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COMPLETENESS AND MODULAR CROSS-SYMMETRY 

IN NORMED LINEAR SPACES 

JAN HAMHALTER, Praha 

(Received April 29, 1986) 

1 . PRELIMINARIES 

Let us first recall the basic notions and facts (see [3, 4]). In what follows let the 
symbol Lc(X) mean the lattice of all closed subspaces of a normed linear space 
X. The partial ordering in Lc(X) is given by set inclusion. We shall be mainly 
interested in the modular properties of Lc(X). 

1.1. Definition . Two elements a, 6 of a lattice are said to form a modular pair 
(in symbol (a, 6) Mod) when (x V a) A b = x V (a A b) holds for all x ^ 6, and they are 
said to form a dual-modular pair (in symbol (a, 6) Mod* ) when (xAa)V6 = xA(aVb) 
holds for all x ^ 6. 

In the papers [1, 2] G. W . Mackey and S. S. Holland, Jr . have obtained the 
following description of modular (dual modular, respectively) pairs in Lc(X). 

1.2. Theorem. Let us suppose that A, B £ Lc(X). Then 
(i) (A, B) Mod* if and only if A + B £ LC(X). 
(ii) Let AC\B = {0}. If we define projections P\} P2 such that P\(a -f 6) = a and 

P2(a -f b) = b (a £ A} b £ B)} then we have (A, B) Mod if and only if P\} P2 are 
bounded as maps on the normed linear space A + B. 

Outline of the p r o o f (for details see [1]). The proof of the statement (i) is not 
difficult and is based only upon easy algebraic computations (see [1]). 

The proof of the statement (ii) is more complicated, in contrast to the simple 
characterization of dual-modularity. The idea of this proof is to transfer the problem 
to the conjugate space, which is a Banach space so that the closed graph theorem 
holds, and in which the original modular pair is transferred to a dual modular pair so 
that we can use (i). This transformation is a dual-isomorphic mapping of the lattice 
Lc(X) to the lattice C(X*) of all weakly* closed linear subspaces of X* and has the 
form A —• A°} where A0 is the anihilator of A. By (i) (̂ 4, B) Mod* in Lc(X) if and 
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only if (A0, B°) Mod* in £ ( X * ) , which is equivalent to A0 + B° = X*. Wi thout loss 

of generality we can suppose tha t X = A + B. The adjoints Pi and P2 are easily 

computed. The domains of PJ*, P2* are A° + H°, and P?(a' + b') = b', P2*(a' + b') = a' 
for every a' £ A0 and 6' £ H°. 

If ( A , H ) M o d in LcW, then A0 + H° = K*. Thus Px* and P2* are closed, 

everywhere defined linear operators on the Banach space X* and, by the closed 

graph theorem, they are bounded. Therefore Px** and P2* are also bounded, and 

with them Pi and P2. 

Conversely, if Pi and P2 are bounded then P* and P2 are bounded operators 

defined everywhere on X* and X* = dom(P1*) = dom(P2*) = A0 + B°. By (i) we 

have (A, B) Mod, which concludes the proof. • 

We shall be mainly concerned with spaces possessing an unconditional basis. 

1.3. De f in i t i on . A subset (en)n
<L1 of a normed linear space X is called an un­

conditional basis if the following conditions are satisfied: 

(i) s p ( e „ ) ~ , = X, 

(ii) there is a positive number c with the property: || ]P a .e , | | ^ || J2 Qf»ef-1| for 
i£F i£F' 

all F C F', where F, F' are finite subsets of N, and for any sequence ( a , ) ? ^ of real 

numbers . 

It is easy to see tha t if X has an unconditional basis (en)n
KL1 then (en)n°_1 is an 

unconditional basis of the completion X of X and, moreover, if x £ X, then we can 
oo 

write x = ^ a n e n with uniquely given coefficients an (n £ N). For every nonempty 
n = l _ 

subset F C N, let us denote by Pp the projection on X determined by the formula 

PF\ £ anen) = Yl anen . 
V n = l J n£F 

The correctness of this definition verifies easily. 

1.4. De f in i t i on (see [3]). An unconditional basis (e^n^Li °f a normed linear 

space is called a subsymmetric basis if for every subsequence (eni)i^i there is an 

isomorphism T between X and sp(en,)?2.i s u c n ^ n a^ -^(e») — enx for a l - i E N . 

2 . MODULARITY AND DUAL MODULARITY IN Lc(X) FOR X 

WITH AN UNCONDITIONAL BASIS 

2.L D e f i n i t i o n . A lattice L is called cross-symmetric if (a, b) Mod implies 

(6, a) Mod* for every a, 6 £ L (see [4]). 

Let X be a normed linear space. A lattice Lc(X) is called stable cross-symmetric 

if the lattice Lc(sp(K U {a})) is cross-symmetric for every a from the completion X 

of X . 



2 .2 . P r o p o s i t i o n . Let X be a normed linear space and let (en)^! be ^s un­
conditional basis. If Fi, F2 C N and F\ D F2 = 0, then the spaces A\ = sp(en)n

<>£F1> 
A2 = s p ( e n ) n ° € F form a modular pair in Lc(X). 

The p r o o f follows from the continuity of PF2 , PF2
 a r-d Theorem 1.2. Ppl and PF2 

are bounded as projections on X and they also have to be bounded when understood 

as projections on Ai + A2. 

Using this observation we can prove the following theorem . 

2 . 3 . T h e o r e m . Let us suppose that X is a normed linear space and let (en)n
<L1 

be its unconditional basis. If there is an x G X such that PF(X) £ X for a set F C N, 
then Lc(X) is not cross-symmetric. 

P r o o f . Let us consider all closure operations as if they were in X. Since 

(en)n°_1 is an unconditional basis of K, we have x = PF(X) + Pn\F(x) for every 

x e X. Let us suppose tha t PF(X) £ X and let Lc(X) be cross-symmetric. We have 

PF(X) = lim xn and PN\F(X) = lim y n , where (xn)£__i C s p ( e n ) n G F n ^ a n d 

n—*oo n—>oo 

(yn)n°_-i C s p ( e n ) n € A r \ F n ^ - Fui Ai =sp(en)neFf)x and A2 =sp(en)n€N\Ff)X. 
By Proposition 2.1, we see tha t (^4i,yl2)Mod in Lc(X). If Lc(X) were cross-
symmetric, then (Ai,A2)Mod* . Obviously, A\ + A2 G Lc(X). We therefore have 
x = PF(X) + PN-F(X) e~M+~M()X = Ai+A2. Further, PF(X) + PN\F(X) = a + 6, 
where a G A\, b G B2. This implies that a - PF(X) = PN\F(X) - b G Ai C\ A2 = {0} 
which is a contradiction. • 

The last theorem yields the following two corollaries. By Theorem 2.3, we can 

prove with technical innovations the result of S. S. Holland ([1, Theorem 1]). 

2 .4 . C o r o l l a r y (Holland). Let X be an inner product space and let Lc(X) be 
cross-symmetric. Then X is a Hilbert space. 

P r o o f . Let us suppose tha t X \ X ^ 0. Take an element a G X\X. Since X is 

dense in X, there is x G X such tha t (a, x) ^ 0. We put 6 = a — ((a, x)" | | a | | 2 )x . It 

is obvious tha t a — beX and (a, 6) = 0 . Using the s tandard Hilbert space technique 

we can now find two sequences (an)n
<Ll C X and (bn)n

<)
=l C X with lim an = a, 

n—>oo 
lim bn = b and a,- _L 6, for all i , j G N. The Gramm-Schmidt process allows us to 

n—>oo 

construct an or thonormal sequence (en)n
<L1 C X such tha t sp(e2 n)n

<L1 = sp(an)n*i : 1 

and sp(e 2n-i) n
<Li = sP(^-)n_-i ' The set (e n ) n ° = 1 is an unconditional basis for the 

space s p ( e n ) ~ = 1 n ^ - P y t y = a — b and set F = {2n \ n G N}. It follows tha t 
IV(y) <£ X, which is a contradiction . • 

2.5 . Corol lary. Let X be a normed space and let (e^n^i be its unconditional 

basis. Then for every a G X \ sp(e n) n^= 1 the lattice Lc(sp((en)n
<L1 U {a})) is not 

cross-symmetric. 



P r o o f . Obviously, the sequence (en)n
<L1 is an unconditional basis of the space 

oo 

A = sp ( (e n ) n ° = 1 U {a}). We can write a = ]T anen and choose such infinite disjoint 
n = l 

sets Fi, F2 C N tha t an 7- 0 for all n G Fi U F2. It is easy to see tha t PFl(a) £ X, 
and we can apply Theorem 2.3. • 

As a by-product, observe tha t the foregoing corollary makes it possible to con­

struct various incomplete spaces whose lattices of all closed subspaces are not cross-

symmetric and which are not, generally, inner product spaces. 

E x a m p l e . Let X be either the space Co or /p (1 ^ p < 00). Let (en)n
<=\ be 

the s tandard unconditional basis e\ = ( 1 , 0 , . . . , 0 , . . . ) ; e2 = ( 0 , 1 , 0 , . . . , 0 , . . . ) ; . . . . 

Then Lc (sp((en)n
<L1 U {a})) is not cross-symmetric for any a G X with infinitely 

many nonzero coordinates. 

A similar technique allows us to derive the following result. 

2.6 . L e m m a . Let X be a normed linear space and let Lc(X) be stable cross-

symmetric. If subspaces A\,A^ G Lc(X) with completions A\ D A^ = {0} form a 

modular pair in Lc(X), then at least one of A{, (i = 1, 2) is complete. 

P r o o f . Let us assume the opposite case and try to reach a contradiction. 

Let both A\ and A2 be incomplete. Then there are elements a i , a 2 G X with 

o>i £ A\ — A\, a2 G A2 — ^42. Let a = a\ + a2 . Consider the space sp (X U {a}). 

Observe first tha t the spaces A\, A2 are closed in sp(X U {a}). Indeed, suppose e.g. 

t ha t xn —• x for (xn)n
<Ll C A\ and x Gjsp£XU{a}). We can assume tha t x = Aa + t/, 

where A G R, y G X. The spaces A\, A2 form a modular pair in (en)n
KL1. The 

projections P\, F2 defined on A\ + A2 and corresponding to A\,A2 are bounded 

and therefore F2(x) = AP2(a) = Aai + F2(t/) = 0. By the assumption Lc(X) is 

cross-symmetric and we see (by computations as in the proof of Theorem 2.3) tha t 

F2(u) G X. Thus Aai € X and obviously A = 0. 

This means tha t A\, A2 form a modular pair in Lc(sp(X U {a})), which is a 
cross-symmetric space and therefore a G A\ + A2 C\ sp(X U {a}) = A\ + ^42. This 
contradiction concludes the proof. • 

If we apply this lemma in spaces with unconditional basis, we immediately obtain 

the following result. 

2.7. Corol lary. Let X be a normed linear space and let (en)n
<

=1 be its uncon­

ditional basis. Let us take sets Fi, F2 C N, Fi 0 F2 = 0, and put A\ = s p ( e n ) n 6 F ! , 

A2 = sp(en)neF2. IfLc(X) is stable cross-symmetric, then at least one of Ai (i = 1, 

2) is complete. 

This corollary affirms tha t if we require the condition of stable cross-symmetry, 

then we can express X in the form of a direct sum of two spaces with one of the 

summands complete. 



2 . 8 . T h e o r e m . Let X be a normed linear space. If Lc(X) is stable cross sym­

metric and if the product X x X is isomorphic to X, then X is complete. 

The assertion of this theorem follows easily from Lemma 2.6. From Corollary 2.5, 

we have the following criterion of completeness. 

2 .9 . T h e o r e m . Let X be a normed linear space with a subsymmetric basis. If 

Lc(X) is stable cross-symmetric, then X is complete. 

The above results show tha t some extensions of Mackey's conjecture hold. The 
next step in pursuing Mackey's problem seems to be a thorough analysis of the 
relation between the stable cross-symmetry and the equivalence of modulari ty and 
dual modularity. 
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