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TWO SIDED NORM ESTIMATE OF THE
BERGMAN PROJECTION ON L? SPACES

MILUTIN R. DOSTANIC, Beograd

(Received May 4, 2006)

Abstract. We give some explicit values of the constants C'; and C3 in the inequality
C1/sin(n/p) < |P|, < C2/sin(n/p) where |P|, denotes the norm of the Bergman projection
on the LP space.

1. INTRODUCTION

Let D denote the open unit disc in C and let dA (z) be the Lebesgue measure
on 0. For 0 < p < o0, let LP (D) denote the space of complex-valued measurable

] =( |fpdA>p<oo-
e

We denote by P the integral operator on L? (D) defined by

functions f on D such that

Pf(z)= %D/%i)gf dA(§) (the Bergman projection).

We denote by |P|, the norm of P on L (D). It is well known (see [2], for example)
that P is a bounded operator on L” (D) (1 < p < 00). In [3] the interesting fact is
proved that the norm of the Bergman projection on L? (B) (B is the unit ball in C*)
is comparable to 1/sinx/p for 1 < p < oc.
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In this note we give new concrete values of the constants C; and C5 in the

inequality
C 1 ‘ ‘ #
lsinrc/p\ P 2sinrc/p'
2. REsuLT
Let
P 2)re) frirg)
p/” \p
Br=a —rezy | Tava

(T is the Euler gamma function).

Theorem 1. If2 < p < 400, then

T
K,<|P| < ——
p<| ‘p\sinn/]f
and if 1 < p < 2, we have
T
K _—
FoT S 1Pl < sin/p

Proof. Letq: 1/p+1/g=1and h(¢) = (1 — |¢|*)"1/P9. Then, after simple
calculations, we get

R ST e

(B (+,-) is the Euler beta function). Since

1
B(l——,n+1> -
P

and

we obtain from (1)

) / O

=r(1- ) ()i

n=0
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Since the function z — InT" (z) is convex, we have

2 (n+1)
T(n+2-L)T(n+1)

and from (2) we conclude that

/1 q T Qe T )
@ nﬂj/‘lzagh@ AAQ) € (1= ) = (e,

sin/p sin/p

Similarly,

1 1 p T D
« M

From (3) and (4), by Schur’s theorem ([2], p.42) we obtain

T
P _—.
Pl < sin/p

In order to estimate |P)| » from below, it is enough to suppose that p > 2; then the
case 1 < p < 2 follows by duality. Let 0 < A < 1, @ > —1 and

V(2) = (1= |2]2)2/P (1 = \z)~(@F2/P zeD.
fa(z) =1 -]z
Then we can easily conclude that

n+1+ )
DI (n+a+2)

(5) Al = Z A

Since )
“n+14+35 1 1
( 5 _ +o( )
F'n+1)T'(n+a+2) n+1l (n+1)?

we obtain from (5)

(1 + ) (_ln(l - \?)

(©) 5l = ey (e ) r el

where ¢ is a bounded function on [0, 1]. By direct calculation, we get

T'(1+2) > I'(n+ 22
(7) Rﬁ@)—7%259220”%”+Ufé:%f§%
p n=0 p

:F“+%ﬁ@)§}mw«4w(f)Fm*”rm+%¥)

F(%) n=0 F(n+%)F(n+2+%)'
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Since

P(n+2)0(n+*2) of L
Pn+2)F(n+2+2) (n+1)
and ’(72/”)‘ < constn~(1=2/P) | from (7) it follows (if p > 2) that

L+ 3)rG) (1= X2)"2P + ga(\, 2)

(8) Pfx(z) = W

where |g2 (A, z)] < M < 400, z € D, A € [0,1]. Having in mind that

0= F = () ()

from (8) we obtain

1 L1 2 T p p
(9) Py > H( ») )<”)(p)” (=11 = 2)"" ~ |,
’ OB (4 ey
- p
e T(1+a) , In(l-A%) e
(r%1+%)(* \2 )*gﬂm)

From that, when A\ — 1—, we get

r1+2)r2) frz(1+9)

N%% rl+a)’

[Plp >

Since the previous inequality holds for every a > —1, we have

|Plp > K, (p>2).

Remark 1. It is clear that (putting o = p — 2)

K, >r(2- () ¢ ()

I'(p-1)

i.e.

nz—3) 1 [ TI2(5)
— )sin% F'(p—-1)
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We observe that (/ I'2(4p)/T(p—1) > & for p > 2 Indeed, previous inequality is
equivalent to the inequality

r*(§) 1
Z
Vvrl(p) = 2°(p—1)yx
and, according to Legandre duplication formula, we obtain
rE
(3 T () P D VE

i.e.

From that, it follows

If p > 2, then p(p— 1) " - 1/(4y7) < Land I'(1+ 2)/T(2E) > 1 because I'(z) is
the increasing function if x > x; ~ 1.4616 ... So,

(10) Kp >

or, more roughly (because 73 — %)/sinn(% - %) > 1),

K 1 1
P72 sinn/p
So,
1 1
- — < |Plp £ ——, 1<p<x.
2 sinn/p Pl sin/p p=ee

Remark 2. In a similar way, we can give two sided norm estimate for the Bergman
projection on the weighted space LP (B, dv,) where B is the open unit ball in C*
and dv, = (a+1)(1 — |2|?)” dv(2) where dv is the normalized volume measure on
B.

Remark 3. Let Q be bounded, simply connected domain in C with C1*¢ (¢ > 0)
boundary. By F we denote a conformal mapping of Q onto . Let ¢ = F~!. It is
well known that ¢’ € C (D) and ¢’ (2) # 0 on D. The Bergman projection on L? (£2)
is defined by

Pof ()= [ i F(2) F'(_)) F(6) dA(E) (see [1], p.184)
Q
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If we define the operators V and M by

V. LP () — LP (D)

V() =fle(2) ¢ ()7,
M:V: LP (D) — L” (D)
Mf(z)=¢ () P f(2),

we have

Po=V M lPMV.

Since V' is an isometry, we obtain

|pﬂ|p |M 1|p ‘M|p ‘P‘p

and
|P|p |M‘p |M 1|p ‘Pﬂ‘p
ie.
e po, <P M) M
A, - M,
Let ,
ma ¢/ (2)
cC()) = ———
@ = e
D
then

C@) " 2<p<oo

(
M|, - IM71, <
Ml M {xxmf”l; 1<p<2

and we have

1 2/p—1 . s 1-2/

z 0)2/P-1q < |Pal, < Q P.o2g
(C @) 1 sinnfp < |Poly < 7m (C(@)' 775 2<p<oc,
1 1-2/p 1 T 2/p—1
— Q P~ (P, € ——— 19)) K| < 2.
3 (CO) o < Poly < R (C@PT 1<y

Here | Pqlp, |M|p, |M ™', denote the norms of the operators Po, M, M~' on the
space LP(Q2) and LP(D), respectively.

Question. From (10) it follows that for large p we have K, > c(sinn/p)~" where
the constant c is near +n. Having in mind that |P|> = 1 it is natural to ask whether

1

Pl,=—.
Ply sin/p
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