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Dedicated to the Memory of Theodor Schneider 

1. INTRODUCTION 

For N points x i , . . . , XJV in the s-dimensional half-open unit cube Is = [0, l ) 5 , 
5 ^ 1 , and for a subinterval J of Is we put 

D(J;N) = A(J)N)-V(J)N, 

where ^4(J; N) is the number of n, 1 -̂  n $C N, with x n E J and V(J) is the volume 
of J. Then the star discrepancy D*N of the points x i , . . . , x;v is defined by 

DN = sup 
J 

D(J-N) 
N 

where the supremum is extended over all half-open subintervals J = \\ [0, uf-) of I5. 
«=i 

Point sets with small star discrepancy (or low-discrepancy point sets) are not only 
of number-theoretic interest, but they also play a crucial role in quasi-Monte Carlo 
methods for numerical integration (see [7, 11, 17]). The aim in the construction of 
low-discrepancy point sets is to obtain point sets in Is for which the star discrepancy 
satisfies D*N = 0(N_ 1(logN) f c(5)), where the implied constant and the exponent 
k(s) depend only on the dimension s. The main interest is in constructions which 
achieve k(s) ^ s; see [11, 17] for surveys of such constructions. Since for 5 = 1 the 
point sets achieving the minimal star discrepancy D*N = 1/(2N) are known (see [11, 
p. 972]), we concentrate on the multidimensional case 5 ^ 2 . 

The present paper deals with "digital constructions" for low-discrepancy point 
sets, i.e., constructions in which the coordinates of the points are given by digit 
expansions in a chosen base and every digit is obtained by a prescribed scheme. 
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A general family of such digital constructions was introduced in [16]. These con­

structions yield point sets with the special equidistribution property described in the 

following definition. 

Def in i t i on 1. Let 0 -^ t -<C m and 6 ^ 2 be integers. A (t,m,s)-net in base 6 is a 

point set of bm points in Is such tha t A(J\ bm) = 6* for every subinterval J of Is of 

the form 
8 

J = l[[aib-d>,(ai + I)*"*) 
i = i 

with integers a,- and d{ and with V(J) = 6 t - m . 

Nets were first constructed by SoboF [21] in base 2. A construction of Faure [5] 

yields (0, m, s)-nets in prime bases ^ s— 1, and constructions of Niederreiter [16, 17] 

yield (0 ,m, s ) -ne t s in prime power bases j> s — 1. A general construction principle 

for nets in arbitrary bases, which uses systems of linear equations over finite rings, 

was introduced in [16] and explicit constructions based on this principle were given 

in [18]. From results in [16, Sect. 3] we get for s ^ 2 tha t the star discrepancy of a 

(t, m, s)-net in an arbitrary base b satisfies 

NDN ^ B(s,b)bt(\ogNy-1+0(bt(\ogNy-2), (1) 

where N = bm and 

{ ( — ) if either s = 2 or b = 2 and s = 3, 4, 

i AV-JY L • 
(T-l)i { w) otherwise' 

and where the constant implied by the Landau symbol in (1) depends only on s and 

6. For fixed m,s, and b the discrepancy bound in (1) is an increasing function of t, 

hence t should be small to guarantee a small value of D*N. 

In this paper we study constructions of nets in prime power bases. These con­

structions may be extended to arbitrary bases by proceeding in analogy with [18, 

Sect. 4]. Prime power bases are of particular interest because in this case one can 

take as the underlying finite ring a finite field. Section 2 contains a further s tudy 

of the general construction principle introduced in [16]. A new type of upper bound 

for the star discrepancy of nets obtained by this construction is established, which 

leads to a determination of the average order of magnitude of the star discrepancy 

in this family of nets. Lower bounds for the star discrepancy of these nets are also 

established. In Section 3 we specialize the method in Section 2 to obtain a construc­

tion of nets based on rational functions over finite fields. The main result of Section 

3 provides an existence theorem for low-discrepancy point sets within this special 

family of nets. We also discuss the connection between the construction in Section 

3 and an earlier construction in [12]. 
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2 . A GENERAL FAMILY OF NETS 

We first recall the general construction principle for nets in [16, Sect. 6], but we 
consider only the special case of a prime power base. Let q be an arbitrary prime 
power and let Fq be the finite field of order q. We write Bq = { 0 , 1 , . . . , q— 1} for the 
set of digits in base q. For given integers m ^ 1 and s ^ 2 w e choose the following: 

(i) bijections i\)r: Bq —• Fq for 0 ^ r ^ m — 1; 
(ii) bijections AtJ-: Fq —• Bq for 1 ^ i ^ s and 1 ^ j ^ m; 

(iii) elements cjr' € Kg for 1 ^ i ^ s, 1 ^ j> ̂  m, and 0 J$ r ^ m — 1. 
For n = 1, 2, . . . , qm let 

m - l 

п - 1 = ^ ľ a«-(n)íГ» a r ( n ) Є B«» 
r=0 

be the representation of n — 1 in base q. Put 

iW = ^ * $ ? " ' for 1 ^ n ^ g m and 1 <£ i ^ s 

with 

• m - 1 v 

C S = AV ( H Cir ^r(Or(n)) ) € fl, for 1 ^ T» < «m . 1 < « ̂  «, 1 ^ J < 

Then define the point set 

x„ = ( -£> , . . . , a£'>) e /» for 1 ^ n ^ qm. (3) 

The following definition and lemma from [16, Sect. 6] are basic. 

Definition 2. For the system C of vectors 

CT = ( c i o - c % • • • • c i!m-i) € F? for 1 < i ^ « and 1 O* < m 

we define 
0 

0(C) = min £<*-,, 

where the minimum is extended over all nonempty systems {cj . 1 ^ j ^ c/,-, 1 ^ 
i -̂  5} with 0 ^ d{; ^ m for 1 ^ i ^ s that are linearly dependent over i^. 
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Lemma 1. The point set (3) is a (t, m, s)-net in base q with t = m + 1 — g(C). 

If Lemma 1 is combined with (1) and (2), then we obtain the following upper 
bound for the star discrepancy DN of the point set (3) with N = qm: 

D*N < B(s,q)q1-^c\logN)-1 +0(q-«c\logN)-2), (4) 

where the constant implied by the Landau symbol depends only on s and q. The 
following results on the quantity g(C) were shown in [19]. First of all, there is a 
general upper bound of the form 

g(C) ^ max(2, m+l-[kq log s\) 

with a constant kq > 0 depending only on q. On the other hand, there always exists 
a system C with 

g(C)>m+l- E ( e . - 1 ) , 
i = i 

where ei, . . . , e,_i are the degrees of 5—1 arbitrarily chosen distinct monic irreducible 
polynomials over Fq. 

There is a trivial lower bound for the star discrepancy DN with N = qm of 
the point set (3). Note that all coordinates of the points in (3) are rationals with 
denominator N. Let 0 < e ^ N_1 and put J£ = [0,1 - N"1 -f e)s. Then 

D*N > N-'W;;N)| = 1 - (l - I +sj . 

Letting e —• 0-f, we get the lower bound 

- * > l - ( l - ^ ) \ (5) 

A more important lower bound, which is a counterpart to the upper bound in (4), 
is given by the following result. 

T h e o r e m 1. The star discrepancy DN with N = qm of the point set (3) satisfies 

DN>q-^q-«C\ 

If the maps A,j are such that Xij(0) = 0 for 1 ^ i ^ s and 1 -̂  j ^ m, then 

DN > ^ V < ( C ) . 
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P r o o f . If A^1 denotes the inverse map of A,j, then by construction we have 

m - l 

E # V r ( « r ( n ) ) = A<y(.:<2) for 1 <. n <. qm, 1 ^ i <. 8,1 ̂  j $ m. (6) 
г=0 

The definition of Q(C) implies the existence of a nonzero s-tuple (rfi,..., d9) of inte­

gers with 0 ̂  di; -̂  m for 1 ̂  i .$ s such that the system {c^ : 1 ^ j> ̂  dt, 1 ^ i ^ s} 
s 

is linearly dependent over Fq and £(C) = J2 d{. Let ttv, 1 ^ w -̂  «s, be the largest 
i = i 

index for which dw -j£ 0. Since the system {c^ : 1 ^ j ^ di, 1 ^ i ^ u;} is linearly 

dependent over Fqi there exist elements hy £ Fq,l ^ j ^ di,l ^ i ^ w, not all 0 
such that 

w di 

• = i ; = i 

We have /ijj -̂  0 by the definition of g(C). Comparing components we get 

w di 

J2J2hf)cfr=° for O ^ r ^ m - 1 . 
• = i ; = i 

Together with (6) we obtain 

w di w di m—l 

EE^VOO = EEAiť) E #*M»)) 
• = 1 j = l ť = l j = l r=0 

m—1 w di 

= J2M°r(n))J2JEh?c?r) = <> ÍOT l < n ^ 9
m . 

r=0 » = 1 j = l 

L ( « ) Since hK
d ^ 0, there exists a unique b £ Fq with 

u / - l di d^ — 1 

E E*i°V(°) + E ^ ( ° ) + *2?» = o. 
» = i j = i j = i 

Put a = Aly t̂i;(^) € -B .̂ Define the intervals 

J,-= [0,0-*) for l ^ i < t v . 

л» = < 
[(a+l)g-á»,g1-á-) ifa < - ( ? - ! ) , 

[0,a9-d-) ifa £ - ( « - ! ) . 

(7) 

(8) 
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The subinterval J of Is is then defined by 

J = Jlx...xJw x[09l)—
w. 

We claim that no point x n in (3) belongs to J. Suppose on the contrary that xn G J 

for some n with 1 ^ n < qm. Then x%' £ J, for 1 ^ i .$ w. For 1 ^ i < w it follows 
from the definition of Jt that x^j = 0 for 1 ^ j> $: d{. For t = it; it follows from the 
definition of Jw that x}V = 0 for 1 ^ j < dw and x$ ^ a. Thus (7) implies 

w-l di dw-\ 

•=i i = i i = i 

In view of (8) this yields A"^ (*ndl) = ft> hence a £ £ = \wdw(b) = a, a contradic­
tion. Thus the claim is shown. 

Now we consider two cases as in the definition of Jw. In the first case let a < 
(q — l ) /3 . Define subintervals I\ and 1^ of I* by 

h = Ji x . . . x J^-i x [0, q1'*") x [0, l)—w, 

I2 = ^ x . . . x J„_! x [0, (a + l)q~d~) x [0, l ) — . 

Then I\ is the disjoint union of J and J2- Since ^4(J; N) = 0, we get 

V(J) = ^\D(J;N)\ < l p ( / i ; . V ) | + l | D ( / 2 ; AT)| ^ 2 / ^ . 

Using #(C) = ]T^=i *̂ w e obtain 

DN >- \V(J) = \(q - a - 1 ) , - * - - - - = | ( , - a - l)g-< ( C ) > ^ V * ^ -

In the second case let a ^ (g — l ) /3 . Then from _4(J; N) = 0 we get 

DN > ^\D(J;N)\ = V(J) = aq-«--<- = a«-«<c> >- i ^ V ' < c > . 

Thus in both cases we have the first inequality in Theorem 1. If Atj(0) = 0 for 
1 ^ i ^ s and 1 ^ j ^ m, then from (8) we get 6 = 0 , hence a = 0. Thus from the 
first case above we obtain 

DNz\(q-a-l)q-W=q-^q-<(C\ 

and so the second inequality in Theorem 1 is shown. • 
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R e m a r k 1. Since the proof of Theorem 1 is based on the construction of an 
interval J containing none of the points x n in (3), it follows that the lower bounds in 
Theorem 1 also hold for any point set consisting of the x n with n running through 
an arbitrary nonempty subset of {1,2, . . . , qm}. 

Now let q be prime and put C(q) = (-q/2,q/2] H Z,C*(q) = C(q) \ {0}. For 
(hi , . . . , hm) G C(q)m define rf(hi,..., hm) to be the largest index d with h* ^ 0, 
provided that (hi, . . . , hm) -̂  ( 0 , . . . , 0), and put d(0,..., 0) = 0. For ? = 2we put 

g f(fci l.-. l&m) = 2" d ( f c l , "" , f c m ) , 

and for q > 2 we put 

L * iq~d(csc-\hd\ + a(d,m)) if(hll...,hm)^(0,...,0), 
Qq(hu...,hm)= i \ q ) 

U if(h1,...,hm) = (0,...,0), 

where d = d(h\,..., hm) and where <r(dy m) = 1 for d < m and <r(m} m) = 0. Let 
C(q)ms be the set of ms-dimensional lattice points h with coordinates indexed in. 
the lexicographic form 

h = (hij) = (/*n,...,him,...,A5i,...,/i,m), 

where hij G C(q) for 1 ^ i'^ 5,1 -̂  j - ^ m. For each such h we define 

s 

Pq(h) = Y[Qq(hiu...,him). 
«"=! 

.(«) For the system C = (cj ') of vectors in Definition 2 we set 

R(C) = ^Pq(h), (9) 
h 

the sum running over all nonzero h = (hij) G C(q)ms with 

s m 

i=i y=i 

where the hij are viewed as elements of Fq. Note that since we have assumed q to 
be prime, Fq and Bq can be identified. 

Theorem 2. If q is prime and every A,; is the identity map, then the star dis­
crepancy D*N with N = qm of the point set (3) satisfies 

IУNśl-(l-±) +R(C). 
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P r o o f . By the assumption on the At<7- we have 

m - l 

xnj = J2^фr(ar(n)) for l ^ n ^ a m , l ^ г O , 1 0 * ^ m . 
r = 0 

We can now apply a general inequality for the star discrepancy in terms of exponential 
sums given in [13, Satz 2] (see also [15, Lemma 2]), which yields 

- ł o - ( . - i ) ' + £я f<h)ì£.(itÊ*«.#) 
x ' h^O n=l x * i = l j = l ' 

(10) 

where the outer sum is over all nonzero h = (h(j) £ C(q)ms and where e(u) = 
e2xy/-Tu £or r e a j u^ p o r fixec| h w e have 

s m m—1 iv / . . з тn ч / л s m m—i ч 

E«(jEE^S)= £ « ( Ï L £ * O E ' Ы 
П = l X * l = l j = l ' 6 o , . . , & m - l € B « ł

 Ч Ï І = l j = l Г = 0 7 

/ . , m— 1 Í m ч 

= £ «ß£*-ĽĽv#) 
*o,...,*m-iЄ.вç

 Ч * г=0 . = 1.7 = 1 ' 

m - 1 / ç-1 / , з m ч ч 

- П Ľ< EE^4» • 
r=0 x 6 = 0 x * » = 1 ; = 1 y 7 

The last expression is equal to qm = N if 

] L ] C A i i c i r = 0 G Fg for 0 ̂  r ^ m - 1 
t = i j = i 

( ц ) 

and equal to 0 otherwise, where the h{j are viewed as elements of Fq. The condition 
(11) is equivalent to 

s m 

• = 1 ; = 1 

The theorem now follows from (10) and the definition of R(C) in (9). • 

Next we determine the average order of magnitude of the quantity R(C) in (9). 
For a prime q and for integers m ̂  1 and s ^ 2 let 

M. (™-') = ж Е В Д card(C) 
C € c 

be the mean value of R(C) extended over the set C of all choices for a system 

C = {cj.ť) € Ѓ 7 : 1 < І $ *, 1 O ' ̂  m}. 
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T h e o r e m 3. Let q be a prime, let m ^ 1 and s ^ 2 be integers, and put N = qm. 
Then we have 

1 /logN V 1 ., 

/ x 1 / m V s r̂l-HI m—1\* 1 
(m,s) = T?[— > esc h m J - — 
v ' N V 9 , Q Q J N 

< - ^ ( ( - + - n = JlogN-f-J - — if q>2. 
N \\* 51ogg qlogqj qj N 

м, 

P r o o f . Inserting the definition of -R(C) into the expression for Mq(m,s) and 
interchanging the order of summation we get 

where the outer sum is over all nonzero h = (h{j) £ C(q)ms and the inner sum is 

over all C = (cfA £ C for which 

* m 

EE^) = 0^r (12) 
. = i y = i 

For a fixed nonzero h £ C(<l)m*, the inner sum in the last expression for Mq(m,s) 

represents the number of solutions (c; J £ C of the vector equation (12). Since at 

least one hij is a nonzero element of Fq, we can choose ms — 1 vectors ĉ  £ Fm 

arbitrarily, and the remaining vector is then uniquely determined by (12). Therefore 
the number of solutions of (12) is g(™~-)"\ Since card(C) = q"1*', it follows that 

Mq(m, S) = <-m\(m.-l)m £ W = jf £ P^' 
h?£0 h?£0 

If ^ = 2, then [15, Lemma 3] yields 

s , f ( Ь ,=(= + o-—(^ + .y 
h-.o " ' V 2 " ' ^ l o « 4 > U 

and the formula for Mq(m, s) follows. If q > 2, then from the proof of [15, Lemma 3] 
we obtain 

£'.(->-(= £ - ^ 1 + — = - ^ ) ' - i , 
h * 0 V H h£C*(q) * H ' 

and the result of [15, Lemma 3] shows that 

E'.(-><(§~*"+É»-:Tiy-: 
h^O 

This yields the desired results for g > 2. • 
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Corollary 1. If q is prime, every A,j is the identity map, and m ^ 1 and s ^ 2 
are fixed, then the construction of the point sets (3) yields on the average a point 
set with star discrepancy D*N = 0(N~1(logN)'), where N = qm. 

P r o o f . This follows from Theorems 2 and 3. D 

3. NETS OBTAINED FROM RATIONAL FUNCTIONS OVER FINITE FIELDS 

We now specialize the construction in Section 2 by choosing the elements c}/ G Fq 

as the coefficients in the Laurent series expansions of certain rational functions over 
Fq. A different application of this device was already used in [18] for the construction 
of low-discrepancy sequences. Let Fq((x~x)) be the field of formal Laurent series 

k=w 

in the variable x"1, where all tk G Fq and w is an arbitrary integer. Define the anc 
discrete exponential valuation v on Fq((x~x)) as follows: for L -j£ 0 put v(L) = —w if 
w is the least index with tw / 0, and for L = 0 put v(L) = —oo. The field Fq((x~x)) 
contains the field of rational functions over Fq as a subfield. 

Let / G Fq[x] with deg(/) = m ^ 1 and let y l f . . . , gs G Fq[x] with deg($rt) < m 
for 1 ^ i ^ s, where s ^ 2. Consider the expansions 

^ = f>iV*GF,((*-1)) for I*, '*- . 
1W £1 

Then define 

c$ = uM. for l ^ i ^ 5 , l ^ i ^ m , 0 ^ r ^ m - l . (13) 

With this special choice of the CjJ we use the construction at the beginning of Section 
2 and obtain the point set 

x n = ( * W . . . , * W ) G / ' for l^n^q". (14) 

We write g = (g\,..., gs) G Fq[x]9 for the s-tuple of polynomials gi, ..., gs. For an 
arbitrary h = (ft i , . . . , ft,) G Fq[x]s we define the "inner product" 

h& = YLhi9i' 
i = l 

We use the convention deg(0) = — 1. 
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Definition 3. If / and g are as above, then we define 

^(g, / ) = min5](deg( / i l ) - f l ) , 
i = i 

where the minimum is extended over all nonzero h = (Ai,.. . ,A«) € -FfW with 
deg(ft,) < m for 1 ^ i -̂  s and h • g = 0 mod/ . 

Note the similarity of this definition with that of the figure of merit in the theory 
of good lattice points (see [11, p. 986]). For this reason we may call #(g, / ) the figure 
of merit of g mod / . 

Lemma 2. IfC is the system of vectors 

c i ° = (cio> cii}' • • •' c i!m-i) € i^1 for l^i^s and l^j^m, 

where the cjj are given by (13) 7 then Q(C) = #(g , / ) . 

P r o o f . We first show that for hij € Fq, 1 ^ ii -̂  s, 1 -̂  j• ^ m, we have 

4 m 

E E M 0 = ° 6 T (15) 
t = i i = i 

if and only if h • g = 0 mod / , where h = (hi,..., ft,) £ Fq[x]9 with 

m 

hi(z) = J2hijxi-leFq[x] for l ^ t O (16) 
i = i 

By comparing components, (15) is equivalent to 

$ m 

E E ^ w S i = 0 for 0 < r < m - l . (17) 
t= i i = i 

For 1 < i < s we have 

),-*+*-. 

m oo 

= £*<; E-$+i*-r-1-
i = l r = l - i 

Thus for r ^ 0 the coefficient of x~r~x in Kgi/f is EiLi^O'^r+i* Therefore the 
condition (17) is equivalent to the following: for 0 ^ r ^ m — 1 the coefficient of 
z ~ r _ 1 in YL\zz\ hi9i/f ls 0- This means that 

th-f = h + L, 
« = i •' 
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where f\ 6 Fq[x] and L £ Fq((x
 x)) with v(L) < — m. The last identity is equivalent 

to 
h g - / i / = L/. 

On the left-hand side we have a polynomial over Fq, whereas on the right-hand side 
we have v(Lf) < 0 since v(f) = deg(f) = m. This is only possible if Lf = 0, i.e., 
if h • g = 0 m o d / . Hence the claim that (15) is equivalent to h • g = 0 m o d / is 
established. 

Now let the nonzero s-tuple (c?i,..., ds) of integers with 0 .$ cf,-̂  m for 1 ̂  t"^ 5 

be such that the system < Cj : 1 -̂  .;' ^ c?t, 1 ̂  % -̂  s > is linearly dependent over Fq. 

Then there exist hij E -F ,̂ 1 ̂  i ^ d$, 1 ̂  i ^ s, not all 0 such that 

1=1i=l 

and by putting hij = 0 for d{\ < j' ^ m, 1 ^ i ^ s, we get an identity of the 
form (15). By what we have already shown, it follows that h • g = 0 mod/ , where 
h = ( / i i , . . . , hs) -̂  0 with the polynomials /it in (16). Hence from Definition 3 we 
obtain 

s s 

» = 1 » = 1 

thus g(g, f) ^ Q(C) by Definition 2. On the other hand, if for a nonzero h = 

(/ i i , . . . , / i , ) G I^fx]5 with deg(/it) < m for 1 ^ i ^ s we have h • g = 0 mod / , 

then with the elements hij G ^ U i O i 1 ^ i ^ m> determined by (16) we get 

(15). Thus the system i Cj : 1 ̂  j ^ deg(/it) + l , l . ^ i ^ s > is linearly dependent 

over Fqj and from this we deduce £>(g,/) ^ t?(C)- D 

R e m a r k 2. From Lemma 2 and [16, Proposition 6.9] we obtain that we always 
have 1 -̂  i?(g,/) ^ m + 1. Therefore the condition deg(/it) < m for 1 ̂  i ^ 5 in 
Definition 3 may be omitted. 

Theo rem 4. The point set (14) is a (t, m, s)-net in base q with t = m + 1 — D(g, / ) . 

P r o o f . This follows from Lemmas 1 and 2. O 

Theorem 4 and (1) yield the following upper bound for the star discrepancy DN 

of the point set (14) with N = qm: 

D*N ̂  B(s1q)ql-^^(\ogN)-1^0 (q-**>'\\ogNy-2) , (18) 

where B(s, q) is given by (2) and where the constant implied by the Landau symbol 
depends only on s and q. Lower bounds for DN are obtained from (5) and Theorem 
1, where in the latter we can use Q(C) = £>(g,/). These results for DN demonstrate 
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that in order to obtain a low-discrepancy point set from the construction of the point 
sets (14), we have to choose / and g in such a way that the figure of merit g(g, / ) 
is large. Large values of g(g, / ) have already been determined in certain special 
cases since this figure of merit occurs also in the context of pseudorandom number 
generation. We refer to [1,9] for such calculations, which deal e.g. with g of the form 
g = (1, xm, x2m,..., x^-1)™) with each entry reduced mod / . 

Another upper bound for the star discrepancy of the point sets (14) can be obtained 
in the case where q is prime and every A,j is the identity map, namely by specializing 
Theorem 2. If h = (hi,..., hs) £ Fq[x]s with deg(At) < m for 1 ^ i ^ s, then we can 
use (16) and the fact that C(q) forms a complete residue system mod q to identify 
h with an ms-tuple h* = (h>j) £ C(q)ms, and we put Pq(h) = Pq(h*). In analogy 
with (9) we then define 

R(gJ) = Y^Pq(h), (19) 
h 

where the sum is over all nonzero h = (h\,..., hs) £ Fg[-t]* with deg(h{) < m for 
1 ^ i' -̂  s and h • g = 0 mod — / . 

Theorem 5. If q is prime and every At;- is the identity map, then the star dis­
crepancy D*N with N — qm of the point set (14) satisfies 

I^i-(i-^У + я(g,/). 

P r o o f . If C is as in Lemma 2, then we have shown in the proof of this lemma 
that (15) holds if and only if h • g = 0 mod /. Therefore R(C) = I2(g, /), and so the 
desired result follows from Theorem 2. • 

In the main result of this section we will show that in the special case considered 
in Theorem 5, the construction of the point sets (14) yields on the average a low-
discrepancy point set. For s ^ 2 and / £ Fq[x] with q prime and deg(/) = m ^ 1 
put 

Gs(f) = {g = ( 0 1 , . . . , * ) e Fq[x]8: gcd(9i,f) = 1 and 

deg(gi) < m for 1 ^ i ^ s}. 

Let 

be the mean value of R(g, f) extended over the set Gs(f). Note that card(G*(/)) = 
$q(f)

s, where $q is the analog of Euler's totient function for the ring Fq[x]. By a 
formula in 
[8, Lemma 3.69] we have 

* , u ) = «m IK 1 -«""' )> (2°) 
*= i 
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where n\, . . . , nr are the degrees of the distinct monic irreducible polynomials over 
Fq dividing / . 

The proof of the following theorem depends on the theory of arithmetic functions 
on Fq[x] as developed by Carlitz [3] and on the theory of characters of ^ ( ( x - 1 ) ) as 
developed by Carlitz [4] and Hayes [6]. In the sequel, an arithmetic function is a real-
valued function on the multiplicative semigroup Sq of monic polynomials over Fq. An 
arithmetic function H is called multiplicative (resp. additive) if H(gh) = H(g)H(h) 
(resp. H(gh) = H(g)-\-H(h)) for all g,heSq with gcd(g, h) = 1. We write £ for 

v mod/ 
a sum over all v £ Fq[x] with deg(v) < deg(/), and we write _£ * if the additional 

v mod/ 
condition gcd(v, / ) = 1 is imposed. Furthermore, _>̂  denotes a sum over all d £ Sq 

dividing / . 
Let x be a fixed nontrivial additive character of Fq. For L £ Fq((x~~1)) put 

Xq(L) = x(*i)> where t\ is the coefficient of x"1 in the expression for L. Then Xq is 
an additive character of Fq((x"x)) which is trivial on K^[-p]. Consequently, Xq(-/f) 
is a nontrivial additive character of the residue class ring Fq[x]/(f). For g £ Fq[x] 
the orthogonality relations for characters yield 

V e g ( / ) i fý-EOmod/ , 

0 if<7 5_Omod/. vmoáf J K 

See e.g. Car [2, p. 8] for this formula. 

Theorem 6. Let q be a prime, let s ^ 2 be an integer, let f £ Fq[x] with 
deg(/) = m ^ 1, and put N = qm. Then we have 

if q = 2, ".<'><ғGšИЧ 
"•« < Ш+ЩÎ - ғ-н) * * + Ï ) ' + ^ í 1 + җ m ) 

5 - 1 

if q>2. 

P r o o f . We can assume w.l.o.g. that / is monic. Inserting the definition 
of R(g,f) in (19) into the expression for Ms(f) and interchanging the order of 
summation we get 

where the sum is over all nonzero h = (hi,..., hs) £ Fq[x]8 with deg(/ij) < m for 
l ^ i . ^ 5 and where A(h) is the number of g £ Gs (/) with h • g = 0 mod / . Since 
A(0) = $q(f)

8 and Pq(0) = 1, we can write 

M ' ( / ) = i77)TE^h)^(h) " *> (22) 
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where the sum is over all h = ( f t i , . . . , hs) G I^[a"]* with deg(ftt) < m for 1 ^ t-^ s. 
For any such h we have 

Ah) = £ , - £ *. (?--•«) 
g € G . ( / ) vmodf W ' 

by (21). By the definition of Pq(h) we can write 

i = i 

where we use (16) to identify hi with (AJI, . . . , At'm) G C(g)m and we define Qq(hi) 
to be the quantity Qq(hn>..., A tm) in Section 2. Then we get 

y>(h)pt(h) = l £ £ £ -^(yh.gW) 
h t /mod / h g € G . ( / ) KJ ' 

«£ E E - £ £•••• E-*.(>».)-
i /mod/Ai mod/ h9 mod / yi mod / g,modf x / 

x-*f ( ^ M . ) Qt(/«i)... Q,(M 

= ^ £ n(«,/r 
v moáf 

with 

Now 

thus 

Y.(»,/)= £ E*^ (?*Í) вt(*)-
Л mod / ø mod / ^ ' 

П(o,/) = *,(/) £ <?,(*), 
Л mod/ 

£ A ( h ) p t ( h ) = ! * , ( / ) • ( £ g t(fc))' + l £ Y9(vjy. (23) 
h ^ h mod / ' v mod / 

Let /ig be the M"obius function on Sq (see [3] and [8, p. 145]) and note that jiq is 
multiplicative. Let us abbreviate gcd(p, / ) by (g, f) in this proof. Then for fixed 
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v e Fq[x] with 0 ̂  deg(v) < m we get 

Y,(v,f)= £ Qt(h) £ xJ^hg) £ pf(d) 
/ . m o d / y m o d / ^ <*!(.?,/) 

= £ o,wE^ £ *.(>) 
J» mod / d\f g mod / \ I / 

« * l * 

= £ Qf(*)]~>f(<0 £ xJlhad) 
hmodf d\f a mod f/d ^J ' 

= £ «.(*)£.-,(£) £ *,(», 
hmodf d\f amodd 

where in the last step we changed d into //of. Applying (21) to the innermost sum 
we obtain 

/ r X Heg(d) n(«,л= £ G.W £>,(£) 
Лmod/ d|/ ^ ' 

d\vh 

= £!<<(ÍЬdeg(d) £ «.(*)• 
л * \ / f. »-«л^ / d\f ^ ' h mod/ 

d|v/i 

Now d\vh if and only if d/(d, v) divides ft, thus 

W) = 2>(0/^.(<3^./), (M) 
where for an a G S ? dividing / we put 

-5,(o,/)= £ Q,(h). 

If a = / , then 

Л mod/ 
a|Л 

£,(«.,/) = Q,(0) = 1. 

Now let a ̂  / , then 
£,(a . /) = l + £ Q,(a6). 

6 mod/ ja 

For </ = 2we have 

deg( / / a ) - l 

£ Qç(a6)= V̂  2 - ^ - ^ 2 - ^ Ь 1 53 2~*2* 
6 mod/ ja Ь mod/ ja Jb=0 

ò^O 6.^0 

= deg(02-deб(")-i. 
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For q > 2 and for c € Fq[x] with 0 ^ deg(c) < m we have 

Qf (c) = ?"de«(c>-1 (esc ^|sgn(c)| + <r(deg(c) + 1, m)) , 

where sgn(c) is the leading coefficient of c, viewed as an element of C*(q). Since a is 
monic, we get 

£ Qq(ab) = £ a - * * - * ) - 1 (csc-|sgn(6)| + (T(deg(6),deg ( £ ) - 1)) 
bmodf/a bmodf/a \ $ \ a / / 

d e g ( / / a ) - l 
- deg(a) 

with 

, м E -~v £ (csc^-l+a(jfe(deg(í)-i)) 
*=0 ÍЄC-( Í ) ^ 9 ^°' ' 

= degU)q-^)-^ £ csc-^+(g-l)(deg(0-l)g-* 
^aj ІЄCҶÎ) q ^ ^ a ' ' 

= T„ deg ( 0 ?-d e8(°) - Є î g-d e8(°) 

Tf = - ( ? - l + J ^ c s c ^ i ) for q>2, 
*€C*(«) 

£g = for q>2. 

The case q = 2 is also covered by the formula above if we put Ti = ^ and £2 = 0. 
To include the case a = / , we put 

, i n /*« i f a = /> 
^ ( a ' / ) = \ 0 i f a / / . 

Then for all a £ Sq dividing / we have 

E,(a, f) = 1 + Tf deg ( 0 g " de«("> - (e, - £,(«,, /))</"dee(°> 

= 1 + (raT, - ef + e,(a, / ))«" de8(°) - Tf deg(a)g" de«(°>. 

Applying this formula with a = d/(d, v) in (24), we obtain 

n<»,/> = I > , (3) (i*8"" + (™r. - £ . + ' . (s&j-')) 'd"<(*",) 

-Wi*-)**-"*-8)-
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thus 

Yt(v, f) = * f ( / ) + (mTq - eq)H^(v, f) - TqH^(v, f) + H<?\v, f) (25) 

with 

du v J 

"r<«./> = E/.(0^<£))^B. 

In the rest of the proof p will always stand for a monic irreducible polynomial over 
Fq. For a nonzero t; € I^[x] let ep(v) be the largest nonnegative integer such that 
p c » divides v. Now we consider H^\v,f) for a fixed v -̂  0. Since ^tfto")) is a 
multiplicative function of d, it follows that H£ \v, / ) is a multiplicative function of 
/ . For any integer k ^ 1 we have 

H^l)(v,pk) = ^eg((p f c ,V)) _ qdeg((pk'\v)) 

Hence if ep(v) < k, then Hq (v,pk) = 0. If ep(v) ^ fc, then 

H^(viP
k) = (ldeg(pfc) - qde^k~l) = $q(p

k) 

by (20). By multiplicativity we obtain 

n\ . ( $i(f) if v = 0 mod f, 

Next we consider HJ (v,f) for a fixed v / 0. Since deg(d/(d, v)) is an additive and 
d̂eg((<_>)) a multiplicative function of d, it follows by induction on the number of 

distinct polynomials p dividing / that 

H?\v,f) = ]TH<2) (v,p<>«)) HW (v,f/p<>U)) . (27) 
p\f 

For any integer k ^ 1 we have 

Hence if ep(v) ^ ib, then Hq (v,pk) = 0. If ep(v) < k, then 

//(2)(V)p*) = deg(p)g
e'(«')de8W. 
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By (26) and (27) we get 

H?\v,f) = ^d eg(p)« e ' (" ) d e g ( p )^(//P e ' ( / )) . 
P 

where the sum is over all p satisfying the following two conditions: (i) ep(v) < ep(f)\ 
(ii) //pc'(I) divides v. Note that (ii) means ePl(f) ^ ePl(v) for all monic irreducible 
polynomials p\ over Fq with p\ -̂  p. Thus (i) and (ii) hold simultaneously if and 
only if there exists a unique p with ep(v) < ep(f). If this condition is satisfied, then 
with this p we have 

H™(v,f) = deg(p)qe>W*M*q (f/pe>^) , 

whereas Hq (v,f) = 0 otherwise. 
Now we consider Hq \v,f). Note that eq(d/(d, v ) , / ) -j£ 0 only if q > 2 and 

d/(d} v) = / . But since d divides / , we have d/(d, v) = / if and only if d = / and 
(f,v) = 1. Thus if q > 2 and (/, v) = 1, then .ffj3)(t;,/) = (q - l)/q. In all other 

(3) 

cases we have Hq (v, / ) = 0. Now we go back to (25) and use the formulas for 
Hq (v, / ) , k = 1, 2, established above. For v G Fq[x] with 0 -̂  deg(v) < m we have 
Ht1)^,/) = 0 by (26), therefore 

Yq(v, f) = *q(f) - T, deg(p)(? c^v)d e^)^ (//Pc><')) + H(3)(t,, / ) 

if there exists a unique p with ep(v) < ep(/) , and otherwise 

Yq(v,f) = <f>q(f) + H<i
3\v,f). 

Thus we always have 
Y , ( » , / K *q(f) + Hf\v,f). (28) 

Next we will prove that 
Yq(vj)>0. (29) 

The only case where (29) is not immediate is when there exists a unique p with 
ep(v) < ep(f). In this case it will suffice to show that 

Tqdeg(p)qe>^d^*q (f/pe>W) ^ $ , ( / ) , 

or equivalently that 

Tq deg(p)qe>W*M < *q(f
q/pfiu)) = 9 e ' ( / ) d e g ( P ) (* " ^ ^ > 
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where the last identity follows from (20). Since ep(v) < ep( /) , it will be enough to 
show that 

T„ deg(p) <. gde*W ( l - q~ d e ^ ) ) = qd'<&>) - 1. (30) 

If q = 2, then Tq = \, and so (30) is trivial. If q > 2, then 

Tf = - U - 1 + V csc-Li < - l og ,+ - - -
« V ,€£<.) « ' * 5 ? 

by an inequality in [10, p. 574]. Furthermore, by induction on k we obtain 

/ 2 7 1 \ 
g* > ( - l o g < j + - - - ) * + 1 for * ^ 1 , 

hence (30) follows for q > 2. Thus (29) is established. 

Now let q = 2 and use (23), (28), and (29) as well as H^\v, f) = 0 to obtain 

£.A(h)Pf(h) < ! » , ( / ) • ( £ Q,(h))' + jj £ • ,( /) ' 
h ^ h mod f ' v mod / 

V5*0 

= >.( / ) ' (y + l)' + *.(/)' (l-jf), 
where in the last step we applied [15, Lemma 3]. Together with (22) this yields 

which is the result of the theorem for q = 2. 
For q > 2 we use (23), (28), and (29) as well as the formula for Hf

3)(v. / ) to obtain 

£>(h)P f(hK 

< >.(/)'( £ «.(*))'+ ̂  £*(*.(/) + *f--Y 
V / »mod / 7 v m o d / v * ' 

+ JV- £ w 
v mod/ 

v*Ot(ftv)ŕl 

4 Л mod/ ' 

+ 1Ф,(/ ) (Ф,(Я + --=--•)' + ̂  - i - *,(/))*,(/)' 

= ^*«(1)*( £ «.(*))'+ ^*.(л ((*.(/) + ^ У -*.(/r) 
Л mod / 

+ (--*) *.(/)*• 
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Together with (22) this yields 

*y)<M.£/
w*))'+>'tf)((,+^)'-,)-y 

1 / 2 , 7 m - l V («-l)«/", « - l Y ~ ' 

where in the last step we applied [15, Lemma 3] and the mean-value theorem. This 
is the result of the theorem for q > 2. • 

Coroll-ary 2.1fq is prime, every Xij is the identity map, and 8^2 and f £ Fq[x] 
with deg(/) = m ̂  1 are .fixed, then the construction of the point sets (14) yields on 
the average a point set with star discrepancy D*N = 0(N ~x (log N)9), where N = qm. 

P r o o f . This follows from Theorems 5 and 6. • 

R e m a r k 3. In the special case where / is irreducible over Fq, q prime, a result of 
the same type as Theorem 6 can be shown in a much easier fashion. Put m = deg(/) 
and let 

G',(f) = {g = (9i, •. • ,9s) e Fq[x]$: deg(*) < m for 1 ̂  t ^ s) , 

M-'<« = -aja -7- £ «<«•"• 
v • ^ ; ; g € G , , ( / ) 

Then card(G^(/)) = qmi, and in the same way as in the beginning of the proof of 
Theorem 6 we obtain 

M',(f)=q-m'Y^A'(h)Pq(h), 
h#0 

where A'(h) is the number of g £ G's(f) with h • g = 0 mod / . For every h in 
the range of summation we have .rt'(h) = qm('~l\ since s — 1 entries of g can be 
prescribed arbitrarily and the remaining entry is uniquely determined because of the 
irreducibility of / . Thus with N = qm we obtain 

M'.(f) = ±'£P1(h), 
h#o 

and so [15, Lemma 3] yields 

-™-MT8H'-:* if «=2' 
M - '<«<M0+54-^ ) l o g w +D'-^ i f «> 2 -

This special case, with q = 2, was also considered by Tezuka [22], but compare with 
Remark 5 below. 
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R e m a r k 4. If q is prime and / is irreducible over Fq, then the average of 
R(g,f) over a much smaller set than Gs(f) already yields a bound comparable to 
that in Remark 3. Put again m = deg(/) and let Ks(f) be the set of all g of the 
form g = (l,(/, (72,.. .,£7*~1) with each entry reduced mod / , where g runs through 
all polynomials over Fq of degree < m. Let 

v 'w"g€-r.(/) 

Since ca.rd(K,(f)) = qm, we obtain 

^(/) = .-mE^(h)pv(h)> 
h^O 

where -4i(h) is the number of g £ Ks(f) with h • g = 0 mod / . For every h in 
the range of summation, h • g = 0 m o d / can be viewed as a nonzero polynomial 
equation for g of degree ^ s — 1 in the field Fq[x]/(f), and so -4i(h) -£$ s — 1. Thus 
with N = qm we obtain 

L,(f) < --=-- E^(h) = (* - W.(f), 
I19-.O 

and so the results on Ms(f) in Remark 3 yield 

_.<-<_=_((_+ ' _ > )_,J.+iy__Si „ ,>_ 
w / N VW 51°g? ? log?/ qj N 

In the case 5 = 2 there is a connection between the figure of merit # (g , / ) and 
continued fractions for rational functions over Fq, where q is again an arbitrary prime 
power. Let g = ((/T,_72) € Fq[x]2 with deg(_/f) < m = deg(/) and gcd(_/,-,/) = 1 for 
i = 1,2. Then the condition h • g = h\gi + h2</2 = 0 m o d / in Definition 3 is 
equivalent to hi + h2_/i_12 = 0 mod / , where g{ £ Fq[x] with yiflfj = 1 mod / . Thus 
it suffices to consider the figure of merit for pairs g of the form g = (1,_/) with 
9 € -F.M.degfa) < m, and gcd(</, / ) = 1. Let 

-J= [^,4..,^] 

be the continued fraction expansion of the rational function g/f, with partial quo­
tients Ar £ Fq[x] satisfying deg(_4r) ^ 1 for 1 ^ r ^ u. Put 

K (9
7) = max deg(_4r). 
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Then we have 

<K*./) = "» + - - * ( j ) > (31) 

which is shown in exactly the same way as the special case considered in [13, Satz 
12]. Thus the desirable g = ( l ,y) are those with small K(g/f). The quantity 
K(g/f) was studied in detail in [14]. It is clear that for any m ^ l we can obtain 
a rational function g/f with K(g/f) = 1 and deg(/) = m, by choosing partial 
quotients A\, ..., Am with deg(Ar) = 1 for 1 ^ r ^ m. Then from (31) we get 
£(g. / ) = m -F 1 for g = (1, g), which is the maximum possible value of the figure of 
merit by Remark 2. With this choice of g and / we obtain a two-dimensional point 
set with D*N = 0(N"MogN) according to (18), where N = qm. Note that by the 
general lower bound of Schmidt [20] this is the smallest order of magnitude which 
can be achieved by the star discrepancy of a two-dimensional point set. 

For the efficient implementation of the point sets (14) we can use similar principles 
as in [18, Sect. 6]. For fixed i the sequence t^ , u^, . . . is a linear recurring sequence 
with characteristic polynomial / . Therefore the elements CjJ in (13) can be calculated 
by linear recurrence relations. The calculation of the CjJ is even easier if we choose 
f(x) = xm. To simplify the construction, the bijections t/>r in Section 2 may all 
be chosen to be the same map, and the same can be done for the bijections A,j in 
Section 2. If q is prime, then all these bijections can be taken to be the identity map. 

R e m a r k 5. If / i s irreducible over Fq) then the CjJ in (13) can also be repre­
sented as follows. As noted above, the sequence u\ , tij , . . . is a linear recurring 
sequence with characteristic polynomial / . Thus it follows from [8, Theorem 8.24] 
that there exist elements #,-, 1 ^ i ^ s, in the extension field FN of order N = qm 

such that 
tijjp = Tr(0i<rk-1) for 1 ^ t ^ 5 and k ^ 1, 

where Tr is the trace function from FN to Fq and where a is a root of / in F^. 
Hence (13) attains the form 

c£? = Tr(0i<rr+>-1) for 1 ^ i ^ s, 1 ^ j <£ m, 0 ^ r ^ m - 1. 

Consequently, if q is prime, / is irreducible over Fq, and the bijections tpr and A,j 
are identity maps, then the construction of the point sets (14) is a special case of 
the construction in [12, p. 161], where in the latter construction we take /3,j = 
$i<ri~l G Fjsr for 1 ^ i ^ s, 1 ^ j ^ m. In particular, the recent construction of 
low-discrepancy point sets by Tezuka [22], which works with q = 2, is a special case 
of the construction in [12, p. 161]. 
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