
Czechoslovak Mathematical Journal

Mihai Mihăilescu
On a class of nonlinear problems involving a p(x)-Laplace type operator

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 1, 155–172

Persistent URL: http://dml.cz/dmlcz/128252

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128252
http://dml.cz


Czechoslovak Mathematical Journal, 58 (133) (2008), 155–172
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Abstract. We study the boundary value problem −div((|∇u|p1(x)−2+|∇u|p2(x)−2)∇u) =
f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in RN . Our attention
is focused on two cases when f(x, u) = ±(−λ|u|m(x)−2u + |u|q(x)−2u), where m(x) =
max{p1(x), p2(x)} for any x ∈ Ω or m(x) < q(x) < N · m(x)/(N − m(x)) for any x ∈ Ω. In
the former case we show the existence of infinitely many weak solutions for any λ > 0. In the
latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our
approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces,
combined with a Z2-symmetric version for even functionals of the Mountain Pass Theorem
and some adequate variational methods.

Keywords: p(x)-Laplace operator, generalized Lebesgue-Sobolev space, critical point,
weak solution, electrorheological fluid

MSC 2000 : 35D05, 35J60, 35J70, 58E05, 68T40, 76A02

1. Introduction and preliminary results

In the recent years increasing attention has been paid to the study of differential

and partial differential equations involving variable exponent conditions. The interest

in studying such problems was stimulated by their applications in elastic mechanics,

fluid dynamics or calculus of variations. In particular, we mention that Ruzicka

developed in [26] a model of electrorheological fluid for which the essential part of

the dissipative energy is given by

∫

|Df |p(x) dx,

where Df represents the symmetric part of the gradient. The same type of energy

also appears in the papers of Zhikov [32], Marcellini [16] and Acerbi-Mingione [1].

155



For more information on modelling physical phenomena by equations involving p(x)-

growth conditions we refer to [1], [5], [13], [24], [26], [30]. The appearance of such

physical models was facilitated by the development of variable Lebesgue and Sobolev

spaces, Lp(x) and W 1,p(x), where p(x) is a real-valued function. Variable exponent

Lebesgue spaces appeared for the first time in literature as early as 1931 in an article

by W.Orlicz [23]. The spaces Lp(x) are special cases of Orlicz spaces Lϕ originated

by Nakano [22] and developed by Musielak and Orlicz [20], [21], where f ∈ Lϕ if and

only if
∫

ϕ(x, |f(x)|) dx < ∞ for a suitable ϕ. Variable exponent Lebesgue spaces

on the real line have been independently developed by Russian researchers. In that

context we refer to the studies of Tsenov [29], Sharapudinov [27] and Zhikov [32],

[33].

This paper is motivated by the phenomenon that can be modelled by the equations

(1)

{

−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω

where Ω ⊂ RN (N > 3) is a bounded domain with smooth boundary and 1 < pi(x),

pi(x) ∈ C(Ω) for i ∈ {1, 2}. Our goal will be to obtain nontrivial weak solu-

tions for problem (1) in the generalized Sobolev space W 1,m(x)(Ω), where m(x) =

max{p1(x), p2(x)} for any x ∈ Ω, for some particular nonlinearities of the type

f(x, u). Problems of type (1) have been intensively studied in the past decades. We

refer to [2], [10], [11], [31], [18], [17], [19] for some interesting results. We point out

the presence in problem (1) of the operator∆p1(x)u+∆p2(x)u, where for a real-valued

function p(x) we define the p(x)-Laplace operator by ∆p(x)u = div(|∇u|p(x)−2∇u).

This is a natural extension of the p-Laplace operator, with p a positive constant.

However, such generalizations are not trivial since the p(x)-Laplace operator pos-

sesses a more complicated structure than the p-Laplace operator, for example it is

inhomogeneous.

We recall in what follows some definitions and basic properties of the generalized

Lebesgue-Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω), where Ω is a bounded domain inRN . We refer the reader to the book of J. Musielak [20] and the papers of O.Kovacik

and J.Rákosník [14], H.G. Leopold [15], D. Edmunds et al. [6], [7], [8] and X. L. Fan

et al. [9], [12].

Set

C+(Ω) = {h ; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).
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For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{

u ; u is a measurable real-valued function such that

∫

Ω

|u(x)|p(x) dx <∞

}

.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf

{

µ > 0;

∫

Ω

∣

∣

∣

u(x)

µ

∣

∣

∣

p(x)

dx 6 1

}

.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many re-

spects: they are Banach spaces [14, Theorem 2.5], the Hölder inequality holds [14,

Theorem 2.1], they are reflexive if and only if 1 < p− 6 p+ < ∞ [14, Corollary 2.7]

and continuous functions are dense if p+ <∞ [14, Theorem 2.11]. The inclusion be-

tween Lebesgue spaces also generalizes naturally [14, Theorem 2.8]: if 0 < |Ω| < ∞

and r1, r2 are variable exponents so that r1(x) 6 r2(x) almost everywhere in Ω then

there exists a continuous embedding Lr2(x)(Ω) →֒ Lr1(x)(Ω), whose norm does not

exceed |Ω| + 1.

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x) =

1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder type inequality

(2)

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

6

( 1

p−
+

1

p′−

)

|u|p(x)|v|p′(x)

holds true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by themodular of the Lp(x)(Ω) space, which is the mapping ̺p(x) : L
p(x)(Ω) →R defined by

̺p(x)(u) =

∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) and p+ <∞ then the following relations hold true:

|u|p(x) > 1 ⇒ |u|p
−

p(x) 6 ̺p(x)(u) 6 |u|p
+

p(x),(3)

|u|p(x) < 1 ⇒ |u|p
+

p(x) 6 ̺p(x)(u) 6 |u|p
−

p(x),(4)

|un − u|p(x) → 0 ⇔ ̺p(x)(un − u) → 0.(5)

Spaces with p+ = ∞ have been studied by Edmunds, Lang and Nekvinda [6].

Next, we define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x).
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The space (W
1,p(x)
0 (Ω), ‖ · ‖p(x)) is a separable and reflexive Banach space. We note

that if q ∈ C+(Ω) and q(x) < p⋆(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) →֒

Lq(x)(Ω) is compact and continuous, where p⋆(x) = Np(x)/(N − p(x)) if p(x) < N

or p⋆(x) = +∞ if p(x) > N [14, Theorems 3.9 and 3.3] (see also [9, Theorems 1.3

and 1.1]).

Remark 1. If p1(x), p2(x) ∈ C+(Ω) then it is clear that m(x) ∈ C+(Ω) where

m(x) = max{p1(x), p2(x)} for any x ∈ Ω. On the other hand, since p1(x), p2(x) 6

m(x) for any x ∈ Ω, it follows by Theorem 2.8 in [14] thatW
1,m(x)
0 (Ω) is continuously

embedded in W
1,pi(x)
0 (Ω) for i ∈ {1, 2}.

2. Main results

In this paper we study problem (1) in the particular cases when

f(x, t) = ±(−λ|t|m(x)−2t+ |t|q(x)−2t)

where m(x) = max{p1(x), p2(x)} for any x ∈ Ω and q(x) ∈ C+(Ω) with m(x) <

q(x) < N ·m(x)/(N −m(x)) for any x ∈ Ω and λ > 0.

First, we consider the problem

(6)











−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u)

= −λ|u|m(x)−2u+ |u|q(x)−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω.

We say that u ∈W
1,m(x)
0 (Ω) is a weak solution of problem (6) if

∫

Ω

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx+λ

∫

Ω

|u|m(x)−2uv dx−

∫

Ω

|u|q(x)−2uv dx = 0

for all v ∈W
1,m(x)
0 (Ω).

We will prove

Theorem 1. For every λ > 0 problem (6) has infinitely many weak solutions

provided 2 6 p−i for i ∈ {1, 2}, m+ < q− and q+ < N ·m−/(N −m−).

Next, we study the problem

(7)











−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u)

= λ|u|m(x)−2u− |u|q(x)−2u for x ∈ Ω,

u = 0 for x ∈ ∂Ω.
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We say that u ∈W
1,m(x)
0 (Ω) is a weak solution of problem (7) if

∫

Ω

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx−λ

∫

Ω

|u|m(x)−2uv dx+

∫

Ω

|u|q(x)−2uv dx = 0

for all v ∈W
1,m(x)
0 (Ω).

We will prove

Theorem 2. There exists λ⋆ > 0 such that for any λ > λ⋆ problem (7) has a

nontrivial weak solution provided m+ < q− and q+ < N ·m−/(N −m−).

A careful analysis of the proofs shows that Theorems 1 and 2 still remain valid

for more general classes of differential operators. For example, we can replace the

p(x)-Laplace type operator div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) by the generalized

mean curvature operator div(((1 + |∇u|2)(p(x)−2)/2 ∇u)) (see Example (ii) on page

2629 in [18]).

We remark that in the particular case corresponding to p1(x) = p2(x) = m(x) = 2

and q(x) = q, q being a constant, problem (6) becomes

(8)

{

−∆u = −λu+ |u|q−2u in Ω,

u = 0 on ∂Ω.

This problem has been studied by Ambrosetti and Rabinowitz [3] provided 2 < q <

2∗ = 2N/(N−2). Using the Mountain Pass Theorem combined with the observation

that the operator −∆+λI (λ > 0) is coercive in H1
0 (Ω), Ambrosetti and Rabinowitz

showed that problem (8) has a positive solution for any λ > 0. The result we

establish in Theorem 1 establishes the existence of infinitely many solutions (not

necessarily positive) for a related class of boundary value problems, but involving

another differential operator in the class of variable exponent Sobolev spaces.

Finally, we point out the strong difference between the result of Theorem 1 and

Theorem 2. While for problem (6) we find infinitely many solutions, for problem (7)

we find only the existence of at least one nontrivial solution, for λ > 0 sufficiently

large. This fact is connected with the method applied in order to find solutions for

either of the quoted problems. For problem (6) we apply a Z2-symmetric version (for

even functionals) of the Mountain Pass Theorem. The application of this theorem is

intimately linked with the fact that under the assumptions of Theorem 1, the non-

linear term f1(x, t) := −λ|t|m(x)−2t + |t|q(x)−2t satisfies the Ambrosetti-Rabinowitz

condition 0 6 q(x)
∫ t

0
f1(x, s) ds 6 tf1(x, t) for all t > 0 with q(x) > m(x) for all

x ∈ Ω. This condition fails if f2(x, t) := λ|t|m(x)−2t− |t|q(x)−2t but, in that case, we

show that the corresponding energy functional is coercive and lower semicontinuous.
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The result of Theorem 2 is also in keeping with that of Theorem 2.1 in [18], where

a problem of the type

(9)











−div(|∇u|p(x)−2∇u) = λ(uγ−1 − uβ−1) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

u > 0 for x ∈ Ω.

with 1 < β < γ < inf
x∈Ω

p(x) is studied. By Theorem 2.1 in [18] we find at least two

nontrivial solutions for problem (9) for λ > 0 large enough. Even if the problems (7)

and (9) seems to have a similar nonlinear term on the right-hand side, the existence

of a second solution for problem (7) cannot be stated this time, since it should be

obtained by applying the Mountain Pass Theorem which cannot be used for the

nonlinear term of problem (7) in accord with the information already pointed out

above.

3. Proof of theorem 1

The key argument in the proof of Theorem 1 is the following Z2-symmetric version

(for even functionals) of the Mountain Pass Theorem (see Theorem 9.12 in [25]):

Mountain Pass Theorem. Let X be an infinite dimensional real Banach space

and let I ∈ C1(X,R) be even, satisfying the Palais-Smale condition (i.e., any se-

quence {xn} ⊂ X such that {I(xn)} is bounded and I ′(xn) → 0 in X⋆ has a conver-

gent subsequence) and I(0) = 0. Suppose that

(I1) there exist two constants ̺, a > 0 such that I(x) > a if ‖x‖ = ̺,

(I2) for each finite dimensional subspace X1 ⊂ X , the set {x ∈ X1 ; I(x) > 0} is

bounded.

Then I has an unbounded sequence of critical values.

Let E denote the generalized Sobolev spaceW
1,m(x)
0 (Ω) and let λ > 0 be arbitrary

but fixed.

The energy functional corresponding to problem (6) is defined as Jλ : E → R,
Jλ(u) =

∫

Ω

1

p1(x)
|∇u|p1(x) dx+

∫

Ω

1

p2(x)
|∇u|p2(x) dx

+ λ

∫

Ω

1

m(x)
|u|m(x) dx−

∫

Ω

1

q(x)
|u|q(x) dx.

A simple calculation based on Remark 1, relations (3) and (4) and the compact

embedding of E into Ls(x)(Ω) for all s ∈ C+(Ω) with s(x) < m⋆(x) on Ω shows that
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Jλ is well-defined on E and Jλ ∈ C1(E,R) with the derivative given by

〈J ′

λ(u), v〉 =

∫

Ω

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx

+ λ

∫

Ω

|u|m(x)−2uv dx−

∫

Ω

|u|q(x)−2uv dx

for any u, v ∈ E. Thus the weak solutions of (6) are exactly the critical points of Jλ.

We show now that the Mountain Pass Theorem can be applied in this case.

Lemma 1. There exist η > 0 and α > 0 such that Jλ(u) > α > 0 for any u ∈ E

with ‖u‖m(x) = η.

P r o o f. We first point out that since m(x) = max{p1(x), p2(x)} for any x ∈ Ω,

we have

(10) |∇u(x)|p1(x) + |∇u(x)|p2(x) > |∇u(x)|m(x), ∀x ∈ Ω.

On the other hand, we have

(11) |u(x)|q
−

+ |u(x)|q
+

> |u(x)|q(x), ∀x ∈ Ω.

Using (10) and (11) we deduce that

Jλ(u) >
1

max{p+
1 , p

+
2 }

·

∫

Ω

|∇u|m(x) dx−
1

q−
·

(
∫

Ω

|u|q
−

dx+

∫

Ω

|u|q
+

dx

)

(12)

>
1

m+
·

∫

Ω

|∇u|m(x) dx−
1

q−
·

(
∫

Ω

|u|q
−

dx+

∫

Ω

|u|q
+

dx

)

for any u ∈ E.

Since m+ < q− 6 q+ < m⋆(x) for any x ∈ Ω and E is continuously embedded in

Lq−

(Ω) and in Lq+

(Ω), it follows that there exist two positive constants C1 and C2

such that

(13) ‖u‖m(x) > C1 · |u|q+ , ‖u‖m(x) > C2 · |u|q− , ∀u ∈ E.

Next, we focus our attention on the case when u ∈ E with ‖u‖m(x) < 1. For such a

u by relation (4) we obtain

(14)

∫

Ω

|∇u|m(x) dx > ‖u‖m+

m(x).

161



Relations (12), (13) and (14) imply

Jλ(u) >
1

m+
· ‖u‖m+

m(x) −
1

q−
·
[( 1

C1
· ‖u‖m(x)

)q+

+
( 1

C2
· ‖u‖m(x)

)q−
]

= (β − γ · ‖u‖q+
−m+

m(x) − δ · ‖u‖q−
−m+

m(x) ) · ‖u‖m+

m(x)

for any u ∈ E with ‖u‖m(x) < 1, where β, γ and δ are positive constants.

We remark that the function g : [0, 1] → R defined by
g(t) = β − γ · tq

+
−m+

− δ · tq
−
−m+

is positive in a neighborhood of the origin. We conclude that Lemma 1 holds true.

�

Lemma 2. If E1 ⊂ E is a finite dimensional subspace, the set S = {u ∈ E1 ;

Jλ(u) > 0} is bounded in E.

P r o o f. In order to prove Lemma 2, we first show that

(15)

∫

Ω

1

p1(x)
|∇u|p1(x) dx 6 K1 · (‖u‖

p−

1

m(x) + ‖u‖
p+
1

m(x)), ∀u ∈ E

where K1 is a positive constant.

Indeed, using relations (3) and (4) we obtain

(16)

∫

Ω

|∇u|p1(x) dx 6 |∇u|
p−

1

p1(x) + |∇u|
p+
1

p1(x) = ‖u‖
p−

1

p1(x) + ‖u‖
p+
1

p1(x), ∀u ∈ E.

On the other hand, Remark 1 implies that there exists a positive constant K0 such

that

(17) ‖u‖p1(x) 6 K0 · ‖u‖m(x), ∀u ∈ E.

Inequalities (16) and (17) yield

∫

Ω

|∇u|p1(x) dx 6 (K0 · ‖u‖m(x))
p−

1 + (K0 · ‖u‖m(x))
p+
1 , ∀u ∈ E

and thus (15) holds true.

By similar arguments we conclude that there exists a positive constant K2 such

that

(18)

∫

Ω

1

p2(x)
|∇u|p2(x) dx 6 K2 · (‖u‖

p−

2

m(x) + ‖u‖
p+
2

m(x)), ∀u ∈ E.

162



Using again (3) and (4) we arrive at

∫

Ω

|u|m(x) dx 6 |u|m
−

m(x) + |u|m
+

m(x), ∀u ∈ E.

The fact that E is continuously embedded in Lm(x)(Ω) ensures the existence of a

positive constant K such that

|u|m(x) 6 K · ‖u‖m(x), ∀u ∈ E.

The last two inequalities show that for each λ > 0 there exists a positive constant

K3(λ) such that

(19) λ ·

∫

Ω

1

m(x)
|u|m(x) dx 6 K3(λ) · (‖u‖

m−

m(x) + ‖u‖m+

m(x)), ∀u ∈ E.

By inequalities (15), (18) and (19) we get

Jλ(u) 6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −
1

q+

∫

Ω

|u|q(x) dx

for all u ∈ E.

Let u ∈ E be arbitrary but fixed. We define

Ω< = {x ∈ Ω; |u(x)| < 1}, Ω> = Ω \ Ω<.

Then we have

Jλ(u) 6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −
1

q+

∫

Ω

|u|q(x) dx

6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −
1

q+

∫

Ω>

|u|q(x) dx

6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −
1

q+

∫

Ω>

|u|q
−

dx

6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −
1

q+

∫

Ω

|u|q
−

dx+
1

q+

∫

Ω<

|u|q
−

dx.
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But there exists a positive constant K4 such that

1

q+

∫

Ω<

|u|q
−

6 K4, ∀u ∈ E.

Thus we deduce that

Jλ(u) 6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −
1

q+

∫

Ω

|u|q
−

dx+K4, ∀u ∈ E.

The functional | |q− : E → R defined by
|u|q− =

(
∫

Ω

|u|q
−

dx

)1/q−

is a norm in E. In the finite dimensional subspace E1 the norms | · |q− and ‖ · ‖m(x)

are equivalent, so there exists a positive constant K = K(E1) such that

‖u‖m(x) 6 K · |u|q− , ∀u ∈ E1.

As a consequence we have that there exists a positive constant K5 such that

Jλ(u) 6 K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x))

+K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x)) −K5 · ‖u‖
q−

m(x) +K4, ∀u ∈ E1.

Hence

K1 · (‖u‖
p−

1

m(x) + ‖u‖
p+
1

m(x)) +K2 · (‖u‖
p−

2

m(x) + ‖u‖
p+
2

m(x)) +K3(λ) · (‖u‖
m−

m(x) + ‖u‖m+

m(x))

−K5 · ‖u‖
q−

m(x) +K4 > 0, ∀u ∈ S

and since q− > m+ we conclude that S is bounded in E.

The proof of Lemma 2 is complete. �

Lemma 3. If {un} ⊂ E is a sequence which satisfies the conditions

|Jλ(un)| < M,(20)

J ′

λ(un) → 0 as n→ ∞(21)

where M is a positive constant, then {un} possesses a convergent subsequence.
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P r o o f. First, we show that {un} is bounded in E. Assume the contrary.

Then, passing if necessary to a subsequence, still denoted by {un}, we may assume

that ‖un‖m(x) → ∞ as n → ∞. Thus, we may assume that ‖un‖m(x) > 1 for any

integer n.

By (21) we deduce that there exists N1 > 0 such that for any n > N1 we have

‖J ′

λ(un)‖ 6 1.

On the other hand, for any n > N1 fixed, the application

E ∋ v → 〈J ′

λ(un), v〉

is linear and continuous. The above information yields that

|〈J ′

λ(un), v〉| 6 ‖J ′

λ(un)‖ · ‖v‖m(x) 6 ‖v‖m(x), ∀v ∈ E, n > N1.

Setting v = un we have

−‖un‖m(x) 6

∫

Ω

|∇un|
p1(x) dx+

∫

Ω

|∇un|
p2(x) dx

+ λ

∫

Ω

|un|
m(x) dx−

∫

Ω

|un|
q(x) dx 6 ‖un‖m(x)

for all n > N1. We obtain

(22)

−‖un‖m(x) −

∫

Ω

|∇un|
p1(x) dx−

∫

Ω

|∇un|
p2(x) dx

− λ

∫

Ω

|un|
m(x) dx 6 −

∫

Ω

|un|
q(x) dx

for any n > N1.

Provided that ‖un‖m(x) > 1 relations (20), (22) and (3) imply

M > Jλ(un) >

( 1

m+
−

1

q−

)

·

∫

Ω

(|∇un|
p1(x) + |∇un|

p2(x)) dx

+ λ ·
( 1

m+
−

1

q−

)

·

∫

Ω

|un|
m(x) dx−

1

q−
· ‖un‖m(x)

>

( 1

m+
−

1

q−

)

·

∫

Ω

|∇un|
m(x) dx−

1

q−
· ‖un‖m(x)

>

( 1

m+
−

1

q−

)

· ‖un‖
m−

m(x) −
1

q−
· ‖un‖m(x).

Letting n→ ∞ we obtain a contradiction. It follows that {un} is bounded in E.
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Since {un} is bounded in E we deduce that there exists a subsequence, again

denoted by {un}, and u0 ∈ E such that {un} converges weakly to u0 in E. Since

by Remark 1 and Theorem 1.3 in [9] E is compactly embedded in Lm(x)(Ω) and

in Lq(x)(Ω) it follows that {un} converges strongly to u0 in L
m(x)(Ω) and Lq(x)(Ω).

The above information and relation (21) imply

〈J ′

λ(un) − J ′

λ(u0), un − u0〉 → 0 as n→ ∞.

On the other hand, we have

∫

Ω

(|∇un|
p1(x)−2∇un + |∇un|

p2(x)−2∇un − |∇u0|
p1(x)−2∇u0

− |∇u0|
p2(x)−2∇u0) · (∇un −∇u0) dx

= 〈J ′

λ(un) − J ′

λ(u0), un − u0〉 − λ ·

∫

Ω

(|un|
m(x)−2un − |u0|

m(x)−2u0)(un − u0) dx

+

∫

Ω

(|un|
q(x)−2un − |u0|

q(x)−2u0)(un − u0) dx.

Using the fact that {un} converges strongly to u0 in L
q(x)(Ω) and inequality (2) we

have

∣

∣

∣

∣

∫

Ω

(|un|
q(x)−2un − |u0|

q(x)−2u0)(un − u0) dx

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

Ω

|un|
q(x)−2un(un − u0) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

|u0|
q(x)−2u0(un − u0) dx

∣

∣

∣

∣

6 C3 · ‖un|
q(x)−1| q(x)

q(x)−1

· |un − u0|q(x) + C4 · ‖u0|
q(x)−1| q(x)

q(x)−1

· |un − u0|q(x)

where C3 and C4 are two positive constants. Since |un − u0|q(x) → 0 as n → ∞ we

deduce that

(24) lim
n→∞

∫

Ω

(|un|
q(x)−2un − |u0|

q(x)−2u0)(un − u0) dx = 0.

By similar arguments we deduce that

(25) lim
n→∞

∫

Ω

(|un|
m(x)−2un − |u0|

m(x)−2u0)(un − u0) dx = 0.

By (23), (24) and (25) we get

lim
n→∞

∫

Ω

(|∇un|
p1(x)−2∇un + |∇un|

p2(x)−2∇un − |∇u0|
p1(x)−2∇u0(26)

− |∇u0|
p2(x)−2∇u0) · (∇un −∇u0) dx = 0.
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It is known that

(27) (|ξ|r−2ξ − |ψ|r−2ψ) · (ξ − ψ) >

(1

2

)r

|ξ − ψ|r, ∀r > 2, ξ, ψ ∈ RN .

Relations (26) and (27) yield

lim
n→∞

∫

Ω

|∇un −∇u0|
p1(x) dx+

∫

Ω

|∇un −∇u0|
p2(x) dx = 0

and using relation (10) we get

lim
n→∞

∫

Ω

|∇un −∇u0|
m(x) dx = 0.

This fact and relation (5) imply ‖un−u0‖m(x) → 0 as n→ ∞. The proof of Lemma 3

is complete. �

Proof of Theorem 1 completed. It is clear that the functional Jλ is even and

verifies Jλ(0) = 0. Lemma 3 implies that Jλ satisfies the Palais-Smale condition. On

the other hand, Lemmas 1 and 2 show that conditions (I1) and (I2) are satisfied.

The Mountain Pass Theorem can be applied to the functional Jλ. We conclude that

equation (6) has infinitely many weak solutions in E. The proof of Theorem 1 is

complete.

4. Proof of theorem 2

Let E denote the generalized Sobolev spaceW
1,m(x)
0 (Ω) and let λ > 0 be arbitrary

but fixed.

We start by introducing the energy functional corresponding to problem (7) as

Iλ : E → R,
Iλ(u) =

∫

Ω

1

p1(x)
|∇u|p1(x) dx+

∫

Ω

1

p2(x)
|∇u|p2(x) dx

− λ

∫

Ω

1

m(x)
|u|m(x) dx+

∫

Ω

1

q(x)
|u|q(x) dx.

The same arguments as those used in the case of the functional Jλ show that Iλ is

well-defined on E and Iλ ∈ C1(E,R) with the derivative given by

〈I ′λ(u), v〉 =

∫

Ω

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx

− λ

∫

Ω

|u|m(x)−2uv dx+

∫

Ω

|u|q(x)−2uv dx
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for any u, v ∈ E. We obtain that the weak solutions of (7) are the critical points

of Iλ.

This time our idea is to show that Iλ possesses a nontrivial global minimum point

in E. With this end in view we start by proving two auxiliary results.

Lemma 4. The functional Iλ is coercive on E.

P r o o f. In order to prove Lemma 4 we first show that for any a, b > 0 and

0 < k < l the following inequality holds:

(28) a · tk − b · tl 6 a ·
(a

b

)k/(l−k)

, ∀ t > 0.

Indeed, since the function

[0,∞) ∋ t→ tθ

is increasing for any θ > 0 it follows that

a− b · tl−k < 0, ∀ t >
(a

b

)1/(l−k)

and

tk · (a− b · tl−k) 6 a · tk < a ·
(a

b

)k/(l−k)

, ∀ t ∈
[

0,
(a

b

)1/(l−k)]

.

The above two inequalities show that (28) holds true.

Using (28) we deduce that for any x ∈ Ω and u ∈ E we have

λ

m−
|u(x)|m(x) −

1

q+
|u(x)|q(x) 6

λ

m−

[λ · q+

m−

]m(x)/(q(x)−m(x))

6
λ

m−

[(λ · q+

m−

)m+/(q−
−m+)

+
(λ · q+

m−

)m−/(q+
−m−)]

= C,

where C is a positive constant independent of u and x. Integrating the above in-

equality over Ω we obtain

(29)
λ

m−

∫

Ω

|u|m(x) dx−
1

q+

∫

Ω

|u|q(x) dx 6 D

where D is a positive constant independent of u.

Using inequalities (10) and (29) we obtain for any u ∈ E with ‖u‖m(x) > 1 that

Iλ(u) >
1

m+

∫

Ω

|∇u|m(x) dx−
λ

m−

∫

Ω

|u|m(x) dx+
1

q+

∫

Ω

|u|q(x) dx

>
1

m+
‖u‖m−

m(x) −

(

λ

m−

∫

Ω

|u|m(x) dx−
1

q+

∫

Ω

|u|q(x) dx

)

>
1

m+
‖u‖m−

m(x) −D.

Thus Iλ is coercive and the proof of Lemma 4 is complete. �
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Lemma 5. The functional Iλ is weakly lower semicontinuous.

P r o o f. First we prove that the functionals Λi : E → R,
Λi(u) =

∫

Ω

1

pi(x)
|∇u|pi(x) dx, ∀ i ∈ {1, 2}

are convex. Indeed, since the function

[0,∞) ∋ t→ tθ

is convex for any θ > 1, we deduce that for each x ∈ Ω fixed it the inequality

∣

∣

∣

ξ + ψ

2

∣

∣

∣

pi(x)

6

∣

∣

∣

|ξ| + |ψ|

2

∣

∣

∣

pi(x)

6
1

2
|ξ|pi(x) +

1

2
|ψ|pi(x), ∀ξ, ψ ∈ RN , i ∈ {1, 2}

holds. Using the above inequality we deduce that

∣

∣

∣

∇u+ ∇v

2

∣

∣

∣

pi(x)

6
1

2
|∇u|pi(x) +

1

2
|∇v|pi(x), ∀u, v ∈ E, x ∈ Ω, i ∈ {1, 2}.

Multiplying with 1/pi(x) and integrating over Ω we obtain

Λi

(u+ v

2

)

6
1

2
Λi(u) +

1

2
Λi(v), ∀u, v ∈ E, i ∈ {1, 2}.

Thus Λ1 and Λ2 are convex. It follows that Λ1 + Λ2 is convex.

Next, we show that the functional Λ1 + Λ2 is weakly lower semicontinuous on E.

Taking into account that Λ1 + Λ2 is convex, by Corollary III.8 in [4] it is enough to

show that Λ1 + Λ2 is strongly lower semicontinuous on E. We fix u ∈ E and ε > 0.

Let v ∈ E be arbitrary. Since Λ1 + Λ2 is convex and inequality (2) holds true we

have

Λ1(v) + Λ2(v) > Λ1(u) + Λ2(u) + 〈Λ′

1(u) + Λ′

2(u), v − u〉

> Λ1(u) + Λ2(u) −

∫

Ω

|∇u|p1(x)−1|∇(v − u)| dx

−

∫

Ω

|∇u|p2(x)−1|∇(v − u)| dx

> Λ1(u) + Λ2(u) −D1 · ‖∇u|
p1(x)−1| p1(x)

p1(x)−1

· |∇(u − v)|p1(x)

−D2 · ‖∇u|
p2(x)−1| p2(x)

p2(x)−1

· |∇(u− v)|p2(x)

> Λ1(u) + Λ2(u) −D3 · ‖u− v‖m(x)

> Λ1(u) + Λ2(u) − ε
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for all v ∈ E with ‖u − v‖m(x) < ε/[‖∇u|p1(x)−1| p1(x)

p1(x)−1

+ ‖∇u|p2(x)−1| p2(x)

p2(x)−1

]. We

have denoted by D1, D2 and D3 three positive constants. It follows that Λ1 + Λ2

is strongly lower semicontinuous and since it is convex we obtain that Λ1 + Λ2 is

weakly lower semicontinuous.

Finally, we remark that if {un} ⊂ E is a sequence which converges weakly to u in

E then {un} converges strongly to u in L
m(x)(Ω) and Lq(x)(Ω). Thus, Iλ is weakly

lower semicontinuous. The proof of Lemma 5 is complete. �

Proof of Theorem 2. By Lemmas 4 and 5 we deduce that Iλ is coercive and

weakly lower semicontinuous on E. Then Theorem 1.2 in [28] implies that there

exists a global minimizer uλ ∈ E of Iλ and thus a weak solution of problem (7).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a

fixed real and Ω1 an open subset of Ω with |Ω1| > 0 we deduce that there exists

u0 ∈ C∞

0 (Ω) ⊂ E such that u0(x) = t0 for any x ∈ Ω1 and 0 6 u0(x) 6 t0 in Ω \Ω1.

We have

Iλ(u0) =

∫

Ω

1

p1(x)
|∇u0|

p1(x) dx+

∫

Ω

1

p2(x)
|∇u0|

p2(x) dx

− λ

∫

Ω

1

m(x)
|u0|

m(x) dx+

∫

Ω

1

q(x)
|u0|

q(x) dx

6 L−
λ

m+

∫

Ω1

|u0|
m(x) dx 6 L−

λ

m+
· tm

−

0 · |Ω1|

where L is a positive constant. Thus, there exists λ⋆ > 0 such that Iλ(u0) < 0

for any λ ∈ [λ⋆,∞). It follows that Iλ(uλ) < 0 for any λ > λ⋆ and thus uλ is a

nontrivial weak solution of problem (7) for λ large enough. The proof of Theorem 2

is complete. �
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