T6 + ^u2
t + u x F} dx = 0, 

where we have used the fact that Xt = ut and XXF = X'^F + uxF. On the other 
hand, by Poincare's inequality (3.16) with p(x) = 1, we know that 

\\e°Fux + e°T0\\ ̂  C l\ f (e°Fux+e°T0)dx + \\(s°Fux + e%0)x\\\ , 

which combined with (3.20) implies that 

(3.21) \\(e°Fux+eTe)(t,-)\\ 

< o{lM«, Ollco||«t(*, Oil + \\F\\\\ux(t, OH + \\(ux,6)x(t, OH 

+ ||(4,4)x(.,0lloo||(««,6')(«,0ll} 

^c{a\\(ux,e)(t,-)\\ + \\(ux,ut,e)x(t,-)\\}, 

where we have used (3.9), (3.10) with K = e, (3.14) and the fact that ||F|| < | | / | | < a 
(cf. (3.3)). Let us define the matrix U by 

u=(Sl I V 
\ST eT J 

and then (S°Fux + S%0,E°FUX + e°r0) = (ux,0)U. Since 
<Ca кl-Щ-wм,^) 

forK = S and e and L = F and T as follows from Taylor expansion and (3.9), by 
(3.6) we have 

det U = M£(X'oo(x),Too)-Ca^p0-Ca 
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because (K^ r r ) , Too) G G(S) for all x G -1 (cf. Lemma 2.3). Choose a so small that 
(30-Ca^ po/2 > 0 implies that (ux,0) = (S°Fux + S^9,e°Fux + e%0)U~l, and then 
combining (3.19) and (3.21) implies (3.15). 

S tep 2. We verify the relation 

(3.22) e2at\\(ux,ut,0)(tr)\\2-hCl [ e2*s\\6x(s, -)\\2ds < C {E2 + (a + a)Ma(t)
2} 

Jo 

for suitable c\ > 0. 

Multiplying (1.1) by itt and integrating the resulting formula over Q, we have 

1 r\ 

(f,ut) = 2~di(gUt'Ut>) + (siutx)-

Since 

(S,utx) = (-F,utx) + (S°Fux +S%0,utx) 

= (f,ut) + ^-^(S°Fux,ux) - -((S°F)tux,ux) + (S^6,utx) 

where we have used (2.26), (2.20) and (2.19), finally we have 

(3.23) - — {(guuut) + (S°Fux,ux)} + (S^6,utx) - -((S°F)tux,ux) = 0. 

By (1.5) and Taylor expansion, we can write the equivalent equation (1.7) to (1.2) 
in the following way: 

(3.24) (Too + 0)(rfT0 + r)°Fux)t = (Q0X)X. 

Since ||Too + 0(t, •) - r0||oo ^ 6 for t G [0,*0] and T^ + 6(t,x) ^ /30 as follows from 
(2.4), (2.29) and (3.6), we have 

(3.25) (S + TO)-1 < ( T o o + ^ , 0 ; ) ) - 1 ^ fa1 for all (t,x) G [0,t0] x H. 

Since Tx = 0X = 0 on a n , multiplying (3.24) by (T^ + c?)"1^ implies that 

(3.26) \fyTW) + (^tx,0) + \((rfT)tO,0) 

+ ^ F ) * ^ ) + ((Too + fl^TooQflsA) = 0. 
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Combining (3.23) and (3.26) and using (3.10), (3.8) and (3.25), we have 

(3.27) ~ { G m * , u t ) + ( S £ t i ^ ^ 

for a suitable positive constant en. Since 

- 1 (e2atf(t)) = e2atj-tf(t) + 2ae2atf(t), 

multiplying (3.27) by e2 a t and using the relation: 

(3.28) A)||(p,<7,r)||2 < (QP,P) + (S°Fq,q) + (rfTr,r) < MiP,Q,r)\? 

which follows from (3.4) and (1.6), we have 

(3.29) Poe2at\\(uuux,6)(t,-)\\2 + co f e2as\\6x(s, -)\\2 ds 
JO 

^ Pi\\(ut,ux,6)(0,.)\\2+Ca f e2"s\\(ux,0)(s,.)\\2ds 
Jo 

+ 2 /3^ / e2as\\(ut,ux,e)(s,.)\\2ds. 
Jo 

Inserting (3.14) and (3.15) of Step 1 into the right-hand side of (3.29) and using the 
definitions of Ma(t) and E0 (cf. (2.33) and (2.34)), we have (3.22). 

Step 3. We verify the relation 

(3.30) e2at\\(ux,ut,0)t(t,.)\\
2 + Cl f\2°s\\0xt(s,.)\\2ds^C{E2 + (a + a)MQ(t)2} 

Jo 

for suitable c\ > 0. 

Differentiating (1.1), (1.2) and (1.3) once in t and using the relation (1.5) imply 
that 

(3.31) g(x)uttt - (SFuxt + ST6t)x =0 for x G ft, 

(3.32) SFuxt + ST6t =0 for x G dft, 

(3.33) (T^ + 0)(r]T0tt + r]Fuxtt) = (Q0xt)x - gi + g2x for x G ft, 

(3.34) 6X =6xt = 0 for x G 9ft, 

where 

(3.35) gx = (T^ + 0)((r}T)t0t + (r)F)tuxt) + 0t(r)T0t + riFuxt) and g2 = Qt0x. 
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Multiplying (3.31) and (3.33) by utt and (Tx, +0) l6t, respectively, integrating the 
resulting formulae over Cl and using (3.32) and (3.34), we have 

(3.36) \-^-t{(Qutt,utt) + (s°Fuxt,uxt) + (s^et,et)}+c0\\ext(t,)\\
2 

< Ca\\(ux,o)t(t, on2 + \\gi(t, -)|| iKToo + e)-let(t, on 
+ \\92(t,-)\\\\((T~ + or'et)x(t,-)\\, 

where we have used the fact that 

(92x, (Too + 0)-l0t) = -(g2, ((Too + B)-l0t)x). 

Applying (3.9) and (3.10) to estimate g\, g2 and IKC-^ + 0)~10t)x(t, -)|| and multi­
plying (3.36) by e2a*, we have (3.30) immediately. 

S tep 4. We verify the relation 

(3.37) e2at\\(ux,ut,e)tt(t,')\\
2+c1 f e2as\\6xtt(s, -)||2 ds 

Jo 

^ C {E2 + (a + a)Ma(t)
2 + <rNa(t)

2} . 

Differentiating (3.31)-(3.34) once in t implies that 

(3.38) g(x)utttt - (SFuxtt + ST9tt + ga)x = 0 for x e Q, 

(3.39) SFuxtt + ST0tt +93=0 for x e dQ, 

(3.40) (Too + 0)(r)TOttt + r)FUxttt) = (QOxtt)x - 94 + g5x for x e H, 

(3.41) 6X = 6xt = 0xtt = 0 for x e dQ, 

where 

93 »• (SF)tuxt + (ST)tOt, 

94 = 2(Too + 0)((vr)tOtt + (r)F)tUxtt) + (T^ + 0)((r)T)tt0t + (r)F)ttuxt) 

+ 29t(r)T0tt + r)Fuxtt + (r)T)t0t + (r)F)tUxt) + 0tt(r)T0t + r)Fuxt), 

g5 = 2Qt6xt + QttOx. 

Multiplying (3.38) and (3.40) by um and (Too+0)-10tt, respectively, and using (3.39) 
and (3.41), we have 

- — {(Q(x)uttt,utu) + (Sғuxtt,uxtt) + (vт tt, tt) + 2(g3,uxtt)} + co\\ xtt(t,-)\\2 

(3.42) 

-{(g(x)uttt,uttt) + (Sf 

< C<x||(uItt A t)( í , 0||2 + I Ы « , •)llll«««(í, 011 

+ IЫt, OIIIK^oo + r l

 tt)(t, 011 + ||ířS(t, OIIII((Гoo + ) - l

 tt)x(t, • 
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To estimate the terms: \\gst(t, -)l|, Ilg4^, -)ll a n d \\gs(t, Oil, we use (3.9), (3.10), (3.11) 
and Sobolev's inequality, and then 

Hg3t(*,')ll, | |g4^,-)ll, Ilg5^,')ll ^ Ca\\(Uxtt,Uxxt,Uxt,0tt,0xt,0t,0x)\\' 

In fact, for example, we have 

|lfl3t(*,0ll<ll(-?F,5T)t||oo||(t.x,*)«|| + | |(5F,S r)«| | | |(«„d)t | |oo 

-^ Ca\\(uxtt,v>xxt,u<xt,9tt,@xt,6t)\\, 

where we have used (3.10), (3.11) and Sobolev's inequality in the second inequality. 
Multiplying (3.42) by e2 a t , integrating the resulting inequality with respect to t and 
using the relation 

\(g3,uxtt)\ ^ Ca\\(uxtt,uxt,Ot)(t,-)\\2 

which follows also from (3.10), we have (3.37). 
Combining Step 2, Step 3 and Step 4, we have 

(3.43) e2at\\d2(ut,uxie)(t,-)\\2 + c i / e 2 " i a 2 M 5 , . ) | | 2 d 5 < CRa(t) 
Jo 

where 
Ra(t) = E2 + (a + a)Ma(t)

2 + aNa(t)
2 

The relation (3.43) was derived by the usual L2-energy estimate. 

Step 5. For a small enough, we verify the relation 

(3.44) Na(t)
2 ^ CRa(t). 

In view of (3.43) and the definition of Na(t) (cf. (2.32)), to get (3.44) we have to 
estimate the terms: 6X, 6xt, uxx, 0XX, uxxx, uxxt, 0XXX and 6xxt- Prom (1.7) it follows 
that 

(3.45) (Qd^x)x = -HQt0x)x + ^ ( ( T o o + 0)TH) for k = 0 and 1. 

Multiplying (3.45) by d£Q and integrating the resulting equation over ffc, by integra­
tion by parts and by (3.9), (3.10) and (3.11) we have 

\(Qex,ex)\ + \(Q6xt,oxt)\ 

^ K(Too + %t,0)| + \(QtOx,ext)\ + |(((Too + o)rh)t,Ot)\ 
<Ca\\(0x^xt)(t,')\\

2 + C\\(0,0t,Uxt,uxtt,0tt)(t,')\\2. 
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Since Q > fa, choosing a so small that Co ^ f30/2 and using (3.43), we see that 

(3.46) e2at\\(0x,ext)(t,-)\\
2^CRa(t). 

Since f = Fx = —Soox, (11) can be rewritten as follows: 

(3.47) S°Fuxx = gutt - {S°T0X + (S£)xux + (S°T)X0}. 

Applying (3.10), (3.43) and (3.46), we have 

(3.48) e2at\\uxx(t,-)\\
2^CRa(t). 

Since (1.7) can be rewritten as follows: 

(3.49) Q0XX = -QX0X + (Too + e)(r]Tet + r]Fuxt), 

applying (3.46), (3.10) and (3.43) to estimate the terms: \\{Qx0x){t,-)\l \\uxt(tr)\\, 

\\0t(t, -)||? we have also 

(3.50) e2at\\exx(t,-)\\
2^CRa(t). 

Differentiating (3.47) once in £ (£ = t and x), we have 

(3.51) SFuxxe = gum - ST0xe + Qiutt - g6 - gi, 

where 

96 = (S°F)euxx + (S°F )xuxi + {S%)iOx + (S° )x0,, 

97 = (S°F)xiux + (S°T)xi6. 

Since ||(MX,#)||OO ^ C||(^x,^,#)x|| as follows from Sobolev's inequality and (3.15), 
by (3.10), (3.12) and (3.13) we have 

llgell ^ Ca\\(uxx,uxi,0x,0t)\\, 

IMI ^ ll(S?.,S?.)^||||(iix,tf)||oo ^ Ca\\(ux,ut,6)x\\. 

Therefore, by (3.43), (3.46) and (3.50), we have 

(3.52) e2at\\(uxxx,uxxt)(tr)\\
2 ^ CRa{t). 

For £ — t and x, differentiation of (3.49) once in £ implies that 

(3.53) Q8xxt - (Too + e)j]T0ti - (T^ + 0)riFuxtt + gs + g9 = 0 
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where 

98 = QiOxx + QxOxi - ((T^ + 0)rrr)iOt ~ ((Too + 8)rlF)iuxt, 

99 — QxiOx. 

Employing the same arguments as above, we have 

liftII ^ Ca\\(6xx,0xt,6t,uxt)\\ and \\g9\\ ^ Ca\\(8x,8xx)\\. 

Therefore, applying (3.43), (3.46) and (3.52) implies that 

e2at\\(8xxx,8xxt)(t,-)\\
2 ^CRa(t), 

which combined with (3.46), (3.48), (3.50), (3.52) and (3.43) implies (3.44). 
Now, we are going to estimate Ma(t). By (3.43), we know the estimation corre­

sponding to the terms: B28x, and then we shall estimate the terms: D2u, D3u, 8t, 
flu, Vxxi Qxxt and 8XXX. 

Step 6. For a small enough, we verify the relations 

(3.54) J e2as\\0xxx(s,.)\\2ds^cU e2as\\uxxt(s,-)\\2 ds + Ra(t)\ , 

(3.55) / e2as\\(8xx,8xxt)(s,-)\\2ds^6 f e2as\\uxxt(s,-)\\2ds+ CS~lR(X(t) 
Jo Jo 

for6€ (0,1). 

Since it follows from the formula (3.53) with £ = x that 

(3.56) \\0xxx(t, -)||2 < C{\\0xt(t, -)||2 + \\uxxt(t, -)||2) 

+ cr {\\(uxxx,8xx,uxx,6x,6t,uxt)(t, -)|| } , 

multiplying (3.56) by e2a*, integrating the resulting inequality, using (3.43) and re­
calling the definitions of Ra(t) and Ma(t)

2, we have (3.54). 
Multiplying (3.49) by 8XX and integrating the resulting equation over ft implies 

that 
(Q8XX,8XX) = -(QX0X,8XX) - (((T00+8)(rlT8t+iiFuxt))x,8x) 

where we have used integration by parts and the fact that 8X = 0 for x 6 dQ, to get 
the second term of the right hand side. Since 

\(TlFUxxt,8x)\ <^ 6\\uxxt\\
2 + CS-1^2, 
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as follows from Schwarz's inequality, by (3.43), (3.9), (3.10) and (3.4) we have 

(3.57) / e2as\\9xx(s, -)||2 < 6 [ e2as\\uxxt(s, -)||2 ds + C J - 1 / ^ ) . 
JO Jo 

To get the estimate of the term: 0xxt, we multiply (3.53) with £ = t by 0xxt, and 
then we have 

(3.58) (Q0xxt,6xxt) = -(g8+g9,0xxt) - (((T^ +0)(rlT0tt +rlFuxtt))x,6xt), 

where we have used integration by parts and the fact that 6tx = 0 for x G dft to 
get the last term. Since we already know the estimates of the terms 0xtt and 8xt, to 
treat the last term we may observe the following relation only: 

(3.59) ((T^ + 6)rlFuxxtt,0xt) = —((T^ + 6)r]Fuxxt,ext) 

- (((Too +0)r]F)tuxxt,ext) - ((Too+9)r}Fuxxt,0xtt). 

Combining (3.58) and (3.59), multiplying the resulting formula by e2oct, integrating 
the resulting formula over (0,t) and using (3.10) imply 

f e2as\\6xxt(s, -)||2 d s ^ C{Na(t)
2 + E2 + (a + a)Ma(t)

2} 
Jo 

+ 6 /V ' lK^s .Ofds + CJ-1 re2as||0x«(s,-)||2dS) 
Jo Jo 

which combined with (3.43) implies that 

(3.60) / e2as\\0xxt(s,-)\\2ds^6 f e2«s\\uxxt(s,-)\\2ds + CS^R^t). 
Jo Jo 

Combining (3.57) and (3.60) implies (3.55). 

Step 7. We verify the relation 

(3.61) f e2as\\D*u(s, .)| |2 ds^cij e2as\\uxxt(s, -)||2 ds + Ra(t) \ . 

Since 

St = SFuxt + ST6t and 0t = ((Too + ^ r / r ) " 1 {(Q0X)X - (T^ + 0)r]Fuxt} , 
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the second formula of which follows from (1.7) and (1.5), inserting the representation 
of 6t into the right hand side of the first formula, we have 

(3.62) St = Vuxt + ((T^ + 0)riTrlST(QOx)x 

where 

V = r1r
lMri(X

,
oo + ux,Too + 0) (cf. (3.5)). 

Note that there exists a c2 > 0 such that 

(3.63) V ^ c2, 

which follows from (3.4) and (3.6). Differentiating (3.62) once with respect to t 
implies that 

(3.64) Stt - (Vuxt)t + (((Too + 0)nrrlST(Q0x)x)t = 0. 

Multiplying (3.64) by uxtt, we have 

(3.65) 0 = (Stt,uxtt) - (Vuxtt,uxtt) - (VtuxUuxtt) 

+ (((Too+6)riTrlSTQexxuuxtt) + ((((Too +^ ) r / T ) - 1 S T Q) t ^ x , u x t £ ) 

+ ((((Too + 0)r)Tr1STQxOx)t,uxtt). 

Since St = 0 for x G dtt which follows from the fact that S = 0 for x £ dfi, we see 
that 

(3.66) (Stt,uxtt) = —(St,uxtt) + (Sxt,uttt) = —(St,uxtt) + (SxtiQ~lSxt) 

where we have used the relation: 

(3.67) uttt = Q~l(Sx + f)t = Q^S^, 

which follows from (1.1) and (1.5). Since 

(3.68) K S x t ^ - ' S x ^ K C I i K ^ ^ ^ ^ i p + o-iK^,^)!!2} 

as follows from a direct calculation and (3.10) and since 

(3.69) K((Too+%T)-1STQ^xxt,Uxtt)| ^ y | | ^ t | | 2 + C||c9xx,||
2, 
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combining (3.63), (3.65), (3.66), (3.67) and (3.68) implies that 

(3.70) j\\uxtt\\
2-j-t(St,uxtt)^C{\\uxxt\\

2 + \\(6xxt,$xt)\\
2 

+ <y\\(uxt,ot, uxtt,exx,ext,uxxt)\\
2}, 

where we have used the following estimations: 

\\(((TX +e)r}Tr1STQ)texx\\ ^ Co\\9xx\\; 

ll(((r0O + ^)7yT)-15Tg^I)t|| 

^ o{||Q-IUIM + HoxtlPxIloo + \\(((Too + ^)»?r)-15r) t |UIIQx||oc||^| |} 

^ Cv\\(6x,6xx,Qxt)\\, 

which follows from (3.10), (3.12) and Sobolev's inequality. Multiplying (3.70) by 
e2 a t , integrating the resulting inequality over (0, t) and using (3.55) with 6 = 1, 
(3.43) and (3.44), we have 

(3.71) J e2as\\uxtt(s,')\\2ds^c(j e2as\\uxxt(s,.)\\2ds + Ra(t)\, 

where we have also used the estimate: 

\(St,uxtt)\ < C\\(uxtt,uxt,9t)\\
2. 

By (3.67), (3.68) and (3.43), we have 

(3.72) / e2«s\\uttt(s,')\\2ds^cU e2as\\uxxt(s,.)\\2ds + Ra(t)V 

By (3.51) with £ = x and the estimations of ||#6|| and ||#7||, we have 

(3.73) | |uxxx | | ^C{\\uxtt\\ + | M | + \\0XX\\ + a\\(ux,ut,9)x\\} . 

Since 

/ g(x)utt(t,x)( 
Jo 

J dx = 0 
/o 

as follows from (1.1), (1.3) and (2.18), by Poincare's inequality (3.16) with p(x) 
Q(X) we have 

(3.74) ||u t t|| ^ C\\uxtt\\. 
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Inserting (3.74) into (3.73), multiplying the resulting inequality by e2 a t , integrating 
the resulting inequality over (0, t) and using (3.71) and (3.55) with 6 = 1, we have 

J e2as\\uxxx(s,-)\\2ds^cU e2as\\uxxt(s,-)\\2ds + R«(t)\, 

which combined with (3.71) and (3.72) implies (3.61). 

Step 8. For /x > 0 small enough, we verify the following relation: 

(3.75) / e2as\\(D3u,6xx,0xxx,exxt)(s,-)\\2ds 
Jo 

^ /A [ e2as < uxxt(s, •) >2 ds + C^-4Ra(t). 
Jo 

To get (3.75), we shall consider the multiplication of (3.53) with I = x by uxxt. 
To do this, we observe the following relation: 

(3.76) (Q0xxx,uxxt) = (QOxx,uxxt) — (Qx6xx,uxxt) 

~TT (W"xx> ^xxx) + \}«it"xxifU>xxx) + \W"xxti ^XXX)' 
at 

Multiplying (3.53) with £ = x by uxxte
2at, integrating the resulting equation on 

(0,1.) x H and using (3.76), (3.43) and the estimations of \\gs\\ and ||(7g||, we have 

(3.77) / e 2 a lu x x t (5 , . ) l | 2 ds<£ / e2as\(Q6xx,uxxt)\ds 
Jo Jo 

+ I e2as\(Q6xxt,uxxx)\ds + CRa(t). 
Jo 

By Schwarz's inequality, (3.55) and (3.61), we have 

(3.78) J e2as\(Qexxt,uxxx)\ds^ci6^ f e2as\\uxxt(s,-)\\2 ds + S-* Ra(t)\ 

for any S > 0 small enough. To estimate the first term in the right-hand side of 
(3.77), we use the following relation: 

<0xxOv))2 ^ ||0xx(*,-)2||oo ^ C f \dlOxx(s,-)2\dx 

Jo 

<C {\\dxx(s,-)\\2 + \\9xx(s,-)\\p**x(s,-)\\} 
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where to get the second inequality we have used Sobolev's inequality: 

N I o o ^ C / \div(x)\dx, 
Jo 

in one dimensional case. And then, we have 

(3.79) 

/ e2as\(Q6xx,uxxt)\ds 
Jo 

JS M / e2as (uxxt(s, -))2 ds + CfT1 [ e2as (0xx(s, -))2 ds 
Jo Jo 

^H [ e2as(uxxt(s,-)f ds + Cn-1(l+6-i) [ e2t*s||0xx(S, -)| |2d5 
JO Jo 

+ C>-M-- / e2" s | |0x x x(s, .) | |2ds, 
Jo 

using (3.54) and (3.55), 

^ /x / e2as (uxxt(sr))
2 ds + C{u~l(l + S-^S + LI^S*} f e 2 a s | K x , ( s , -)||2d<, 

Jo Jo 
+ C{tx-l(\ + s-i)s~l + LrM }Ra(t). 

Combining (3.77), (3.78) and (3.79) implies that 

/ e2as\\uxxt(s,-)\\2ds^ii f e2as (uxxt(sr))
2 ds 

Jo Jo 

+ Cfi-1S12 f e2as | |t/xxt(5,-)| |2d5 + C/i-M-iI?a(0 
Jo 

for 0 < S, /i < 1. Therefore, choosing S > 0 in such a way that 

<*-.»=ì. 
we have 

rt 

[ e2 Q S | |ux x t(s,-) | |2ds<2M / e2 a s(W x x t(s ,-))2 ds + C fi~4 Ra(t), 
Jo Jo 

which combined with (3.61), (3.54) and (3.55) with 6=1 implies (3.75). 

Step 9 . We verify the relation 

(3.80) [ e2as(uxxt(s,-))2 ds 
Jo 

<c(f e2as\\(D3u,0xx,exxx,Oxxt)(s,-)\\2ds + Ra(t)\ . 
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Differentiating (3.67) once with respect to x implies that 

(3.81) uxxxt = S~l {(guttt)x - ST0xxt - 910} , 

where 
glO = 2 ((SF)xUxxt + (ST)x@xt) + (SF)xxUxt + (ST)xxOt-

By (3.10), (3.13) and Sobolev's inequality, we have 

IÎ IOH ^ C { | | ( 5 F , 5 T ) x | | o o | | ( t X x ^ , ^ ) | | + | | (5 i , ,5 T )xx | | | | (Ux i ,^ ) | |oo} 

^ Ca\\(uxxt,uxt,ext,6t)\\. 

Put q(x) = x — \, and then we have 

1 , . 2 1 . (3.82) (uxxxt,quxxt) = - (uxxt) - - | |u x x t | | . 

On the other hand, we have 

(3.83) (S~l(guttt)x,quxxt) 

= (S~lg'uttt,quxxt) + —(Sp1 guxtt,quxxt) - ((SF)~l)tguxtt,quxxt) 

+ ^((Splgq)xuxtt,uxtt) - - {(Splgu2
xtt)(t,l) + (Splgu2

xtt)(t,0)} . 

Multiplying (3.81) by quxxt and using (3.10), (3.82) and (3.83), we have 

(3.84) - {(uxxt)
2 + (Splguxtt)

2} 

< C {\\6xxt\\
2 + \\D3u\\2 + \\g10\\

2} + ^(Splguxtt,quxxt). 

Multiplying (3.84) by e2ott, integrating the resulting equation over (0,t) and using 
(3.44), we have (3.80). 

Combining (3.75) and (3.80) and choosing \i > 0 small enough, we arrive at the 
relation: 

(3.85) / e2as\\(D3u,0xx,0xxx,exxt)(s,-)\\2ds ^ CRa(t). 
Jo 

In view of (3.43) and (3.85), our task is now to estimate the terms: D2u, 9t and Qtt> 

Step 10. We verify the relation 

(3.86) / e2as\\(D2u,et,ett)(s,.)\\2ds ^ CRa(t). 
Jo 
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Since uxx = (S^'^guu - Spx - (S°F)xux - (S%)x0} as follows from (3.47), by 
(3.47), (3.10), (3.15), (3.43) and (3.85) we have 

(3.87) / e2as\\(utt,uxx)(s,-)\\2ds ^ CRa(t). 
Jo 

Since St = 0 for x G dft, by Poincare's inequality (3.17) with v = St and (3.10), we 
have 

||S*||2 ^ CII^H2 ^ C {\\(uxxU0xt)(t, -)||2 + a\\(uxt,0t)(t, -)||2} , 

which combined with (3.62), (3.63), (3.43) and (3.85) implies that 

(3.88) / e2as\\uxt(s, -)||2 ds ^ CRa(t). 
Jo 

By (3.49) and (3.53) with £ = t,we have 

||(»t^tt)(*,-)H2 ^ C'{||(»M,tXa:t,tla:tt,^«a:t)(*,-)l|2 +C7||(^,^M,«a:t,WaBt,»t)(^-)l|2} , 

which combined with (3.85) and (3.88) implies that 

(3.89) / e 2 " l (0 t ,0 t t ) (s , . ) | | 2 d S ^ CRa(t). 
Jo 

Combining (3.87)-(3.89), we establish (3.86). 

Therefore, combining (3.43), (3.44), (3.85) and (3.86) implies that 

(3.90) Na(*)2 + Ma(t)
2 ^ C {E2 + (a + a)Ma(t)

2 + aNa(t)
2} . 

Choosing a and a finally in such a way that 

C(a-\-a)<- and Ca < - , 
4 4 

we establish (3.1), which completes the proof of Theorem 2.5. 
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APPENDIX. A PROOF OF LEMMA 2.3. 

It is sufficient to prove the lemma in case that N = 3, because the higher regularity 
of Koo(^) follows from the relation: 

^(X'00(x),T00)X'Ux) = -F'(x) = - / ( * ) . 

For (V(x),p) e H2 x R, let us define its norm by the formula: |(V,p)| = \\V\\2 + |p| 
and also let us define the map $ from H2 x R into itself by the formula: 

*(V,p) = (S(V(x),p), f {e(V(x),p) + V(x)F(x)}dx). 
JO 

We shall show that the map 4> is a local homeomorphism near the point (1,T0) £ 
H2 x R. To do this, it is sufficient to prove that the differentiation ^ of $ at (1,T0) 

is bijective, where \I> is given by the formula: 

*(V(x),p) = ^((i,TO) + e(V(x),p))\0=o = (^1(V(x),p),^>2(V(x),p)) 

where 

^1(V(x),p) = | | ( 1 , T 0 ) V » + | | ( l , r 0 ) p , 

*2(V(x),p) = j " (J^(l,To)V(x) + ^(l,T0)p) dx + j\(x)F(x)dx. 

First of all, we shall show that \I> is surjective, that is, we shall solve the equation: 

(Ap.l) *i(V(x),p) = W(x) and *2(V(x),p) = q 

for given (W(x),q) G H2 x R. The first equation of (Ap.l) becomes the following 
formula: 

(Ap.2) V(x) = ^(1,TO)-1{W(X) - | | ( l , r 0 ) p } , 

and then inserting (Ap.2) into the second equation of (Ap.l) implies that 

(Ap.3) 9 = § ( 1 ' r o ) ~ 1 { | ^ ( 1 ' T ' o ) ^ W(x)dx + J W(x)F(x)dx + Lp\, 

where 

L = Me(l,T0) - ^(1,T0) J F(x)dx 
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and M£(1,T0) is defined by (3.5) with g = s. In view of (3.7) with g = e, we have 
L > |M e ( l ,T 0 ) provided that 

(Ap.4) < 
дS 
— (l,т 0) M e ( l ,т 0 )/2, 

because | / 0 F(x) dx\ ^ ||F | | ^ | | / | | . Therefore, # is surjective if | | / | | is small enough. 

If (W(x),q) = (0,0), by (Ap.2) and (Ap.3) we see that (V(x),p) is also equal 

to (0,0), which means that ^ is injective, and then ^ is bijective. Therefore, the 

implicit function theorem yields that there exist neighborhoods Ui of (l,To) and U2 

of $(1,T0) such that $ is homeomorphic from U\ onto U2. Since 

\(-F(x),e0)-Цl,т0)\ 

< IIFII2 + j {e(X0(x),T0(x)) - є(l,тo) + ^Џx^x)2 + (X0(x) - l)F(x)} dx 

< ll/lli -ł-CllW.Тo) - (l.Тb)Цoo + 
llffllc 1 l̂||2 + l K - l | 

where C is a constant such that 

дє_ 

дғ (F,T) 
> • * > 

^C îoт (F,T) є G(ó), 

there exists a K > 0 such that (—F(x),e0) £ U2 provided that 

| | (X 0 ,To) - ( l ,T 0 ) |U + ||X1|| + | | / | | 1 < « , 

which implies the unique existence of (V(x),Too) G Ui C H2 x R satisfying the 

equation: <£(V,Too) = (—F(x),e0). If we put Koo(^) = JQ V(y) dy, then Xoo(x) and 

Too satisfy the required properties, because the inverse of $ is also a continuous map 

from U2 onto U\. 
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