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Czechoslovak Mathematical Journal, 44 (119) 1994, Praha 

LOGARITHMETICS AND QUASIGROUP STRUCTURE 

P . HOLGATE, London 

(Received June 5, 1992) 

Some properties of the logarithmetic of a finite quasigroup are studied in relation 

to the structure of the quasigroup 

1 . INTRODUCTION 

Etherington [6] introduced the term 'logarithmetic' for the arithmetic of the in­
dices of powers of elements in a nonassociative algebra. Logarithmetics of finite 
quasigroups were discussed extensively by Popova ([10-17], Bruck [2; 4, pp. 82-86] 
and Evans [7, 8]. In this paper the ideals and quotients of logarithmetics are ex­
amined in §§ 2 and 3, the relations between quasigroups and their logarithmetics is 
developed in § 4, and the study of the classification of the quasigroups that have a 
given logarithmetic is begun in § 5. All quasigroups studied in this paper are finite. 

The free nonassociative integers N are the elements generated by 1, without using 
the associative or commutative laws. For a finite quasigroup Q, the quasi-integers 
are the equivalence classes of the congruence relationship on the free nonassociative 
integers: r = s (mod logQ) if a\ = as for all a; G Q. The notation Qa will be 
used for the subquasigroup generated by an element a, but Qai will shortened to 
Qi. Consider the equivalence relation defined by r = s (mod log a;) if a\ = as. 

It commutes with addition and multiplication since a\ = as and au = a\ imply 
a t

r+u = a?+v and (a\)u = (as)v. Clearly br = bs for every b € Q{. The quotient set 
N/(= mod log ai) with nonassociative integer addition and multiplication is called 
the logarithmetic of a;, and denoted by L(ai). The quotient 

N/(= mod log ai) n . . . n (= mod log an) 

with the same operations is the logarithmetic of Q. The quasi-integer r has a natural 
representation by the row vector ( a r , . . . , a r ) . Addition of quasi-integers corresponds 
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to componentwise multiplication of the vectors. Since rs is represented by the vector 
( a r s , . . . , a r s ) , it follows that if r is represented by (b i , . . . , 6n), then rs is represented 
by (6f,..., 6 s). Hence, multiplication of quasi-integers corresponds to componentwise 
exponentiation of the vector representing the left hand factor by any nonassociative 
integer representing the right hand factor. The logarithmetic of Q, denoted by L(Q)1 

is a quasigroup L+(Q) with respect to addition, and a semigroup LX(Q) with respect 
to multiplication. The operations are linked by a left (but not a right) distributive 
law since ar^s_r^ = a r s • art. It can be called a left quasiring. The multiplicative 
semigroup has a matrix representation r —> Mri where Mr has a 1 in the j th column 
of row i if ar = aj, i = 1 , . . . , n\ and 0 elsewhere. Popova gives a number of examples 
of logarithmetics in her papers, particularly [16]. 

2 . INVERTIBLE AND UNIFORM ELEMENTS 

The invertible elements of Lx (Q) are the quasi-integers r for which ar 7-= a r if i / j . 

In [11] Popova obtains some corollaries to the condition that LX(Q) is a group. At 
the other extreme, if a\ = b for some b £ Q, all i, r will be called a uniform quasi-
integer. In this case Mr has Us in every position in column j , where aj = 6, and 
zeros elsewhere. The plenary powers of an element a in a nonassociative system are 
defined by a'1' = a, a'71*1! = (a'nl)2. The plenary nonassociative integers [n] are 
given by [1] = 1, [n + 1] = [n] + [n]. The plenary quasi-integers, generated in the 
same way from 1 (mod log Q) are those for which at least one of the nonassociative 
integers that represent it is plenary. The ideas of invertibility and uniformity of 
quasi-integers have the following elementary consequences. 

1. The quasi-integer 2, and hence all plenary quasi-integers, are invertible if and 
only if Q is a diagonal quasigroup. 

2. The quasi-integer 2, and hence all plenary quasi-integers, are uniform if and 

only if Q is a unipotent quasigroup. 

These classes of quasigroups are defined respectively in [5, p. 31] and in [1, § 7]. 

3. If r is noninvertible, then rs is noninvertible, for every s. 

P r o o f . If two components ar and a r are equal, so are the corresponding com­
ponents ars and a r s . • 

4. If r is uniform, so are rs and sr for every s, and sr• = r. 

P r o o f . If r has vector representation (b, . . . ,6 ) , then rs is represented by 
(6 s , . . . ,6 s). The second assertion follows because an integer r is uniform precisely 
when all elements raised to the power r are equal, the common value defining the 
quasi-integer. Alternatively we can use the matrix representation. If r is uniform, 
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Mr has a column of Vs, and all the rest of its elements are 0. It follows that MrMs 

has a column of l's and remaining elements zero, while MsMr has the same column 
of l's as Mr. D 

5. If r is invertible and s is uniform, then r + s and s + r are invertible. 

P r o o f . Let as = b. Then the values ar+s = arb are all different, as are bar. 
D 

6. If r, s are both uniform, so are r + s and s + r. 

7. If Q contains 2 or more idempotents, LX(Q) contains no uniform quasi-

integers. 

P r o o f . If a;, a j , are two idempotents of Q, the i t h and j t h components of 

every quasi-integer of L(Q) will have a;, aj , in the z, j t h components of its vector 

representation. D 

8. If Q contains exactly one idempotent, L(Q) contains either exactly one uniform 

quasi-integer, or none. 

P r o o f . Let a; (= b, say) be the unique idempotent. The i th component of 
every quasi-integer will have b in the i th component of its representative vector. If 
for all j ?- i, there exists a quasi-integer r(j) such that â  = b, then (6 ,6 , . . . , b) is 
the representative of the unique uniform quasi-integer. Otherwise the representative 
vectors of all quasi-integers contain as well as 6, a component different from b. D 

The situation considered here occurs whenever Q is a loop. 

9. The set U(Q) of uniform quasi-integers is a sub-left quasiring of L(Q). Its 
additive structure U+(Q) is isomorphic to a subquasigroup of Q. Its multiplicative 
semigroup UX(Q) is a two-sided semigroup ideal of LX(Q). 

P r o o f . Closure under addition follows from 6. The isomorphism arises from 
(a,a,...,a) -» a, and the ideal property for multiplication from 4, above. D 

10. Let S(Q) denote the set of quasi-integers that are invertible or uniform. Then 

SX(Q) is a subsemigroup of LX(Q). 

P r o o f . This follows from 4 and the group property of the invertible quasi-
integers. D 

Let or, r/2,.. •, O"t be mutually exclusive subsets of the set of integers 1,...,n. A 
quasi-integer r such that ar = ar if z, j G &k for some k will be said to have pattern 
(OT,... ,<7t). The uniform integers are the case Or = { 1 , . . . , n} . Since calculations 
with quasi-integers are carried out componentwise, the integers with fixed pattern 
are closed with respect to quasigroup operations. Hence: 
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11. Results 4 and 9 are valid if "uniform integers" is replaced by "integers having 

a fixed pattern". 

The following examples (1, 3, and 4 of [16]) illustrate invertibility and uniformity. 

a c a d b a b d c a a b c d a 
b d b a c b c a b d b d a b c 
c a c b d c a c d b c c b a d 
d b d c a d d Ь a c d a d c b 

In Pi the logarithmetic consists of 64 quasi-integers, represented by the 4-vectors with 

b as second element, and the matrices with a 1 in the (2, 2) position and exactly one 

1 in each other row. Only 6 of these are invertible, represented by vectors (abed), 

(a b d c), (c b a d), (c b d a), (d b a c), (d b c a), and the corresponding permutation 

matrices. A set of representatives of their equivalence classes is 1, 3 + (2 + 4), 1 + 3, 

2 + (4 + 4), (4 + 3) + (3 + 3), (1 + 2) + (2 + 2), and they form the symmetric group 5 3 . 

The quasigroup Pi contains one idempotent. The first case of 8 above holds, and 

there is just one uniform quasi-integer, for which a class representative is 23. The 

logarithmetic of P 3 contains 4 quasi-integers, represented by the vectors (abed), 

(bade), (cdab), (deb a) and by representative nonassociative integers 1, 2, 3, 1 + 2. 

These are all invertible, and under multiplication form the direct product C2 x C<i 

of two cyclic groups of order 2. Finally, P4 has a logarithmetic of 16 elements, listed 

in [16], of which 8 with vector representations (abed), (a b d c), (b a c d), (bade), 

(cdab), (c d b a), (d c a b), (d c b a), are invertible, forming under multiplication 

the dihedral group D$. The quasigroups P 3 and P 4 contain no idempotent, and their 

logarithmetics contain no uniform quasi-integers. 

3. IDEALS, DIFFERENCES AND QUOTIENTS 

Results 9 and 10 suggest the possibility of quotient structures in logarithmetics. 

In general, a closed subset in a quasigroup needs some near-associativity before it 

can define a system of cosets with good combining properties, as in e.g. [3, pp. 60 ff.]. 

One way of achieving this different from those in the quoted reference is to require the 

entropic laws (x + y) + (z + w) = (x + z) + (y + w), (x y) (z w) = (x z)(y w) to hold for 

relevant quadruples of elements. We say that an additive quasigroup Q, containing 

a subquasigroup U, satisfies the U-entropic law if (x + u) + (z + v) = (x + z) + (u + v) 

for all x,z G Q, u, v G U. 

Lemma 3.1. Suppose that the additively written quasigroup Q, and the sub­

quasigroup U C Q, satisfy the U-entropic law. Let r;, t{ G Q, Ti = t{ + U{, U{ G U, 
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i = 1,... ,k, and let r0 = J2Sri> to — Yf^i, u0 = J2* ui> where the superscript s is 

a nonassociative integer specifying the shape of the nonassociative sum ^ s . Then 
r0 = t0 + u0, u0 G U. In particular we have (t + u)s = ts + us. 

P r o o f . This is obtained by repeated application of the U-entropic law, begin­
ning with the innermost brackets of the nonassociative sum. The particular case 
occurs when all ti = t, all Ui = u. D 

The last result means that the U-entropic law implies a corresponding U-right 
distributive law. We now take Q to be L+, the additive structure of the logarithmetic 
of a quasigroup, and U the set of uniform quasi-integers. We consider the equivalence 
relation generated by the relations r « r, all r G L+, and r & s if r = s + u, u e U. 

Theorem 3.1. If a logarithmetic L(Q) of a quasigroup Q satisfies the U-entropic 

law in respect of the sub-left quasiring U of uniform quasi-integers, the equivalence 

classes of the relation « corresponding to U form a left quasiring which is a homo-

morphic image of L(Q). 

P r o o f . Suppose that r = s+u, r' = s'+u' with u, u' G U. Then (r+rf) « (s+sf) 
by direct application of U-entropy. Moreover r r' = (s + u)(s' + u') = s(s' + u') + 
u(s' + u') by U-right distributivity, = s(s' + u') + u" by the first part of Result 4, 
= (s s' + su') + u" by left distributivity. Hence r r' « s s'. Thus there are well 
defined multiplication and addition laws defined in the quotient L(Q)/ « . D 

Note (i). The quasi-integers of L(Q) will satisfy the entropic law in respect of 
addition, without restriction, if the quasigroup Q itself satisfies the (multiplicative) 
entropic law. In general, let Q' denote also the subquasigroup of Q, isomorphic to 
U+(<2) by (ai,. ..,ai) —> ai, (§2, Result 9), Then L(Q) is U-entropic if and only if 
(a u\)(b u2) = (a b)(u\U2) whenever a,b G Qi for some i, 1 ^ i ^ n; ui , U2 G Q'. 

Note (ii). By Result 11, the integers with a fixed pattern form an ideal and give 
rise to a (possibly trivial) quotient left quasiring. 

The ideal U in LX(Q) also gives rise to a quotient semigroup in the sense of [3, 
p . 60], if all the members of U are collapsed into a single element. If L+(Q) has the 
U-entropic property, this mapping commutes with the formation of the 'additive' 
quotient left quasiring defined above. 
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4. T H E LOGARITHMETIC AND THE STRUCTURE OF Q 

Since each distinct power of a; must occur among the ith components of the vector, 
the projection (a[,..., an) —> ar gives us 

Lemma 4 .1 . Each Qi is a homomorphic image of L+(Q). 

If for a £ Q, ar 7-= as, let us say that a separates r and s. Let M be a minimal 

subset ofQ such that for every pair r, s of quasi-integers in L(Q), there is an at- G M 

such that ai separates r and s. Then M will be called a logarithmetic base for Q. 

Given any set M = { a^ , . . . ,alA:} of elements ofQ, we define the direct product 

quasigroup V(M) = Q t l x . . . x Qik. If for some subset M' of Q, V(M) can be 

embedded in V(M'), or ifV(M) is a homomorphic image ofV(M'), and if M is a 

logarithmetic base, then so is M'. 

E x a m p l e s . In Pi considered above, the idempotent b is not a member of the 
logarithmetic base. Since |L(Q)| = 23, the logarithmetic base must be {a,c,d}. In 
P$, each element is a logarithmetic base. 

Theorem 4 .1. Let M = {a\,..., a&} be a logarithmetic base for Q. Then L+(Q) 

is isomorphic to the subquasigroup ofV(M) generated by ( a i , . . . ,a*;). It is isomor­

phic to V(M) if and only if ( a i , a 2 , . . . ,a/e) generates V(Q). 

P r o o f . The quasi-integer r has the natural representation (a[,..., an). The def­
initions of separability and logarithmetic base imply that if r ^ s, then (a[,..., ak) 7--
(af,... ,ak). Hence the projection (r <->)(aJ,... ,a n ) —> (a[,... ,ar

k) is a bijection. 
• 

Popova noted [10] that the logarithmetic is a subdirect product of the Qi, and 
some of the above results are implicit in her work. The "only i f part of the last 
assertion in (i) is equivalent to Theorem 2, Corollory 2 of [10], which asserts that 
L+(Q) = Qi x . . . x Qn if |L+(<2)| = U\Qi\. The reduced representation of the 
logarithmetic [15, Theorem 2] is embedded in the image of Qi x . . . x Qn given by 
( a i , a 2 , . . . ,ak,ak+\, • • • >«n) -» (^i ,a 2 , . . . ,a/c). 

E x a m p l e s . In an idempotent quasigroup, each Qi is the single element 
a{, and the logarithmetic is a single element 1, with 1-1-1 = 1, l2 = 1. The 
quasigroup P3 has an automorphism group of order 4 consisting of the elements 
l,(ab)(cd),(ac)(bd),(ad)(bc). The nonidentity elements map a into b, c, d, respec­
tively so that a itself is a logarithmetic base. It therefore follows from the Theorem 
that L+(Q) is isomorphic to a subquasigroup of Q. The automorphism group of P\ 
consists of 1, (ab)(cd). Hence a and c form a logarithmetic base, and L+(Q) must be 
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isomorphic to asubquasigroup oiQxQ. In both examples quoted, the isomorphisms 
are to the relevant quasigroup itself. In Fi on the other hand, although each of the 
elements a, c, d is a single generator, their elementwise logarithmetics are different. 
We have Qa\ a = a1, c = a2, b = (a2)2 , d = a1+2; Qc\ c = c1, b = c2, a = c3, 
d = c4; Qd- d = d1, a = d2, b = d3, c = d4. The partition of the nonassociative 
integers into equivalence classes modulo log a is different from that modulo logc 
or logd. We have a3 = a, or in terms of nonassociative integers, 3 = 1 , while c, d 
give rise to equivalence classes that can be represented by the first four principal 
integers. Moreover, while the logarithmetics of c and d involve {1, 2, 3, 4}, and are 
isomorphic, the mapping that produces the isomorphism does not commute with 
the formation of nonassociative powers. The bijection on Q which makes correspond 
the elements that give rise to the same integer in L(c) and L(d), that is (ab)(cd), 
is not an automorphism of P\. The quasigroup P\ also exemplifies the possibility 
L(a) 7-- L(Qa) = L(Q). The phenomena arising here are a consequence of the fact 
that the multiplicative semigroup LX(Q) of the logarithmetic is not cancellative. 

We now determine which quasigroups can be additive structures of logarithmetics, 

and we characterize the logarithmetic. 

Theorem 4.2. Let Q be a quasigroup whose elements are equivalence classes of 

the nonassociative integers, defined by a relation T such that for any nonassociative 

integers r, s, u, v, r T s and uT v imply (r -f s)T(u + v). Then L+(Q) is isomorphic 

toQ. 

P r o o f . Let r, s be nonassociative integers with r T s. Then by the multiplica­
tion in Q, xr = xs for all x G Q, hence they belong to the same quasi-integer. The 
quasi-integer 1 consists of all those nonassociative integers s for which x = xs, all 
x e Q. Consider a mapping M\ L+(Q) -> Q, in which the quasi-integer 1 is mapped 
to the element a E Q containing the nonassociative integer 1. The logarithmetic is 
generated by 1, and it follows from the commutativity of T and addition that 1 -> a 
is extended to an isomorphism (in fact an identity) between L+(Q) and Q. D 

In particular the conditions of Theorem 4.2 are satisfied if Q is a homomorphic 
image of TV, or if Q is itself the additive structure of the logarithmetic of some 
quasigroup. 

E x a m p l e . The quasigroup Q shown below has a logarithmetic of 4 quasi-
integers that can be represented by 1, 2, 1 4- 2 and 2 -f- 2, and whose addition table 
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a Ь c d 

o ò a c d 
b o b d c 
c d c a b 
d c d Ь a 

2 1 + 2 2 + 2 1 
1 2 + 2 1 + 2 2 
2 + 2 1 2 1 + 2 
2 1 + 2 1 2 + 2 

is also shown. 

Q a b e d L+(Q) 1 2 1 + 2 2 + 2 

1 
2 
1 + 2 
2 + 2 

Its subquasigroup 5 = {a, b} has a logarithmetic L(S) containing the quasi-integers 

{1,2}. The addition table of L+(S) is 1 + 1 = 2, 1 + 2 = 1, 2 + 1 = 1, 2 + 2 = 2. 

The relevant homomorphism maps 1 and 1 + 2 onto 1, and 2 and 2 + 2 onto 2. 

L e m m a 4.2. (i) If Q' is a subquasigroup ofQ, L(Q') is a homomorphic image of 

L(Q). 

(ii) If QH is a homomorphic image ofQ under the mapping H, L(QH) is a sub-left 

quasiring of L(Q). L(Q'), L(QH) may be L(Q) itself, or a single idempotent. 

P r o o f , (i) Suppose the subquasigroup consists of the elements (a\, a>2, ,ak). 

Consider the representation of the logarithmetic by means of the embedding r -> 

(a[,..., ar

n). The projection (a[,..., ar

n) -> (a[,..., ar

k) induces a homomorphism 

from L(Q) to L(Q'). (ii) Suppose that in the above representation a\H = a2H = 

. . . = a/cH, ak+\H = ak+2H = ak+eH, e tc The sub-left quasiring of L(Q) consisting 

of those elements with a\ = a2 = . . . = a*, ak+\ = a^+2 = . . . = ak+t, e tc is the 

logarithmetic of QH. D 

Theorem 4.3. Let Q be a quasigroup of order n, and let {a\,..., a^} be a loga­

rithmetic base. Let S be a subquasigroup of Q\ x . . . x Qk. Then S is isomorphic 

to L+(Q) if and only if (i) there is an e E S, and for every i, 1 ^ i ^ k there is a 

homomorphism Hi: S -» Qi such that eH = a;, and (ii) no proper subquasigroup of 

S has this property. 

P r o o f . Suppose that S has the specified properties. We construct a mapping 

H: S —> Q\ x . . . x Qk by defining eH = (a\,...,ak). Condition (i) ensures that H 

can be extended to a homomorphism of the subquasigroup S' of S that is generated 

by e, onto Q\ x . . . x Qk. Since S' can be mapped homomorphically to each Qi by 

the projection on the i th component, condition (ii) secures that S' = S. Conversely, 

L(Q) can be mapped homomorphically to each Qi by lemma 4.1, and we can take 

e = (a\,... ,ak). If some S' C= L(Q) satisfied the conditions we could construct an 

S" C S' isomorphic to L(Q), which is a contradiction. D 

The requirement eHi = â  is essential. In Example P\, L(Q) can be represented 

by the 64 elements (ar,cr,dr). The set (a,a,a), (b,b,b), (c,c,c) and (d,d,d) form a 
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subquasigroup of L(Q) that can be mapped homomorphically onto each of Qa , Q6, 

Qc and Qd, but not in the way specified by Theorem 4.3. 

5. QUASIGROUPS WITH A GIVEN LOGARITHMETIC 

Different quasigroups may have isomorphic logarithmetics. We call Q an antiloga-
rithmetic of L(Q). We call the class of those quasigroups Q such that L(Q) = S, the 
antilogarithmetic class A(S) of 5, and we call the class of those quasigroups whose 
logarithmetics are 5 or a homomorphic image of S the cumulative antilogarithmetic 
C(S) of S. 

Theorem 5 .1. Let S be a leftquasiring and let Q (1 ) , Q ( 2 ) , . . . , . . . , Q{t) G C(S). 
Then n x Q ( i ) G C(S). If at least one of the Q ( i ) G A(S), then IIxQ ( i ) G A(S). If 
Q(D x Q (2) G A(S), then Q ( i ) G A(S), i = 1,2. 

P r o o f . Let a(i) G Q ( i ) , i = 1,...,£. If ?n, n, are nonassociative integers, 
n x ( a ( i ) ) m = n x ( a ( i ) ) n if and only if (a ( i ) ) m = (a ( i )) n for every i. If L(Q ( i )) con­
tained quasi integers not contained in an element of S (i.e. in an equivalence class 
contained in 5), then so would Q (1) x Q (2 ) . Let Q (1 ) G C(S)\ A(S) and Q (2) G -4(S). 
Then Q (1 ) x Q (2) G A(5) and so Q (1 ) G .4(5), a contradiction. • 

Corollary. If the category of quasigroups is regarded as a semigroup with respect 

to formation of direct products, C(S) is a subsemigroup for any S, and A(S) is a 

semigroup ideal. 

E x a m p l e ( i ) . The trivial quasiring consisting of one element is the logarith-

metic of every idempotent quasigroup and of no others. 

E x a m p l e ( i i ) . I f Q i s any quasigroup and I is an idempotent quasigroup, 
we have L(Q x I) = L(Q). If L is of order 2 with elements {1,2}, L+ must be 
1 + 1 = 2-1-2 = 2,1-1-2 = 2-1-1 = 1 which is Z2 (see example following Theorem 4.5). 
The other quasigroup of order 2 is not a logarithmetic since 1 + 1 = 1 means that 
1 does not generate it. Hence in Q, a2 is an idempotent for every en. Thus A(L) is 
the class of plenary stable quasigroups of index 2 studied in [9]. 

A quasigroup that has no nontrivial homomorphic images is said to be simple, 
and a simple quasigroup with no sub quasigroups other than itself is said to be plain. 
Thus a quasigroup containing an idempotent, hence in particular a group, cannot 
be plain. (In [10] a simple quasigroup is called plein if it has no subquasigroups 
of order k, 1 < k < n. In [12], one with no subquasigroups other than itself, 
even of order 1, is called uni. In [17], plain is used for what had been called uni. 
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The assertion below the statement of lemma 2 in [10] needs correction to "chaque 
element nonidempotent d'un quasigroupe plein est son generateur". However since 
the presence of idempotents does not change the logarithmetic, the results of [10] are 
not affected.) In [11] Popova obtained results for logarithmetics of plain quasigroups. 

Some results for quasigroups whose logarithmetics are plain are given below. The 
requirement that plain quasigroups have no subquasigroups of order 1 is essential. 

Lemma 5.1. If L+(Q) is plain, then every nonidempotent element a G Q, gener­
ates a subquasigroup isomorphic to L(Q). 

P r o o f . Consider the subquasigroup Qa. By Theorem 4.4 (i) its logarithmetic 

L(Qa) is a homomorphic image of L(Q), and since L+(Q) is plain, L(Qa) must be 

trivial, or L(Q) itself. Thus either a is idempotent or Qa = L(Qa) = L(Q). D 

Theorem 5.2. Let S be a plain quasigroup containing no idempotents, and let 
Q be a quasigroup such that L+(Q) = S. Then the set of elements of Q can be 
partitioned into disjoint subsets, each of which is a quasigroup isomorphic to S. 

P r o o f . The subquasigroup Q\ is a homomorphic image of S by the property of 
a logarithmetic, and it is an isomorphism by the plainness of 5. Now take an element 
a>2 & Qi- lfQiC\Q2 ^ 0, it contains a subquasigroup Q' generated by a single element, 
with 1 < |Qi nQ2| < I'S'I- The inverse image of Q' under the isomorphism S —• Q\ 

is a subquasigroup of S, thus contradicting its plainness. Hence Q\ D Q2 = 0. We 
proceed in this way until Q is exhausted. D 

In studying logarithmetics, a way of constructing 'products' of given quasigroups, 
weaker than the direct product, is useful. Let P be a quasigroup of order k, with 
elements A\, A2,...,Ak- Let Q\, Q2,.,Qk be k quasigroups of order £, each 
isomorphic to a quasigroup Q. Let the elements of Qi be denoted by an, ai2,...,an 

and those of Q by a\, a2,... ,ai, labelling them so that each ais is the image of 
as in some isomorphism Qi —•> Q. In the array formed by the multiplication table 
of P we now replace each symbol A{ occuring on the diagonal of the table by the 
multiplication table of Qi, and each Ai occuring in an off diagonal position by the 
multiplication table of any quasigroup with elements an, ai2,...,an, the implied 
head and sidelines being in the lexicographical orders given above. Any quasigroup 
obtained in this way is called a diagonal product of P by Q and will be denoted by 
P\Q, the ' \ ' standing for 'diagonal'. The direct product P x Q is a special case of 
a diagonal product. 

Lemma 5.2. (i) If L(P) and L(Q) are of orders mi, m2 respectively, the order 
of L(P \ Q) is at most m\m2. 
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(ii) If L(P), L(Q) are identical, then L(P \ Q) is identical to each of them. 

P r o o f . (i) The nonassociative integers are partitioned into mi , m2, classes 
by the relationships arising from the respective quasigroups. Hence there are at 
most 77117712 classes such that for any pair r, s of nonassociative integers in a given 
class, a\ = a\, 6£ = bj for all a{ G P, bj G Q. (ii) We have (ai,bj)r = (af-ftj) = 
(a\,bSj) = (a{, bj)s if and only if r = s (mod P), and r = s (mod Q). In this case the 
relationships are the same. D 

Theorem 5.3. Let S be a plain quasigroup. The class of quasigroups Q for which 

L+(Q) = S includes the diagonal products I\S, for every idempotent quasigroup I, 

and the direct products of a finite number of such quasigroups. 

P r o o f . The first statement is an example of the situation described in 

Lemma 5.L and the second statement an example of that described in Lemma 

5.2 (ii). D 

Corollory. IfS is plain, L+(Q) = S, and \Q\ — 3|5|, then Q is a diagonal product 

I \S, with I idempotent. 

P r o o f . We must have aua2j = a$k for some k depending on i, j , for all i, j . 

The product aua2j cannot lie in Q\, because the unique solution in Q oiaux = a i s 

lies in Q\. Similarly it cannot lie in Q2. There is thus a multiplicative quotient 
structure of Q on its subsets Qi, Q2, Q3 which is a quasigroup. D 
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