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MODULAR BASES IN A HILBERT ^-MODULE 
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Summary. Following Ozawa [4] we introduce the concept of a modular base in a Hilbert 
.4-module and prove that the cardinalities of any two such bases are the same. 
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INTRODUCTION 

Throughout this paper A denotes a proper IP-algebra with an inner product and 
norm (•, •) and || ||, respectively ([1]). A nonzero selfadjoint idempotent in A is called 
a projection. If a projection cannot be expressed as a sum of two pairwise orthogonal 
projections, then it is said to be primitive. A maximal family of pairwise orthogonal 
primitive projections is called a projection base. Denote by T(A) the trace class of 
v4, i.e. let T(A) = {xy: x,y £ A] and let tr be the trace functional on T(A). tr has 
the following properties: tr xy = (y, x*) = (x, y*) = tr yx (x, y 6 A). For each a € A 
there exists a unique positive element [a] 6 A (i.e. such that ([a]x,x) ^ 0 (x £ A)) 
such that [a]2 = a*a, moreover a E T(A) if and only if [a] G T(A). Then a norm 
can be defined on T(A) by setting T(O) = tr[a] (a G T(A)), for which the following 
relations hold: |tr(.)| ^ r(.), || - | K r(.) and r(xy) ^ \\x\\\\y\\ (x,y € A) ([6]). It 
was shown in [7] that T(A) is a Banach *-algebra. In [8] Smith proved that every 
nonzero positive element a £ A has a unique spectral representation a = ]^Anen, 

n 

where the An-s are positive real numbers with A, > A; if i < j , and the en-s are 
mutually orthogonal projections. 
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Now let ft be a (right) .A-module on which there is a generalized inner product 
[•, •], i.e. [-,•]: H x H -* T(A) such that 
(1) [f, f] Z 0 and [/, / ] = 0 if and only if / = 0; 
(2) [f,g + h] = [f,g] + [f,h]; 
(3) [f,ga] = [f,g]a; 

(4) [f,gr = [g,f] 
holds for every / , #, h G H and a £ A. [•, •] satisfies the so called strong Schwartz 

inequality, i.e. 
(T[f,g])2$T[f,f]T[g,g] (f,g(EH). 

For a more general statement cf. [3]. 
In the rest of the paper let H be a Hilbert A-module, i.e. suppose that H is 

complete in the metric d defined by 

d(f,g) = VT[f-g,f-g] (f,geH). 

As Saworotnow showed in [5], on H a linear structure can be introduced such that 
A(/a) = (A/)a = /(Aa) (A 6 C,, a € A, ,f£H) and 

(f,g) = tr[c,,f] (f,geH) 

defines an inner product on H. Denote by || • || the norm corresponding to this inner 
product. 

It is easy to see that A is a Hilbert _4-module if we define the generalized inner 
product by [x,y] = x*y (x,y G A). Similar considerations can be performed for 
every eA, where e G A is a projection. The norms arising from these generalized 
inner products are equal to the original one. 

If H\ and H2 are Hilbert A-modules, then a mapping U: H\ —• H2 is called an 
yl-unitary operator if it is surjective and 

(1) U(f + g) = Uf + Ug, 
(2) U(fa) = (Uf)a, 
(3) [Uf,Ug]=[f,g] 

for every / , g G Hi and a G A. In this case U is a unitary operator between the 
Hilbert spaces Hi and H2. Finally, it was also proved in [4] that 

/ = £/«* 
a 

holds for every / G H and projection base { e a } a 6 A . 
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RESULTS 

We begin with the following basic lemma. 

Lemma 1. Let f £ H be such that [/, / ] is a projection. Then the submodule 

fA is isomorphic an isometric to [/, f]A, consequently fA is closed. Moreover, we 

h a v e / [ / , / ] = / . 

P r o o f . Let / £ H and consider the function T(fa) = [/, fa] = [/, f]a (a £ A). 
Then T is a linear operator preserving the module operation with the range [/, f]A. 
Since 

[fa, fa] = a*[f, / ]*[/ , f]a = [[f, f]a, [f, f]a] (a € A), 

taking traces we get that T is an isometry. Since [/, f]A is closed so is fA. Now 

let [ / , / ] = ei + . . . + en be the decomposition of [/,/] into pairwise orthogonal 

primitive projections (cf. [1, Theorem 3.2]). Extend the set {c i , . . . ,e„} by {ea}a€A 

to a projection base. Then 

/ = /[/./]+ E /C 
a 

Since [fe'a, fe'a] = e'a[f, f]e'a = 0 (a € A), it follows that / [ / , / ] = / . • 

Definition. The family {/a}a€A C H is said to be modular orthonormal if 

(1) [fa,U] = Oifa?0; 
(2) [fa, fa] is primitive projection in A for every a £ A. 

A maximal modular orthonormal family is called a modular base. 

R e m a r k 1. If {/<*}<*€A C H is a modular orthonormal family, aa £ A (a £ A) 

and F C A is a finite set, then, using the above lemma, simple calculation shows 

that [ / - 5Z fa<ia,f ~ £ fQaQ] equals 
a € P a£F 

[/, /] + E ([/"/I " I/- /«KY([/«, /] " [/- /«]««) " E !/• /«][/«> /]• 
a € P cr€P 

As a consequence we have 

[/.л^E [/-/«][/«-/]• 
a € P 

T h e o r e m 1. Let {/a}a€A ^ e a modular orthonormal family in H. Then the 
following assertions are equivalent: 

(i) {/<*}<*£A is a modular base. 
(ii) IffEH is such that [/a, / ] = 0 (a £ A), then / = 0. 
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(iii) The orthogonal sum (in the Hilbert space sense) of the closed subspaces 

Ha = faA (a G A) is H. 

(iv) / = E falfa, f] for every f e H. 
a 

(v) [/, g] = 5^[/, fa][faj 9] holds for any / , g G H} where the sum is unconditionally 
a 

convergent in the norm r. 
(vi)||/||2 = EII[/«- /1112 ^ every f^H. 

a 

P r o o f , (i) => (ii). Suppose that / G H and [/ttl / ] = 0 (a G A). If / 7- 0, then 
let [/, / ] = 5Z ̂ n^n be the spectral representation of [/, / ] , Now for / ' = - i - / e i we 

n 

have [/', / '] = ei and [/a, /'] = 0 (a G A), which is a contradiction. 

(ii) =-> (iii). By the previous lemma Ha is a closed submodule which is a subspace 
as well (a G A). Now the implication follows from [5, Lemma 3]. 

(iii) => (iv). If / G H, then for every a G A there exists an aa £ A such that 
/ = J2faaa. This implies that 

Of 

[/«,/] = [/«,/«]«« (*€A). 

Since /<*[/<*,/<*] = /«(<* G A), we have (iv). 
(iv) => (v). We have to prove only the unconditional convergence. By the proper­

ties of the norm r we have 

r([f, /«][/«, s]) < ||[/«,/]|| ||[/a,</]|| (<* € A). 

But from the proof of Lemma 1 we know that 

l l[ /a, /] | |2 = | | / a [ / a , / ] | | 2 and ||[/a,</]||2 = ||/a[/a,</]||2 (a € A). 

Now (v) follows. 

(v) => (vi). Let / G H. Then 

[/,/] = £[/,/«][/«,/]. 
a 

By the above remark, using the fact that r is additive on the positive elements of 
r(A), we have 

r([f,f] ~ £[/,/.][/«,/]) = r[f,f] - X r[f,fa][faJ] = ||/||2 - £ ||[/a,/]||
2 

<*£F a£F a£F 

for every F C A, which implies (vi). 
The implications (vi) => (ii) => (i) are trivial. • 
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R e m a r k 2. In Corollary 1 below which can be called a generalized Bessel in­
equality we need the following simple statement. 

If (e€)£e£ is a net of self adjoint elements of T(A) converging in the norm r to an 

a G T(A) such that there is an x G A for which x = x* and 

a€ ^ x (e G £), 

then a ^ x. 

To prove it we note that the convergence in r implies the convergence in || • ||. 

Corol lary 1. Let {/a}<*€A be a modular orthonormal family in H. Then 

[fj)>nfja)[f°j], 
a 

where the sum is unconditionally convergent in T(A). 

P r o o f . By Theorem 1 (vi) we have 

Zr([fJa][faJ]) = Z\\[UJ]\\2<^-
a a 

Now the statement follows from Remarks 1 and 2. • 

In the proof of our main theorem we use 

Lemma 2. Let n ,m G N be such that n ^ m. Suppose that e\, . . . , en+m are 

primitive projections in A. Then 

e\ + . . . + en -̂  en+i + . . . + en+m . 

P r o o f . Using the second structure theorem for H*-algebras ([1, Theorem 4.2 
and 4.3]) A can be identified with the direct sum of Hilbert-Schmidt operator alge­
bras 0 H S ( J ^ ) , where the Jff^-s are suitably chosen Hilbert spaces and the inner 

product on H S ( J ^ ) may differ from the standard one at most by a real constant 

which is not less than 1. In this representation every ej can be considered as a vector 

(P*) r such that there is exactly one 7 G T for which P* / 0 and for this 7 P* is one 

dimensional projection on J ^ . Now suppose that e\ + . . . + en = en+i + . . . + e n+m . 

It is easy to see that there is a 70 G T such that 

c a r d { * € { l , . . . , n } : P * o ^ 0 } # c a r d { / e { n + l l . . . l n + m } : P ^ o # 0 } . 
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If we take the trace corresponding to the Hilbert space JflQ in the equation 

n n+m 

2s 70 = 2s To» 
Jb = l /=n4-1 

we arrive at a contradiction. Q 

Theorem 2. If {/<*}<*€ A a/-d {<7i}»€1 a r e modular bases in H, then card A = 
card I. 

P r o o f . If A and I are infinite sets, then the proof is standard. In fact, for 
every a £ A consider the set 

S« = {i€/:[/«,,tf]--0} . 

By Theorem 1 (vi) Sa is countable, (ii) of the same theorem implies that every i £ I 
belongs to at least one set SQ (a E A). Then we have 

card I ^ card A • No = card A. 

Changing the role of A and / we get the other inequality. 

Now we prove that if one of these bases is finite, then so is the other. To this end 
suppose that A is finite and / is infinite. Since |tr(.)| ^ r(.), thus, by Theorem 1 
(v), we have 

oo > tr£[/«,/„] = tTZUf«,9i][9iJa] 
a a i 

= EEf[/«.twlO<./J 
a i 

-=EEtf|>../«][/«. ».l 
t a 

= Etr[0->0«] = °°> 
i 

where we have used the fact that the trace of a projection is not less than 1. 
Finally, assume that A and / are finite. Then we have 

£[/<*,/a] = Y^9i>9i] 

a i 

and Lemma 2 implies that card A = card I. • 
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As a consequence we can state 

Corol lary 2. All projection bases in A have the same cardinality. 

P r o o f . Consider A as a Hilbert j4-module. The only thing which has to be 
proved is that every projection base {ea}a€A is a modular base in A. By Theorem 1 
(ii) we have to show that eax = 0 (a £ A) implies that x = 0. But this follows from 
the first structure theorem for II*-algebras ([1, Theorem 4.1]). • 

R e m a r k 3. By the second structure theorem for II*-algebras it is to see that 
the relation between Dim A and dim A (the Hilbert space dimension of A) is quite 
complicated. However, it is easy to see that Dim>l < oo if and only if dim A < oo. 

Just as in [4], card A occuring in Theorem 2 is called the modular dimension of II 

and denoted by Dim II. 

R e m a r k 4 . It is natural to ask whether any two Hilbert .A-modules H\ and II2 
are >l-unitarily equivalent (i.e. there is an ,4-unitary operator between IIi and H2) 
if and only if Dim Hi = DimII2- The "only i f part is obvious while the "if part 
does not hold in general. To show it let A = C 0 C 0 M2x2(C) (where M2x2(C) is 
the algebra of 2 x 2-type complex matrices) with the natural operations and inner 
product. Let 

«-(j) • - ( ; ) • 
where I E M2X2(C) is the identity matrix. Then IIi = ei^4 and II2 = «2-4 can be 
considered Hilbert _4-modules. It is trivial that DimIIi = DimII2 = 2, but, if IIi 
and II2 were ^4-unitarily equivalent, then they would be unitarily equivalent Hilbert 
spaces as well which is a contradiction. 

As for our final result we need the following lemma which shows that the topo­
logical simplicity of A is a necessary and sufficient condition of the validity of the 
statement formulated in the above remark. 

Lemma 3 . The minima] right ideals of A are A-unitarily equivalent if and only 

if A is topologically simple. 

P r o o f . In the proof we use [2, Proposition 7 and Theorem 8 on pp. 47-48]. 

To prove the necessity let Ii = Ae\A, I2 = Ae2A be two different minimal closed 
ideals of A> where ei,e2 G A are primitive projections. Then R\ = e\A C Ii and 
R2 = 62-4 C I2 are minimal right ideals for which R*R\ C Ii, R2R2 C I2 since Ii, 
I2 are selfadjoint. But Ii -jt I2 implies that I1-LI2, consequently we get that there 
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is no ,4-unitary operator between R\ and 1?2. Now it follows that A is topologically 

simple . 

To prove the sufficiency we may assume that A — H S ( J f ) , where J f is a Hilbert 

space and the inner product on H S ( J ^ ) is the s tandard one. Let P\ and F2 be one 

dimensional projections on Jtf. Suppose that <p\ and y?2 are vectors from J f of norm 

1 generating the range of P\ and P 2 , respectively. If S is the operator defined by 

Sx = {x,<p\) <p2 {x E J ^ 7 ) , then let 

U{P\T) = SP\T {T e H S ( J T ) ) . 

Simple calculation shows that U is an H S ( J f ) - u n i t a r y operator from FiHS(JP) 

onto P 2 H S ( J f ) . D 

From this lemma, by Lemma 1 and Theorem 1 (iii) and (iv), we have 

T h e o r e m 3. Let A be topologically simple. If H\ and I/2 are Hilbert A-modulesf 

then H\ and i / 2 are A-unitarily equivalent if and only if Dim Hi = D i m H 2 . 
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